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Chapter 3 

Experimental Design Models 

We consider the models which are used in designing an experiment. The experimental conditions, 

experimental setup and the objective of the study primarily determine that what type of design is to 

be used and hence which type of design model can be used for the further statistical analysis to 

conclude about the decisions. These models are based on one-way classification, two-way 

classifications (with or without interactions), etc. We discuss them now in detail in a few setups 

which can be extended further to any order of classification. We discuss them now under the set up 

of one-way and two-way classifications.  

 

It may be noted that it has already been described how to develop the likelihood ratio tests for the 

testing the hypothesis of equality of more than two means from normal distributions and now we 

will concentrate more on deriving the same tests through the least-squaress principle under the setup 

of the linear regression model. The design matrix is assumed to be not necessarily of full rank and 

consists of 0’s and 1’s only. 

 

One way classification: 

Let p random samples from p normal populations with the same variances but different means and 

different sample sizes have been independently drawn. 

Let the observations Yij  follow the linear regression model setup and  

Yij denotes the  jth observation of dependent variable Y when the effect of ith level of the factor is 

present. 

Then Yij are independently normally distributed with 

2

( ) , 1,2,..., , 1,2,...,

( )

ij i i

ij

E Y i p j n

V Y

 



   


 

where 

 

  is the general mean effect. 

    - is fixed. 

    - gives an idea about the general conditions of the experimental units and treatments. 

i  is the effect of ith level of the factor. 

    - can be fixed or random. 
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 Example: Consider a medicine experiment in which there are three different dosages of drugs - 2 

mg., 5 mg., 10 mg. which are given to patients for controlling the fever. These are the 3 levels of 

drugs, and so denote 1 2 32 mg., 5 mg., 10 mg.      Let Y denotes the time taken by the 

medicine to reduce the body temperature from high to normal. Suppose two patients have been given 

2 mg. of dosage, so 11Y  and 12Y will denote their responses. So we can write that when 1 2mg   is 

given to the two patients, then  

1 1( ) ; 1, 2.jE Y j     

 

Similarly, if 2 5 mg.   and 3 10 mg.   of dosages are given to 4 and 7 patients respectively then 

the responses follow the model 

2 2

3 3

( ) ;  1,2,3,4

( ) ;  1,2,3,4,5,6,7.

j

j

E Y j

E Y j

 

 

  

  
 

 

Here   denotes the general mean effect which may be thought as follows: The human body has a 

tendency to fight against the fever, so the time taken by the medicine to bring down the temperature 

depends on many factors like body weight, height, general health condition etc. of the patient.  So   

denotes the general effect of all these factors which is present in all the observations. 

 

In the terminology of the linear regression model,   denotes the intercept term which is the value of 

the response variable when all the independent variables are set to take value zero. In experimental 

designs, the models with intercept term are more commonly used and so generally we consider these 

types of models. 

 

Also, we can express 

;  1, 2,..., ,  1, 2,...,ij i ij iY i p j n        
where ij  is the random error component in  .ijY   It 

indicates the variations due to uncontrolled causes which can influence the observations. We assume 

that ij ’s are identically and independently distributed as 2(0, )N  with 2( ) 0, ( )ij ijE Var    . 
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Note that the general linear model considered is 

( )E Y X   

for which ijY  can be written as 

( ) .ij iE Y   

When all the entries in X are 0’s or 1’s, then this model can also be re-expressed in the form of 

( )ij iE Y    . 

This gives rise to some more issues.   

 

Consider and rewrite 

( )

         ( )

  

ij i

i

i

E Y 

  
 



  
 

 

where 

1

1

.

p

i
i

i i

p
  

  


 

 


 

Now let us see the changes in the structure of the design matrix and the vector of regression 

coefficients. 

 

The model ( )ij i iE Y     

 

can now be rewritten as 

2

( ) * *

( )

E Y X

Cov Y I








 

1 2where * ( ,  ,  , ...,  )p       
is a 1p  vector and 

1

1
*

1

X
X

 
 
 
 
 
 


 

is a ( 1)n p   matrix, and X denotes the earlier defined design matrix in which  

- first n1 rows as (1,0,0,…,0),   

- second n2  rows as (0,1,0,…,0)  

- …, and  

- last np rows as (0,0,0,…,1).  
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We earlier assumed that   rank X p  but can we also say that  * is alsorank X p in the present 

case?  

Since the first column of X* is the vector sum of all its remaining p columns, so 

 *rank X p . 

It is thus apparent that all the linear parametric functions of  1 2, , ..., p    are not estimable. The 

question now arises is what kind of linear parametric functions are estimable? 

 

Consider any linear estimator 

1 1

inp

ij ij
i j

L a Y
 

 
 

with 

1

in

i ij
j

C a




 Now     

1 1

1 1

1 1 1 1

1 1

( )  ( )

      ( )

       

     ( ) .

i

i

i i

np

ij ij
i j

np

ij i
i j

n np p

ij ij i
i j i j

p p

i i i
i i

E L a E Y

a

a a

C C

 

 

 

 

 

   

 



 

 

 





 

 

 

Thus  
1

 
p

i i
i

C 

  is estimable if and only if 

1

0,
p

i
i

C


  

i.e., 
1

p

i i
i

C

 is a contrast. 

Thus, in general, neither 
1

p

i
i



  nor any  1 2, , , ..., p     is estimable. If it is a contrast, then it is 

estimable. 
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This effect and outcome can also be seen from the following explanation based on the estimation of 

parameters  1 2, , , ..., .p     

 

Consider the least-squares estimation 1 2ˆ ˆ ˆˆ , , , ..., p     of   1 1 2, , , ..., p     respectively. 

Minimize the sum of squares due to 'ij s  

2 2

1 1 1 1

( )
i in np p

ij ij i
i j i j

S y  
   

      

to obtain 1
ˆ ˆˆ , , ..., .p    

1 1

1

( )    0 ( ) 0

( )    0 ( ) 0,  1, 2,..., .

i

i

np

ij i
i j

n

ij i
ji

S
a y

S
b y i p

 


 


 




    




     






 

Note that (a) can be obtained from (b) or vice versa. So (a) and (b) are linearly dependent in the 

sense that there are (p + 1) unknowns and p linearly independent equations. Consequently 

1ˆ ˆˆ , , ..., p    do not have a unique solution. Same applies to the maximum likelihood estimation of 

1, , ... .p   . 

If a side condition that  

1 1

ˆ 0 or 0
p p

i i i i
i i

n n 
 

    

is imposed then (a) and (b) have a unique solution as  

1 1

1

1

1
ˆ ,

1
ˆ ˆ

where .

i

i

np

ij oo
i j

n

i ij
jp

io oo

p

i
i

y y
n

y
n

y y

n n



 

 





 

 

 








 

In case, all the sample sizes are the same, then the condition 
1

ˆ 0
p

i i
i

n



  

or 
1

0
p

i i
i

n


 reduces to 

1

ˆ 0
p

i
i




  or 
1

0
p

i
i




 . 
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So the model ij i ijy       needs to be rewritten so that all the parameters can be uniquely 

estimated. Thus 

* *

*

*

1

*

1

( ) ( )

where

1

and

0

ij i ij

i ij

i ij

i i

p

i
i

p

i
i

Y

p

  

    

  

  

  

 







  

    

  

 

 








 

This is a reparameterized form of the linear model. 

 
Thus in a linear model when X is not of full rank,  then the parameters do not have unique estimates. 

In such conditions, a restriction    
1

0
p

i
i




  (or equivalently 
1

0
p

i i
i

n


    in case all ni’s are not the 

same) can be added and then the least squares (or maximum likelihood) estimators obtained are 
unique. 
 

The model 

* *
1

1

( ) * ; 0
p

ij i
i

E Y   


    

is called a reparametrization of the original linear model. 

 
Let us now consider the analysis of variance with an additional constraint.  Let 

1

1 1

,  1, 2,..., ;  1, 2,...,

( )

with

1
,    ,

0,    .

ij i ij i

i ij

i ij

p

i i i
i

p p

i i i
i i

Y i p j n

p

n n n

 

   

  

     





 

   

   

  

   

 



 

 

and ij ’s are identically and independently distributed with mean 0 and variance 2 . 
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The null hypothesis is  

0 1 2: ... 0pH        

and the alternative hypothesis is  

1 : atleast one for all , .i jH i j   

 

This model is a one-way layout in the sense that the observations 'ijy s  are assumed to be affected 

by only one treatment effect  .i   So the null hypothesis is equivalent to testing the equality of p 

population means or equivalently the equality of p treatment effects. 

 

We use the principle of least squares to estimate the parameters 1 2, , , ... p    . 

Minimize the error sum of squares  

2 2

1 1 1 1

( )
i in np p

ij ij i
i j i j

E y  
   

      

with respect to 1 2, , , ..., .p    The normal equations are obtained as 

1 1

1 1 1

1

1

0 2  ( ) 0

or

                     (1)

0 2 ( ) 0

or

      ( 1, 2,..., ). (2)

i

i

i

i

np

ij i
i j

np p

i i ij
i i j

n

ij i
ji

n

i i i ij
j

E
y

n n y

E
y

n n y i p

 


 

 


 

 

  






     



 


     



  

 

 





 

Using  
1

0
p

i i
i

n


   in (1) gives 

1 1

1
ˆ

inp

ij oo
i j

G
y y

n n


 

    

where
1 1

inp

ij
i j

G y
 

  is the grand total of all the observations. 
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Substituting ̂ in (2) gives 

1

1
ˆ ˆ

ˆ

in

i ij
ji

i

i

io oo

y
n

T

n

y y

 





 

 

 



 

where
1

in

i ij
j

T y


  is the treatment total due to ith effect  i , i.e., a total of all the observations 

receiving the ith treatment and  
1

1 in

io ij
ji

y y
n 

  .  

 
Now the fitted model is ˆˆij iy     and the error sum of squares after substituting  ̂  and ˆi  in E 

becomes 

2

1 1

2

1 1

2 2

1 1 1 1

22 2
2

1 1 1

ˆˆ( )

( ) ( )

( ) ( )

i

i

i i

i

np

ij i
i j

np

ij oo io oo
i j

n np p

ij oo io oo
i j i j

np p
i

ij
i j i i

E y

y y y y

y y y y

TG G
y

n n n

 
 

 

   

  

  

     

   

   
      

  





 

 

 

where the total sum of squares ( )TSS  

2

1 1

2
2

1 1

( )

,

i

i

np

ij oo
i j

np

ij
i j

TSS y y

G
y

n

 

 

 

 




 

and
2G

n
 is called the correction factor  CF . 

 

To obtain a measure of variation due to treatments, let 

0 1 2 ... 0pH         

be true.  Then the model becomes 

, 1, 2,..., ;  1, 2,...,ij ij iY i p j n     . 
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Minimizing the error sum of squares 

2
1

1 1

( )
inp

ij
i j

E y 
 

   

with respect to  ,  the normal equation is obtained as 

1

1 1

0 2  ( ) 0

or

ˆ .

inp

ij
i j

oo

E
y

G
y

n






 


    



 

 

 

 

Substituting 1ˆ  ,in E   the error sum of squares becomes 

2
1

1 1

2

1 1

2
2

1 1

ˆ( )

( )

.

i

i

i

np

ij
i j

np

ij oo
i j

np

ij
i j

E y

y y

G
y

n


 

 

 

 

 

 






 

 

Note that 

E1: Contains variation due to treatment and error both 

E: Contains variation due to error only 

So  1 :E E  contain variation due to treatment only. 

 

The sum of squares due to treatment ( )SSTr  is given by 

1

2

1 1

2 2

1

 

( )

   .

inp

io oo
i j

p
i

i i

SSTr E E

SSTr y y

T G

n n

 



 

 

 





 

The following quantity is called the error sum of squares or sum of squares due to error (SSE) 

2

1 1

 ( ) .
inn

ij io
i j

SSE y y
 

  
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These sum of squares forms the basis for the development of tools in the analysis of variance. We 

can write 

.TSS SSTr SSE   

 
The distribution of degrees of freedom among these sum of squares is as follows: 

 The total sum of squares is based on n quantities subject to the constraint that 

1 1

 ( ) 0
inp

ij oo
i j

y y
 

    so TSS carries ( 1)n  degrees of freedom. 

 

 The sum of squares due to the treatments is based on p quantities subject to the constraint 

1

( ) 0
p

i io oo
i

n y y


  so SSTr  has ( 1)p  degrees of freedom. 

 The sum of squares due to errors is based on n quantities subject to p constraints 

1

( ) 0, 1,2,...,
in

ij io
j

y y i p


    

so SSE  carries ( )n p  degrees of freedom. 

 

Also, note that  

,TSS SSTr SSE   

the TSS has been divided into two orthogonal components - SSTr and SSE. Moreover, all TSS, SSTr 

and SSE can be expressed in a quadratic form. Since ij  are assumed to be identically and 

independently distributed following  2(0, ),N    so  ijy  are also independently distributed following 

2( ,  ).iN     

Now using the theorems 7 and 8 with 1 2,   q SSTr q SSE , we have under 0 ,H  

 

2
2

2
2

~ ( 1)

and

~ ( ).

SSTr
p

SSE
n p











 

 

Moreover, SSTr and SSE are independently distributed. 
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The mean squares is defined as the sum of squares divided by the degrees of freedom. So the mean 

square due to treatment is 

1

SSTr
MSTr

p



 

and  the mean  square due to error is 

SSE
MSE

n p



. 

Thus, under 0 ,H  

2

2

~ ( 1,  ).

MSTr

F F p n p
MSE




 
 
   
 
 
 

 

The decision rule is that reject 0H  if 

1 , 1, p n pF F     

at % level of significance. 

If  0H  does not hold true, then 

~ ( 1,  ,  )
MSTr

noncentral F p n p
MSE

   

where
2

2
1

p
i i

i

n


   is the non-centrality parameter. 

Note that the test statistic 
MSTr

MSE
can also be obtained from the likelihood ratio test. 

If  0H  is rejected, then we go for multiple comparison tests and try to divide the population into 

several groups having the same effects. 

 
The analysis of variance table is as follows: 
 
Source  Degrees Sum of  Mean sum   F-value 
of variation of freedom squares           of squares 
   

Treatment    1p   SSTr   MSTr   
MSTr

MSE
 

  
Error  n p   SSE   MSE  
  

Total  1n             TSS  
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Now we find the expectations of SSTr  and SSE . 

 

 

2

1

2

1

1 1 1 1

2

1

2 2

1 1

( ) ( )

( ) ( )

where

1 1
 ,  and  0.

( ) ( )

( ) ( ) 0.

i i

p

i io oo
i

p

i i io oo
i

n np p
i i

io ij oo ij
j i j ii

p

i i io oo
i

p p

i i i io oo
i i

E SSTr E n y y

E n

n

n n n

E SSTr E n

n E n E

    

   

  

  





   



 

 
  

 
 

     
 

  

 
   

 

   





  



   

Since  

2 2

1 1

2 2

1

2

2 1

2

2 1

1 1
( )

( 1)

or
1 1

or ( ) .
1

p p

i i i
i i i

p

i i
i

p

i i
i

p

i i
i

E SSTr n n
n n

n p

n
SSTr

E
p p

n
E MSTr

p

 

 







 







 
   

 

  

 
    

 


 







 

2
2 2

2
1

2
2 2

2
1 1

1 1 1

2 2

1 1
( ) ( )

1 1
( ) ( )

( ) ( , )

1

.

i

i

i i

n

io io ij i
ji i i

np

oo oo ij
i j

io oo io oo

n np

ij ij
j i ji

i

i

E Var Var n
n n n

E Var Var n
n n n

E Cov

Cov
n n

n

n n n

   

   

   

 

 



 

  

 
    

 
 

    
 



 
  

 

 





 
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Next 

 

2

1 1

2

1 1

2

1 1

2 2

1 1

2 2
2

1 1

2

( ) ( )

( ) ( )

( )

( 2 )

2
             =

1
  

i

i

i

i

i

np

ij io
i j

np

i ij i io
i j

np

ij io
i j

np

ij io ij io
i j

np

i j i i

i

j i

E SSE E y y

E

E

E

n n

n

n

     

 

   

 



 

 

 

 

 



 
  

 
 

      
 
 

  
 

  

 
  

 

 
  

 











1 1

2

1

2

1

2

2

2

( 1)
              

            ( 1) 

( )

or

or ( ) .

inp

i

p
i i

i i

p

i
i

n n

n

n

n p

SSE
E

n p

E MSE




















 

 

 
  



 




 

Thus MSE is an unbiased estimator of  2.  

 

Two-way classification under fixed effects model 

Suppose the response of an outcome is affected by the two factors – A and B. For example, suppose I 

varieties of mangoes are grown on I different plots of the same size in each of the J different 

locations. All plots are given the same treatment like an equal amount of water, an equal amount of 

fertilizer etc. So there are two factors in the experiment which affect the yield of mangoes. 

- Location (A) 

- Variety of mangoes (B) 

Such an experiment is called a two – factor experiment. The different locations correspond to 

the different levels of A and the different varieties correspond to the different levels of factor B. The 

observations are collected on the basis of per plot. 
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The combined effect of the two factors (A and B in our case) is called the interaction effect (of A 

and B). 

 

Mathematically, let a and b be the levels of factors A and B respectively then a function ( , )f a b  is 

called a function of no interaction if and only if there exists functions ( )g a and ( )h b such that 

( , ) ( ) ( )f a b g a h b  . 

Otherwise, the factors are said to interact. 

For a function ( , )f a b of no interaction, 

1 1

2 2

1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( , ) ( ) ( )

f a b g a h b

f a b g a h b

f a b f a b g a g a

 
 

   
 

and so it is independent of b. Such no interaction functions are called additive functions. 

 

Now there are two options: 

- Only one observation per plot is collected. 

- More than one observations per plot are collected. 

If there is only one observation per plot then there cannot be any interaction effect among the 

observations and we assume it to be zero. 

If there are more than one observations per plot then the interaction effect among the observations 

can be considered. 

We consider here two cases  

1. One observation per plot in which the interaction effect is zero. 

2. More than one observations per plot in which the interaction effect is present. 
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Two-way classification without interaction 

Let ijy  
be the response of observation from ith level of the first factor, say A and jth level of the 

second factor, say B.  So assume  ijY  are independently distributed as 

2( , )  1,  2,..., ,  1,2,..., .ijN i I j J     

This can be represented in the form of a linear model as 

( )

( ) ( ) ( )

ij ij

oo io oo oj oo ij io oj oo

i j ij

E Y 

        

   



        

   

 

where 

1 1

1 1

with 

( ) 0

( ) 0

 

 


 

 

   

  

  

 

 

oo

i io oo

j oj oo

ij ij io oj oo

I I

i io oo
i i

J J

j oj oo
j j

 
  
  

    

  

  

 

Here 

:i effect of ith  level of factor A  

      or excess of mean of ith  level of A over the general mean. 

:j effect of jth level of B 

       or excess of mean of jth level of B over the general mean. 

:ij  Interaction effect of ith level of A and  jth level of B. 

Here we assume 0ij  as we have only one observation per plot. 

We also assume that the model ( )ij ijE Y   is a full rank model so that ij  and all linear parametric 

functions of  ij  are estimable. 

The total number of observations are I J  which can be arranged in a two-way classified I J  table 

where the rows correspond to the different levels of A and the column corresponds to the different 

levels of B. 



 

Analysis of Variance  |  Chapter 3  |  Experimental Design Models  |  Shalabh, IIT Kanpur 
 16 

The observations on Y and the design matrix X in this case are 

 

1 2

11

12

1

1

2

         

1 1      0    0

1 1      0      0

              

1 1      0      0
   

              

1 0      0      1

1 0      0           1

                  

1 0      0         

I

J

I

I

IJ

Y

y

y

y

y

y

y

   



    


    


   

1 2     

1      0    0

0      1      0

              

0      0     1
  

             

1       0          0

0      1      0

             

    1   0     0         1

j  






  


  

 

 

If the design matrix is not of full rank, then the model can be reparameterized. In such a case, we can 

start the analysis by assuming that the model ( )ij i jE Y       is obtained after 

reparameterization. 

 

There are two null hypotheses of interest: 

0 1 2

0 1 2

: ... 0

: ... 0
I

J

H

H




  
  
   
   

 

against 

1 :H  at least one  ( 1, 2,..., )i i I   is different from others 

1 :H  at least one  ( 1,2,..., )j j J   is different from others. 

Now we derive the least-squares estimators (or equivalently the maximum likelihood estimator) of 

,  i  and ,  1,2,..., , 1,2,...,  j i I j J
 
by minimizing the error sum of squares 

2

1 1

 ( ) .
I J

ij i j
i j

E y   
 

      

The normal equations are obtained as 

1 1

1

1

0 2  ( ) 0

0 2 ( ) 0 ,    1, 2,...,

0 2 ( ) 0 ,    1, 2,..., .

I J

ij i j
i j

J

ij i j
ji

I

ij i j
ij

E
y

E
y i I

E
y j J

  


  


  


 






      




       




       



 





,  
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Solving the normal equations and using 
1 1

0 and 0
I J

i j
i j

 
 

   , the least-squares estimators are 

obtained as 

1 1

1

1

1
ˆ   

1
ˆ  =   1, 2,...,

1ˆ , 1, 2,...,

I J

ij oo
i j

J
i

i ij oo oo io oo
j

I
j

j ij oo oo oj oo
i

G
y y

IJ IJ

T
y y y y y i I

J J

B
y y y y y j J

I I







 





  

     

      

 





 

where 

:iT treatment totals due to ith  effect, i.e., the sum of all the observations receiving the ith treatment. 

:jB block totals due to jth    effect, i.e., sum of all the observations in the jth block.  

Thus the error sum of squares is  

, ,

2

1 1

2

1 1

2

1 1

2 2 2

1 1 1 1

ˆˆˆ( )

       = ( ) ( ) ( )

( )

       = ( ) ( ) ( )

i j

I J

ij i i j
i j

I J

ij oo io oo oj oo
i j

I J

ij io oj oo
i j

I J I J

ij oo io oo oj oo
i j i j

SSE Min E

y

y y y y y y

y y y y

y y J y y I y y

  

  
 

 

 

   



   

      

   

    







  

 

which carries 

( 1) ( 1) 1 ( 1)( 1)IJ I J I J         degrees  of freedom. 

Next, we consider the estimation of and j   under the null hypothesis  0 1 2: ... 0IH         

by minimizing the error sum of squares 

2
1

1 1

( ) 
 

  
I J

ij j
i j

E y . 

The normal equations are obtained by  

1 0






E

and 1 0, 1, 2,...,



 
 j

E
j J   

which on solving gives the least square estimates 

ˆ

ˆ .

oo

j oj oo

y

y y







 
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The sum of squares due to  0H   is  

2
1

, ,
1 1

2

1 1

2 2

1 1 1

( )

ˆˆ( )

( ) ( ) .

                                                         

 Sum of squares due to factor  

j j

I J

ij j
i j

I J

ij j
i j

I I J

io oo ij io oj oo
i i j

Min E Min y

y

J y y y y y y

A

   
 

 

 

 

  

  

  

     

 





 

   Error sum of squares

 

 

Thus the sum of squares due to deviation from 0H   (or sum of squares due to rows or sum of squares 

are to factor A) 

2 2 2

1 1

( )
I I

io oo io oo
i i

SSA J y y J y IJy
 

      

and carries     1 1 1IJ J I J I       degrees of freedom. 

Now we find the estimates of     and i  under  0 1 2: ... 0JH         by minimizing 

2
2

1 1

( ) .
I J

ij i
i j

E y  
 

    

The normal equations are 

2 0






E

and 2 0, 1,2,...,



 
 i

E
i I   

which on solving give the estimators as 

ˆ

ˆ .
oo

i io oo

y

y y




 

 

The minimum value of the error sum of squares is obtained by 

2
2

,
1 1

2

1 1

2 2

1 1 1

ˆˆ ( )

      ( )

       ( ) ( )

                                                                

 Sum of squares due 

j

I J

ij i
i j

I J

ij io
i j

J I J

oj oo ij io oj oo
j i j

Min E y

y y

I y y y y y y

 
 

 

 

  

  

 

     

 





 

to factor     Error sum of squares          B  
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The sum of squares due to deviation from 0H  (or the sum of squares due to columns or sum of 

squares due to factor B) is  

2 2 2

1

( )  
J

oj oo oj oo
j j

SSB I y y I y IJ y


       

and its degrees of freedom are 

    1 1 1.IJ I I J J        

Note that the total sum of squares is 

2

1 1

2

1 1

2 2 2

1 1 1 1

( )

( ) ( ) ( )

( ) ( ) ( )

.

I J

ij oo
i j

I J

io oo oj oo ij io oj oo
i j

I J I J

io oo oj oo ij io oj oo
i j i j

TSS y y

y y y y y y y y

J y y I y y y y y y

SSA SSB SSE

 

 

   

 

         

       

  





    

The partitioning of degrees of freedom into the corresponding groups is 

1 ( 1) ( 1) ( 1)( 1).IJ I J I J         

Note that ,SSA SSB and SSE  are mutually orthogonal and that is why the degrees of freedom can be 

divided like this. 

Now using the theory explained while discussing the  likelihood ratio test or assuming  'ijy s  to be 

independently distributed as  2( , ),  1,2,..., ;  1,2,..., ,i jN i I j J        and using the Theorems 6 

and 7, we can write 

2
2

~ ( 1),
SSA

I


  2
2

~ ( 1),
SSB

J


   and  2
2

~ (( 1)( 1)).
SSE

I J


   

So the test statistic for 0H   is obtained as 

2

1 2

0

/
1

/

( 1)( 1)

( 1)( 1)
 . 

( 1)

~ (( 1),  ( 1) ( 1)) under 

SSA
I

F
SSE

I J

I J SSA

I SSE

MSA
F I I J H

MSE 





 
  

 
   
 




   
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where 

1

.
( 1)( 1)

SSA
MSA

I
SSE

MSE
I J





 

 

The same statistic is also obtained using the likelihood ratio test for 0H  . 

The decision rule is  

 0 1 1Reject  if ( 1),( 1) ( 1)H F F I I J     .  

Under 1 1,H F  follows a noncentral F distribution ( , ( 1), ( 1)( 1))F J I J      where  

2

1
2

I

i
i

J 






 is 

the associated non-centrality parameter. 

Similarly, the test statistic for 0H   is obtained as 

2

2 02

/
1 ( 1)( 1)

~ (( 1), ( 1)( 1)) under
( 1)/

( 1)( 1)

where  .
1

SSB
J I J SSB MSB

F F J I J H
J SSE MSESSE

I J

SSB
MSB

J







 
         

 
   




 

The decision rule is  

0 2 1Reject if (( 1), ( 1)( 1))H F F J I J     . 

 

The same test statistic can also be obtained from the likelihood ratio test. 

The analysis of variance table is as follows: 
 
Source of  Degrees Sum of  Mean sum   F-value 
variation  of freedom squares of squares 
    

Factor A (or rows)    ( 1)I   SSA  MSA  1F 
MSA

MSE
 

Factor B (or column) ( 1)J   SSB  MSB  2

MSB
F

MSE
    

Error   ( 1)( 1) I J  SSE  MSE 
                                                      (by subtraction) 

Total   1IJ         TSS 
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It can be found on similar lines as in the case of one way classification that 

2 2

1

2 2

1

2

( )
1

( )
1

( ) .

I

i
i

J

j
j

J
E MSA

I

I
E MSB

J

E MSE

 

 







 


 






  

If the null hypothesis is rejected, then we use the multiple comparison tests to divide 

the '  (or ' )i js s 
 
into groups such that '  (or ' )i js s   belonging to the same group are equal and 

those belonging to different groups are different. Generally, in practice, the interest of experimenter 

is more in using the multiple comparison test for treatment effects rather on the block effects. So the 

multiple comparison test are used generally for the treatment effects only. 

 

Two-way classification with interactions: 

Consider the two-way classification with an equal number, say K observations per cell.  Let 

:ijky kth observation in ( , )thi j  cell , i.e., receiving the treatments ith level of  factor A and jth 

level of factor B, 1, 2,..., ;  1, 2,..., ; 1, 2,...,i I j J k K    and 

ijky  are independently drawn from 2( , )ijN    so that the linear model under consideration is 

ijk ij ijky     

where ijk  are identically and  independently distributed following  2(0, ).N    Thus 

1 1 1 1

( )

( ) ( ) ( )

where

with

0, 0, 0, 0.

ijk ij

oo io oo oj oo ij io oj oo

i j ij

oo

i io oo

j oj oo

ij ij io oj oo

I J I J

i j ij ij
i j i j

E y 

        

   

 
  
  

    

   
   



        

   



 

 

   

      

 

Assume that the design matrix X is of full rank so that all the parametric functions of ij  are 

estimable. 
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The null and the corresponding alternative hypotheses are 

0 1 2

1

: ... = 0

: At least one ,   for  ,
I

i j

H

H i j




  
 

  
 

 

0 1 2

1

: ... = 0

: At least one ,   for  
J

i j

H

H i j




  

 

  

 
 

and 

0

1

:All 0 for all , .

: At least one ,   for  .

ij

ij ik

H i j

H j k







 



 
 

 

Minimizing the error sum of squares 

2

1 1 1

  ( ) ,
I J K

ijk i j ij
i j k

E y    
  

        

The normal equations are obtained as 

0,  0  for all ,  0  for all  and 0  for all  and 
i j ij

E E E E
i j i j

   
   

   
   

 

The least-squares estimates are obtained as 

1 1 1

1

1

1 1

1
ˆ   

1
ˆ   

1ˆ   

1
ˆ    .

I J K

ooo ijk
i j k

I

i ioo ooo ijk ooo
i

J

j ojo ooo ijk ooo
j

I J

ij ijo ioo ojo ooo ijk ioo ojo ooo
i j

y y
IJK

y y y y
JK

y y y y
IK

y y y y y y y y
K









  





 

 

   

   

       

  





 

 

 

The error sum of squares is 

2

ˆˆ ˆˆ , , , 1 1 1

2

1 1 1

2

1 1 1

2
2

( )

ˆˆ ˆˆ( )

( )

with ~ ( ( 1)).

i j

I J K

ijk i j ij
ij i j k

I J K

ijk i j ij
i j k

I J K

ijk ijo
i j k

SSE Min y

y

y y

SSE
IJ K

   
   

   




  

  

  

    

    

 








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Now minimizing the error sum of squares under 0 1 2 ... 0       IH , i.e., minimizing 

2
1

1 1 1

  ( )  
  

     
I J K

ijk j ij
i j k

E y  with respect to ,  j and  ij  and solving the normal equations 

1 1 10,  0  for all  and 0  for all  and 
j ij

E E E
j i j

  
  

  
  

 

gives the least squares estimates as  

ˆ ˆ

ˆ

ˆ .

ooo

j ojo ooo

ij ijo ooo ojo ooo ijo ojo

y

y y

y y y y y y









 

     

 

The sum of squares due to  0H  , is 

2

, ,
1 1 1

2

1 1 1

2 2

1 1 1 1

2

1

( )

ˆ ˆˆ( )

( ) ( )

  ( ) .

j ij

I J K

ijk j ij
i j k

I J K

ijk j ij
i j k

I J K I

ijk ijo ioo ooo
i j k i

I

ioo ooo
i

Min y

y

y y JK y y

SSE JK y y

  
  

  

  

  

   



  

   

   

  





 



 

Thus the sum of squares due to deviation from  0H   or the sum of  squares due to effect A is 

2
0

1

2
2

Sum of squares due to SSE ( )

with ~ ( 1).

I

ioo ooo
i

SSA H JK y y

SSA
I








   




 

Minimizing the error sum of squares under  0 1 2: ... 0JH         , i.e., minimizing 

2
2

1 1 1

  ( )  
  

     
I J K

ijk i ij
i j k

E y , 

and solving the normal equations  

2 2 20,  0  for all  and 0  for all  and 
i ij

E E E
j i j

  
  

  
  

 

yields the least-squares estimators as 

ˆ

ˆ

ˆ .

ooo

i ioo ooo

ij ijo ooo ioo ooo ijo ioo

y

y y

y y y y y y







 

     
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The minimum error sum of squares is 

2

1 1 1

2

1

ˆ ˆˆ( )

( )

  
  



  

  





I J K

ijk i ij
i j k

J

ojo ooo
j

y

SSE IK y y

 

and the sum of squares due to deviation from oH   or the sum of squares due to effect B   is 

2
0

1

2
2

 Sum of squares due to ( )

with ~ ( 1).

J

ojo ooo
j

SSB H SSE IK y y

SSB
J








   





 

Next, minimizing the error sum of squares under 0 : 0ijH all    for all i, j, i.e., minimizing 

2
3

1 1 1

  ( )
I J K

ijk i j
i j k

E y   
  

       

with respect to ,  i  and  j and solving the normal equations 

3 3 30,  0  for all  and 0  for all  
i j

E E E
i j

  
  

  
  

 

yields the least-squares estimators 

ˆ

ˆ

ˆ .

ooo

i ioo ooo

j ojo ooo

y

y y

y y








 

 

 

The sum of squares due to  0H   is 

2

, ,
1 1 1

2

1 1 1

2
 

1 1

( )

ˆˆˆ( )

( ) .

i j

I J K

ijk i j
i j k

I J K

ijk i j
i j k

I J

ijo ioo ojo ooo
i j

Min y

y

SSE K y y y y

  
  

  

  

  

 

  

   

    







 

Thus the sum of squares due to deviation from  0H   or the sum of squares due to the interaction 

effect  AB is 

2
0

1 1

2
2

 Sum of squares due to   ( )

with ~ (( 1) 1)).

I J

ijo ioo ojo ooo
i j

SSAB H SSE K y y y y

SSAB
I J






 

     

 

 
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The total sum of squares can be partitioned as 

   TSS SSA SSB SSAB SSE   

where ,  ,   SSA SSB SSAB  and SSE are mutually orthogonal. So either using the independence of 

,  ,   SSA SSB SSAB  and SSE as well as their respective  2  distributions or using the likelihood ratio 

test approach, the decision rules for the null hypothesis   at   level of significance are based on F-

statistic as follows 

 

 

 

 

1 0

2 0

3 0

( 1)
. ~ ( 1, ( 1)  under ,

1

( 1)
. ~ ( 1, ( 1)  under ,

1
and

( 1)
. ~ ( 1)( 1), ( 1)  under .

( 1)( 1)

IJ K SSA
F F I IJ K H

I SSE

IJ K SSB
F F J IJ K H

J SSE

IJ K SSAB
F F I J IJ K H

I J SSE








  




  




   

 

 

 

So 

 
 
 

0 1 1

0 2 1

0 3 1

Reject if ( 1), ( 1)

Reject if ( 1), ( 1)

Reject if ( 1)( 1), ( 1) .

H F F I IJ K

H F F J IJ K

H F F I J IJ K

 

 

 







  

  

   

 

If 0H   or 0H   is rejected, one can use t-test or multiple comparison test to find which pairs of  

' or 'i js s   are significantly different. 

If 0H   is rejected, one would not usually explore it further but theoretically, t-test or multiple 

comparison tests can be used. 

 

It can also be shown that 

2 2

1

2 2

1

2 2

1 1

2

( )
1

( )
1

( )
( 1)( 1)

( ) .

I

i
i

J

j
j

I J

ij
i j

JK
E MSA

I

IK
E MSB

J

K
E MSAB

I J

E MSE

 

 

 







 

 


 


 
 








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The analysis of variance table is as follows: 
 
Source of  Degrees Sum of  Mean sum   F-value 
variation  of freedom squares of squares 
    
 

Factor A  ( 1)I   SSA   
1




SSA
MSA

I
  1 

MSA
F

MSE
 

Factor B   ( 1)J   SSB   
1




SSB
MSB

J
  2

MSB
F

MSE
   

Interaction AB  ( 1)( 1) I J  SSAB   
( 1)( 1)


 
SSAB

MSAB
I J

 3

MSAB
F

MSE
    

  

Error   ( 1)IJ K  SSE   
( 1)




SSE
MSE

IJ K
 

    

Total   ( 1)IJK          TSS  

 
 

Tukey’s test for nonadditivity: 

Consider the set up of two way classification with one observation per cell and interaction as  

,    1,2..., , 1,2,...,ij i j ij ijy i I j J            with 
1 1

0, 0. 
 

  
I J

i j
i j

 

The distribution of degrees of freedom in this case is as follows: 

 

 Source   Degrees of freedom 

 A   1I  

 B   1J  

 AB(interaction) ( 1)( 1) I J  

 Error   0 

 _________________________________ 

 Total   1IJ  

 ____________________________________ 

There is no degree of freedom for error. The problem is that the two factor interaction effect and 

random error component are subsumed together and cannot be separated out. There is no estimate 

for  2.  
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If no interaction exists, then  0 : 0 ijH  for all i ,j is accepted  and the additive model 

ij i j ijy         

is well enough to test the hypothesis 0 : 0 iH  and 0 : 0 jH  with error having ( 1)( 1) I J  

degrees of freedom. 

 

If interaction exists, then 0 : 0 ijH  is rejected. In such a case, if we assume that the structure of the 

interaction effect is such that it is proportional to the product of individual effects, i.e., 

  ij i j  

then a test for testing 0 : 0H    can be constructed. Such a test will serve as a test for nonadditivity. 

It will help in knowing the effect of the presence of interact effect and whether the interaction enters 

into the model additively. Such a test is given by Tukey’s test for nonadditivity which requires one 

degree of freedom leaving    -1 -1 -1I J   degrees of freedom for error. 

Let us assume that departure from additivity can be specified by introducing a product term and 

writing the model as 

( ) ;  1,2,..., , 1,2,...,         ij i j i jE y i I j J with 
1 1

0, 0 
 

  
I J

i j
i j

.  

When 0,    the model becomes a nonlinear model and the least-squares theory for linear models is 

not applicable. 

 

Note that using 
1 1

0, 0 
 

  
I J

i j
i j

, we have 

1 1 1 1

1 1 1 1

1 1

1 1
( )( )

( )

ˆ .

j

I J I J

oo ij i j i j ij
i j i j

I J I J

i j j oo
i j i j

oo

oo

oo

y y
IJ IJ

I J IJ

E y

y

     

     

 




   

   

       

    

 


 

 

   
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Next 

1 1

1 1

1 1

1 1

( )

ˆ ˆ .

j

J J

io ij i j i j ij
j j

J J

i j i io
j j

i io

io i

i io io oo

y y
J J

J J

E y

y y y

     

     

  

 
 

 

 

       

    

  

 
    

 

 
 

 

Similarly 

ˆ ˆ

oj j

j oj oj oo

y

y y y

 

 

 

    
 

Thus ˆˆ, i  and ̂ j  remain the unbiased estimators of  ,  i  and , j  respectively irrespective of 

whether 0   or not. 

 

Also 

or

( ) ( ) ( ) .

ij io oj oo i j

ij oo io oo oj oo i j

E y y y y

E y y y y y y

 

 

     

       

 

 

Consider the estimation of  , ,  i j  and   based on the minimization of 

2

2

( )

.

ij i j i j
i j

ij
i j

S y

S

        






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The normal equations are solved as 

1 1

1

1

1 1

1 1

1 1

2 2

1 1

0 0

ˆ

0 (1 ) 0

0 (1 ) 0

0 0

or ( ) 0

or  (say

I J

ij
i j

oo

J

j ij
ji

I

i ij
ij

I J

i j ij
i j

I J

i j ij i j i j
i j

I J

i j ij
i j

I J

i j
i j

S
S

y

S
S

S
S

S
S

y

y










 


      

 
 

 

 





 

 

 

 


  



 


   




   




  



    

 
  
  

  













 
 )  

which can be estimated provided and i j   
are assumed to be known. 

 

 

Since  i  and  j  can be estimated by  ̂  i io ooy y  and ̂  j oj ooy y irrespective of whether  0   

or not, so we can substitute them in place of   i  and  j  in    which gives  

1 1 1 1

2 2 2 2

1 1 1 1

1 1

2 2

1 1

2

ˆ ˆˆ ˆ( )
ˆ

ˆ ˆˆ ˆ

( )( )

ˆwhere ( )

ˆ (

I J I J

i j ij i j ij
i j i j

I J I J

i j i j
i j i j

I J

io oo oj oo ij
i j

A B

I I

A i io oo
i i

B j oj oo

y IJ y

J I

IJ y y y y y

S S

S J J y y

S I I y y

   


   





   

   

 

 

 
      
      

      

 


  

  

 

   



 
2

1 1

) .
J J

j j 
 
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Assuming  i  and  j  to be known  

2

2 2

2 2 1 1

1 1

2 2 2

1 1

22

2 2

1 1

2

2 2

1 1

2

1
( ) ( ) 0

           = 

using ( ) ,  (

I J

i j ijI J
i j

i j
i j

I J

i j
i j

I J

i j
i j

I J

i j
i j

ij ij

Var Var y

Var y Cov y

  
 

  

 



 



 

 

 

 

 

 
         
 
 

  
  

  
  
  

   

  
  

  



 

 

 

 



, ) 0 for all .jky i k 

 

When  i  and  j  are estimated by  ̂ i  and ˆ , j  then substitute them back in the expression of 

( )Var   and treating it as ˆ( )Var   gives  

2

2 2

1 1

2

ˆ( )
ˆˆ

I J

i j
i j

A B

Var

IJ

S S


 


 


  
  

  



 
 

for given  ̂ i  and ̂ j . 
 

 

Note that if 0,   then 

1 1

2 2

1 1

1 1

2 2

1 1

ˆ ˆˆ/ , for all ,

( 0 )

                                    
( )( )

                              

I J

i j ij
i j

i j I J

i j
i j

I J

i j i j ij
i j

I J

i j
i j

y

E i j E

E

 
  

 

     

 

 

 

 

 

 
 
      
 
 
     
 
 
 
 



 



 

2 2

1 1

0
       0.

( ) ( )
I J

i j
i j

 
 

 

 
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As ̂ i  and ̂ j  remains valid irrespective of  0   or not, in this sense  ̂  is a function of  ijy  and 

hence normally distributed as 

2

ˆ ~ 0,  
A B

IJ
N

S S


 
 
 

. 

Thus the statistic 

2

2
1 1

2

2

1 1

2

2

1 1

2

2

ˆˆ
ˆ( )

ˆ( )

( )( )

( )( )( )

I J

i j ij
i j

A B

I J

io oo oj oo ij
i j

A B

I J

io oo oj oo ij io oj oo
i j

A B

N

IJ y

S SVar

IJ y y y y y

S S

IJ y y y y y y y y

S S

S

 










 

 

 

 
 
 

 
  

 

 
     

 









 

follows a 2 - distribution with one degree of freedom where 

2

1 1

( )( )( )
I J

io oo oj oo ij io oj oo
i j

N
A B

IJ y y y y y y y y

S
S S

 

 
     

 


 

is the sum of squares due to nonadditivity.  

Note that 

2

1 1

2 2

( )
I J

ij io oj oo
i jAB

y y y y
S

 
 

  



 

follows 2 (( 1)( 1)).I J    

2 2
so NS SAB

 
  
   

is nonnegative and follows  2 ( 1)( 1) 1I J    . 
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The reason for this is as follows: 

non additivity

and so

ij i j ij

N

N

y

TSS SSA SSB S SSE

SSE TSS SSA SSB S

       

   

    

 

has degrees of freedom  

( 1) ( 1) ( 1) 1

( 1)( 1) 1

      
   

IJ I J

I J
 

We need to ensure that SSE  > 0. So using the result 

“If 1,Q Q  and 2Q are quadratic forms such that 

2 2
1 2 2 2

2
1

with ~ ( ), ~ ( ) and  is non-negative, then 

~ ( )"

 



 



Q Q Q Q a Q b Q

Q a b
 

ensures that the difference  

2 2
 NS SAB

 
  

is nonnegative. 

 

Moreover NS  (SS due to nonadditivity) and SSE are orthogonal. Thus the F-test for nonadditivity is  

 

 

2

2

0

/

1

/
( 1)( 1) 1

( 1)( 1) 1

~ 1, ( 1)( 1) 1 under .

NS

F
SSE

I J

SSN
I J

SSE
F I J H





 
 
 

 
    

   

  

 

So the decision rule is 

Reject 0 : 0H    whenever 

 1 1,( 1)( 1) 1F F I J     
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The analysis of variance table for the model including a term for nonadditivity is as follows: 

 
Source of  Degrees Sum of  Mean sum   F-value 
variation  of freedom squares of squares 
    

A    1I    AS   
1

A
A

S
MS

I



 

B    1J    BS   
1

B
B

S
MS

J



 

Nonadditivity  1  NS   N NMS S   NMS

MSE
   

  

Error  ( 1)( 1) 1I J    SSE            
( 1)( 1) 1

SSE
MSE

I J


  
 

                                    (By subtraction) 
  

Total   1IJ    TSS   
 
 

Comparison of Variances 

One of the basic assumptions in the analysis of variance is that the samples are drawn from different 

normal populations with different means but the same variances.  So before going for analysis of 

variance, the test of hypothesis about the equality of variance is needed to be done. 

 

We discuss the test of equality of two variances and more than two variances. 

 

Case 1: Equality of two variances 
2 2 2

0 1 2: .H      

Suppose there are two independent random samples 

1

2

2
1 2

2
1 2

: , ,..., ; ~ ( , )

: , ,..., ; ~ ( , )

n i A A

n i B B

A x x x x N

B y y y y N

 

 
 

The sample variance corresponding to the two samples are 

1

2

2 2

11

2 2

12

1
( )

1

1
( ) .

1

n

x i
i

n

y i
i

s x x
n

s y y
n





 


 





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2 2 2
0

2
21

12

2
2 2

22

Under : ,

( 1)
~ ( 1)

( 1)
~ ( 1).

A B

x

y

H

n s
n

n s
n

  







 







 

Moreover, the sample variances  2 2 and x ys s  and are independent. So 

1 2

2
1

2

2
1

1, 122
2

2

2

( 1)

1
~ .

( 1)

1

x

x
n n

yy

n s

sn
F

sn s

n





 

    
  
   
  
   
  

  

 

So for testing 2 2
0 1 2:H   versus 2 2

1 1 2:H   , the null hypothesis  0H  is rejected if 

1 2 1 2 1 2

2 1

1 ; 1, 1 1 ; 1, 1 ; 1, 1;
2 2 2

1 ; 1, 1
2

1
  or    where  .

n n n n n n
n n

F F F F F
F  


       

  

    

If the null hypothesis  2 2
0 : A BH      is rejected, then the problem is termed as the Fisher-Behren’s 

problem. The solutions are available for this problem.  

 

Case 2: Equality of more than two variances: Bartlett’s test 
2 2 2

0 1 2: ... kH       and 2 2
1 :  for atleast one 1,2,..., .i jH i j k     

Let there be k independent normal population  2( , )i iN    each of size  , 1, 2,..., .in i k  Let 

2 2 2
1 2, ,..., ks s s  be k  independent unbiased estimators of population variances 2 2 2

1 2, ,..., k    respectively 

with  1 2, ,..., k    degrees of freedom. Under 0H , all the variances are the same as  2 , say and an 

unbiased estimate of  2  is 
2

2

1 1

where 1, .
k k

i i
i i i

i i

s
s n

   
 

    

 

 

Bartlett has shown that under  0H  

2

2
1

1

 ln

1 1 1
1

3( 1)



 





 
 
 

              





k

i
i i

k

i i

s
s

k

 

is distributed as  2 ( 1)k   based on which  0H  can be tested. 


