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Chapter 5 

Incomplete Block Designs 

 
If the number of treatments to be compared is large, then we need a large number of blocks to 

accommodate all the treatments. This requires more experimental material and so the cost of 

experimentation becomes high which may be in terms of money, labour, time etc.  The completely 

randomized design and randomized block design may not be suitable in such situations because they will 

require a large number of experimental units to accommodate all the treatments. In such cases, when the 

sufficient number of homogeneous experimental units are not available to accommodate all the treatments 

in a block, then incomplete block designs can be used. In incomplete block designs, each block receives 

only some of the selected treatments and not all the treatments. Sometimes it is possible that the available 

blocks can accommodate only a limited number of treatments due to several reasons.   For example,  the 

goodness of a car is judged by different features like fuel efficiency, engine performance, body structure 

etc. Each of this factor depends on many other factors, e.g., the engine consists of many parts and the 

performance of every part combined together will result in the final performance of the engine. These 

factors can be treated as treatment effects. If all these factors are to be compared, then we need a large 

number of cars to design a complete experiment. This may be an expensive affair. The incomplete block 

designs overcome such problems. It is possible to use much less number of cars with the set up of 

incomplete block design and all the treatments need not be assigned to all the cars.  Rather some 

treatments will be implemented in some cars and remaining treatments in other cars. The efficiency of 

such designs is, in general, not less than the efficiency of a complete block design. In another example, 

consider a situation of destructive experiments, e.g., testing the life of television sets, LCD panels, etc. If 

there are a large number of treatments to be compared, then we need a large number of television sets or 

LCD panels. The incomplete block designs can use a lesser number of television sets or  LCD panels to 

conduct the test of the significance of treatment effects without losing, in general, the efficiency of the 

design of the experiment.  This also results in the reduction of experimental cost. Similarly, in any 

experiment involving animals like as biological experiments, one would always like to sacrifice fewer 

animals. Moreover, the government guidelines also restrict the experimenter to use a smaller number of 

animals. In such cases, either the number of treatments to be compared can be reduced depending upon 

the number of animals in each block or to reduce the block size. In such cases when the number of 

treatments to be compared is larger than the number of animals in each block, then the block size is 

reduced and the setup of incomplete block designs can be used. This will result in a lower cost of 

experimentation. The incomplete block designs need less number of observations in a block than the 
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observations in a complete block design to conduct the test of hypothesis without losing the efficiency of 

the design of experiment, in general.  

 

Complete and incomplete block designs:  

The designs in which every block receives all the treatments are called the complete block designs.  

 

The designs in which every block does not receive all the treatments but only some of the treatments are 

called incomplete block design.  

 

The block size is smaller than the total number of treatments to be compared in the incomplete block 

designs. 

 

There are  three types of analysis in the incomplete block designs  

 intrablock analysis, 

 interblock analysis and 

 recovery of interblock information. 

 

Intrablock analysis:  

In intrablock analysis, the treatment effects are estimated after eliminating the block effects and then the 

analysis and the test of significance of treatment effects are conducted further. If the blocking factor is not 

marked, then the intrablock analysis is sufficient enough to provide reliable, correct and valid statistical 

inferences.  

 

Interblock analysis:  

There is a possibility that the blocking factor is important and the block totals may carry some important 

information about the treatment effects. In such situations, one would like to utilize the information on 

block effects (instead of removing it as in the intrablock analysis) in estimating the treatment effects to 

conduct the analysis of design. This is achieved through the interblock analysis of an incomplete block 

design by considering the block effects to be random.  
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Recovery of interblock information:  

When both the intrablock and the interblock analysis have been conducted, then two estimates of 

treatment effects are available from each of the analysis. A natural question then arises -- Is it possible to 

pool these two estimates together and obtain an improved estimator of the treatment effects to use it for 

the construction of test statistic for testing of hypothesis? Since such an estimator comprises of more 

information to estimate the treatment effects, so this is naturally expected to provide better statistical 

inferences. This is achieved by combining the intrablock and interblock analysis together through the 

recovery of interblock information. 

 

Intrablock analysis of incomplete block design: 

We start here with the usual approach involving the summations over different subscripts of y’s. Then 

gradually, we will switch to a matrix-based approach so that the reader can compare both the approaches. 

They can also learn the one-to-one relationships between the two approaches for better understanding.  

 

Notations and normal equations: 

Let 

- v treatments have to be compared. 

- b blocks are available. 

- ik : Number of plots in  ith block (i = 1,2,…,b). 

- :jr Number of plots receiving jth treatment ( j = 1,2,…,v). 

- n: Total number of plots. 

1 2 1 2... ... .v bn r r r k k k         

- Each treatment may occur more than once in each block 

                        or  

 may not occur at all. 

      - ijn denotes the number of times the jth treatment occurs in ith block 

 

For example, 1 or 0 for all ,ijn i j  means that no treatment occurs more than once in a block and 

treatment may not occur in some blocks at all.  Similarly, 1ijn   means that   jth treatment occurs in ith  

block and 0ijn   means that jth treatment does not occurs in ith block.  
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It may be noticed that  

      

1
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n k i b
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Model: 

Let ijmy  denotes the response (yield) from the mth replicate of jth treatment in ith block and 

 1, 2,..., , 1, 2,.., , 1, 2,...,ijm i j ijm ijy i b j v m n         

[Note: We are not considering here the general mean effect in this model for better understanding of the 

issues in the estimation of parameters. Later, we will consider it in the analysis.] 

 

Following notations are used in further description. 

Block totals :  1 2, ,..., bB B B    where    i ijm
j m

B y . 

Treatment totals:  1 2, ,..., vV V V  where   j ijm
i m

V y  

Grand total : ijm
i j m

Y y   

Generally, a design is denoted by   ( , , , , )D v b r k n  where v, b, r, k and n are the parameters of the design. 

 
Example: 

Let us consider an example to understand the meaning of these notations. Suppose there are 3 blocks 

(Block 1, Block 2 and Block 3)  and 5 treatments  ( 1 , 2 , 3 ,  4 ,  5 ). So b = 3 and  v = 5. These 

treatments are arranged in different plots in blocks as follows: 

 

Block 1: 5 plots Plot 1     1  Plot 2     1  Plot 3     2  Plot 4     2  Plot 5     3  
 

  

Block  2: 4 plots Plot 1     2  Plot 2     4  Plot 3     5  Plot 4     5  
 

  

Block 3: 2 plots Plot 1     2  Plot 2     2  
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ki 

Number of plots in Block 1: k1 = 5   

Number of plots in Block 2: k2 = 3 

Number of plots in Block 1: k3 = 2 

rj 

Number of times  1  appears in  

- Block 1 = 2 

- Block 2 = 0 

- Block 3 = 0. 

Total number of times 1  appears in the entire design is r1 = 2 + 0 + 0 = 2. 

Number of times  2  appears in  

- Block 1 = 2 

- Block 2 = 1 

- Block 3 = 2. 

Total number of times 2  appears in the entire design is r2 = 2 + 1 + 2 = 5. 

Number of times  3  appears in  

- Block 1 = 1 

- Block 2 = 0 

- Block 3 = 0. 

Total number of times 3  appears in the entire design is r3 = 1 + 0 + 0 = 1. 

Number of times  4  appears in  

- Block 1 = 0 

- Block 2 = 1 

- Block 3 = 0. 

Total number of times 4  appears in the entire design is r4 = 0 + 1 + 0 = 1. 

Number of times  5  appears in  

- Block 1 = 0 

- Block 2 = 2 

- Block 3 = 0. 

Total number of times 5  appears in the entire design is r5 = 0 + 2 + 0 = 2. 
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nij 

Total number of times 1  appears in Block 1: n11 = 2 

Total number of times 2  appears in Block 1: n12 = 2 

Total number of times 3  appears in Block 1: n13 = 1 

Total number of times 4  appears in Block 1: n14 = 0 

Total number of times 5  appears in Block 1: n15 = 0 

 

Total number of times 1  appears in Block 2: n21 = 0 

Total number of times 2  appears in Block 2: n22 = 1 

Total number of times 3  appears in Block 2: n23 = 0 

Total number of times 4  appears in Block 2: n24 = 1 

Total number of times 5  appears in Block 2: n25 = 2 

 

Total number of times 1  appears in Block 3: n31 = 0 

Total number of times 2  appears in Block 3: n32 = 2 

Total number of times 3  appears in Block 3: n33 = 0 

Total number of times 4  appears in Block 3: n34 = 0 

Total number of times 5  appears in Block 3: n35 = 0 

yijm 

yijm : response from the mth replicate of jth treatment in ith block, i = 1,2,3;  j = 1,2,3,4,5; m = 1,2,…, nij  

Following are the notations for for yijm  different treatments in the blocks 

 

Block 1:  1             y111  1             y112  2             y121  2             y122  3             y131 
 

  

Block  2: 
2             y221  4             y241  5             y251  5             y252 

 

  

Block 3:  2             y321  2             y322 
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Bi Vj 

B1 =   y111 + y112 + y121 + y122 + y131 

B2 =   y221 + y241 + y251 + y252  
B3 =   y321 + y322   
 

V1 =   y111 + y112 

V2 =   y121 + y122 + y221 + y321 + y322  

V3 =   y131 
V4 =   y241   

V5 =   y251 + y252    
 
Normal equations: 

Minimizing 2 ijm
i j m

S   with respect to andi j  , we  obtain the least-squares estimators of the 

parameters as follows: 
2

1 1 2 2

( )

0

( ) 0

or

1 1 0           (1)

or

.... , 1,...,

[ equations]

 



 

 

   

 

  






   

  

     

 





  



ijm i j
i j m

i

ijm i j
j m

i i j
j m j m

i i i i i iv v

i i i j ij
j

S y

S

y

B

B k n n n i b

B k n b

  

1 2 2

0

( ) 0

or 1 1 0

0                                      (2)

or ... , 1,2,...,

or [ equations]

i

ijm i j
i m

ijm i j
i m i m i m

j i ij j ij
i i

j ij j bj b j j

j i ij j j
i

S

y

y

V n n

V n n n r j v

V n r v



 

 

 

   

 






   

  

  

     

 



   

 



 

Equations (1)  and  (2) constitute (b + v) equations. 
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Note that 

 

equation (1) equation (2)

.

i j

i j
i j

ijm ijm
i j m j i m

B V

y y





      
  

 

 

   

 

Thus there are at most (b + v - 1) degrees of freedom for estimates. So the estimates of only (b + v - 1) 

parameters can be obtained out of all (b + v)  parameters. 

 

[Note: We will see later that degrees of freedom may be less than or equal to (b + v - 1)  in special cases. 

Also, note that we have not assumed any side conditions like 0   i j
i j

 as in the  case of  

complete block designs.] 

 

To obtain the estimates of the parameters, there are two options- 

1. Using equation (1), eliminate i  from equation (2) to estimate  j  or 

2. Using equation (2), eliminate  j  from equation (1) to estimate i . 

 

We consider first the approach 1., i.e., using equation  (1), eliminate i  from equation  (2). 

From equation  (1), 

 
1

1
.

v

i i ij j
ji

B n
k

 


 
  

 
  

 

Use it in (2) as follows. 

1

1 1 11 1 1 1
1

2 2 21 1 2
2

1 1

...

1
( ... )

1
( ... ) ...

1
( ... )

bj

j ij bj b j j

j v v

j v v

b b bv v j j
b

V n n r

n B n n
k

n B n n
k

n B n n r
k

  

 

 

  

   

 
    

 
 

     
 
 

     
 
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1 1 2 2

1 2

11 1 21 2 1
1

1 2

1 1 2 2

1 2

11 1 1 1 1
1

1 1 1

or

...

.... ...

  .... , 1,...,

or

... ... ..

j j bj b
j

b

j j b bj

b

v j v j bv bj
v j j

b

b
ij i j b bj v j

j v
i i b

n B n B n B
V

k k k

n n n n n n

k k k

n n n n n n
r j v

k k k

n B n n n n n n
V

k k k k



 

 


   

 
      

 
 

       
 

 
       

 


11 1 1 1 1
1

1 1

1 1

1

.

or

... ... ... , 1....

where

... , 1, 2,...,

bv bj
j j

b

j b bj v j bv bj
j v j j

b b

j bj b
j j

b

n n
r

k

n n n n n n n n
Q r j v

k k k k

n B n B
Q V j v

k k



  

 
  

 

   
           

   

 
     

 
 

are  called adjusted treatment totals.  

[Note: Compared to the earlier case, the jth treatment total jV  is adjusted by a factor 
1


b
ij i

i i

n B

k
, that is why 

it is called “adjusted”. The adjustment is being made for the block effects because they were eliminated to 

estimate the treatment effects.] 

 

Note that  

:ik  Number of plots in ith block. 

i

i

B

k
 is called the average  (response) yield per plot from ith block. 

ij i

i

n B

k
 is considered as an average contribution to the jth treatment total from the ith block. 

jQ  is obtained by removing the sum of the average contributions of the b blocks from the jth treatment 

total  jV . 
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Write  

11 1 1 1 1
1

1 1

1 1 2 2

2 2 2
1 2

1 2

1 1 ' 2 2 ' '
'

1 2

... ... ... , 1, 2,..., .

as

...

where

...

... ; ', 1, 2,..,

j b bj v j bv bj
j v j j

b b

j j j jv v

j j bj
jj j

b

j j j j bj bj
jj

b

n n n n n n n n
Q r j v

k k k k

Q C C C

n n n
C r

k k k

n n n n n n
C j j j

k k k

  

  

   
           

   

   

    

       .v

 

The v v   matrix '(( )), 1, 2,..., ; ' 1, 2,...,jjC C j v j v    with jjC   as diagonal elements and 'jjC  as off-

diagonal elements is called the C-matrix of the incomplete block design. 

C matrix is symmetric.   Its row sum and column sum are zero. (proved later) 

11 1 1 1 1
1

1 1

Rewrite

... ... ... , 1, 2,..., .

as

.

j b bj v j bv bj
j v j j

b b

n n n n n n n n
Q r j v

k k k k

Q C

  



   
           

   



 

This equation is called as reduced normal equations where 1 2 1 2' ( , ,.., ), ' ( , ,..., )v vQ Q Q Q       

 
Equations (1) and (2) are EQUIVALENT.  

 

Alternative presentation in matrix notations: 

Now let us try to represent and translate the same algebra in matrix notations. 

Let 

                 

1

1

1 1 2

1 1 2

:  matrix whose all elements are unity. 

( ) is  matrix called as 

( , ,..., ) '

( , ,..., ) ' .

mn

ij

v

i ij
j

b

j ij
i

ij
i j

b v

v b

E m n

N n b v

k n

r n

n n

E N r r r r

NE k k k k







 







 
 







incidence matrix.
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 For illustration, we verify one of the relationships as follows. 

                  

1 1

11 12 1

21 22 2

1 2

11 12 1

21 22 2
1 1

1 2

1 2
1 1 1

1 2

(1,1,...,1)

 

(1,1,...,1)

, ,...,

( , ,..., )

         = '

b b

v

v

b b bv

v

v
b b

b b bv b v

b b b

i i iv
i i i

v

E

n n n

n n n
N

n n n

n n n

n n n
E N

n n n

n n n

r r r

r







  



 
 
 
 
 
 

 
 
 
 
 
 

   
 



  




  





  


.

 

It is now clear that the treatment and blocks are not estimable as such as in the case of complete block 

designs. Note that we have not made any assumption like 0   i j
i j

 also. 

Now we introduce the general mean effect  (denoted by  ) in the linear model and carry out further 

analysis on the same lines as earlier.  

 

 

Consider  the model 

, 1, 2,..., ; 1, 2,..., ; 0,1,.., .ijm i j ijm ijy i b j v m n           

The normal equations are obtained by minimizing 2 ijm
i j m

S  with respect to the parameters 

,  and i j  
 
and solving them, we can obtain the least-squares estimators of the parameters. 

 

Minimizing 2 ijm
i j m

S  with respect to the parameters ,  and i j   , the normal equations are 

obtained as  

                    

ˆˆ ˆ

ˆˆ ˆ 1,...,

ˆˆ ˆ 1,..., .

io i oj j
i j

i io i ij j i
j

oj oj j ij i j
i

n n n G

n n n B i b

n n n V j v

  

  

  

  

   

   

 





 



Analysis of Variance  |  Chapter 5  |  Incomplete Block Designs  |   Shalabh, IIT Kanpur 
12 

Now we write these normal equations in matrix notations. Denote  

                 

1 2

1 2

1 2

1 2

( , ,..., )

( , ,..., )

( , ,..., )

( , ..., )

(( )) : incidence matrix of order

b

v

b

v

ij

Col

Col

B Col B B B

V Col V V V

N n b v

   
   







 

\        

where Col (.) denotes the column vector. 

Let   

       
1

1

( ,.., ) : diagonal matrix

( ,.., ) : diagonal matrix.
b

v

K diag k k b b

R diag r r v v

 

 
 

Then the (b + v +1) normal equations can be written  as 

                 

1 1

1

1

ˆ

ˆ . (*)

ˆ'

b v

b

v

n E K E RG

B KE K N

V RE N R






   
        

        

 

Since we are presently interested in the testing of hypothesis related to the treatment effects, so we 

eliminate the block effects  ̂   to estimate the treatment effects. For doing  so, multiply both sides on the 

left  of equation (*) by  

        1

1

1      0 0

0      

0     

b

v

I NR

N K I





 
 

 
  

 

where 

       

1 1

1 2 1 2

1 1 1 1 1 1
, ,..., , , ..., .

v b

R diag K diag
r r r k k k

    
    

   
  

Solving it further, we get set of three equations as follows: 

             

1

1 1

1 1

ˆˆ ˆ

ˆ[ ]

ˆ[ ]

b ivG n E K E R

B NR V K NR N

V N K B R N K N

  





 

 

  

  

   

 

 These are called as ‘reduced normal equations’  or ‘reduced  intrablock equations’. 

 
The same reduced intrablock equations can also be obtained as follows. Rewrite equation (*) as  

           

1 1

1

1

ˆˆ ˆ           (i)

ˆˆ ˆ               (ii)

ˆˆ ˆ'               (iii)

b v

b

v

G n E K E R

B KE K N

V RE N R

  

  

  

  

  

    
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Pre-multiply equation (ii) by 1N K  as  

          1 1 1 1
1

ˆˆ ˆbN K B N K KE N K K N K N            

and subtract it from equation (iii) as  

          1 1 1 1
1 1

ˆˆ ˆ( ) ( ' ) ( )v bV N K B RE N K KE N N K K R N K N                

or      1 1 ˆ[ ]V N K B R N K N      . 

 

Next, pre-multiply equation (ii) by 1NR as  

         1 1 1 1
1

ˆˆ ˆ'vNR V NR RE NR N NR R         

and subtract it from equation (ii) as  

         1 1 1 1
1 1

ˆˆ ˆ( ) ( ') ( )b vB NR V KE NR RE K NR N N NR R             

or      1 1 ˆ[ ]B NR V K NR N       

 

The reduced normal equation in the treatment effects can be written as 

1

1

ˆ

where

.

Q C

Q V N K B

C R N K N









 

 

  

The vector Q is called as the vector of adjusted treatment totals since it contains the treatment totals 

adjusted for the block effects, the matrix C is called as C-matrix. 

 
The  C  matrix is symmetric and its row sums and columns sums are zero.  

 
To show that row sum is zero in  C matrix, we proceed as follows: 

1
1 1 1

1 1
1 2 1 2 1

Row sum:

'

  = ( , ,..., ) ' '  = ( , ,..., ) ' '

         =  = 0

v v v

v v b

CE RE N K NE

r r r N K k r r r N E

r r



 

 

 



 

Similarly, the column sum can also be shown to be zero. 

 
In order to obtain the reduced normal equation for treatment effects,  we first estimated the block effects 

from one of the normal equation and substituted it into another normal equation related to the treatment 

effects. This way the adjusted treatment total vector  Q (which is adjusted for block effects) is obtained.  
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Similarly, the reduced normal equations for the block effects can be found as follows. First, estimate the 

treatment effects from one of the normal equations and substitute it  into another  normal equation related 

to the block effects. Then we get the adjusted block totals (adjusted for treatment totals). 

 
So, similar to  ˆ,Q C   we can obtain another equation which can be represented as  

ˆD P    

where 

          

1
1 2

1 2

1

1 2

1 2

1 1 1
( , ,.., ) , ,...,

1 1 1
, ,...,

ˆ ˆ ˆ ˆ( , ,.., ) '

b
v

v

b

D diag k k k N diag N K NR N
r r r

P B N diag V B NR V
r r r

   





 
     

 
 

    
 



 
 

and P is the adjusted block totals which are obtained after removing the treatment effects 

 

Analysis of variance table: 

Under the null hypothesis 0 : 0H   , the design is one-way analysis of variance set up with blocks as 

classifications.  In this set up, we have the following: 

  

2 2

1

1

2
2

1 2
1 2

sum of squares due to blocks

1 1 1
                                             ( , ,..., ) ' , ,...,

 

                                             

b
i

i i

b
b

b

B G

k n

B

B G
B B B diag

k k k n

B



 

 
        
 







2
1 G

B K B
n

 

 

If  y is the  vector of all the observations, then  

 

2

2

ˆˆ ˆError sum of squares ( ) ( )

ˆˆ ˆ                      ( )      [Using normal equations, other terms will be zero]

ˆ ˆ                      

e ijm i j
i j m

ijm ijm i j
i j m

ijm j j
i j m j

S y

y y

y G V

  

  

 

   

   

   





  ˆ

ˆˆ ˆ                      ' ' ' .

i i
i

B

y y G V B



     


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Using  original normal equations given by 

1
ˆˆ ˆbB KE K N     ,  

we have 

1 1
1

ˆ ˆ ˆ.bK B E K N       

1 1
ˆSince ' ' , substituting  in   givesv b eG V E B E S    

1 1
1

1 1
1

1 1

1 1

2 2
1 1

ˆ ˆ ˆ ˆ' '[ ] '

ˆ ˆ ˆ ˆ   ' '[ ] '

ˆ ˆ ˆ ˆ ' ' ' '

ˆ' ' ( ' ')

ˆ' ' ( ' ) '

e b

b

S y y G B K B E K N V

y y G B K B E K N V

y y G B K B G B K N V

y y B K B B K N V

G G
y y B K B V N K B

n n

   

   

   





 

 

 

 

 

     

     

     

   

   
        
   

 

    

2 2
1 ˆ               ' '          '

                                                                         

Error SS   =   TotalSS             BlockSS    Adjusted treatment

e

G G
S y y B K B Q

n n
   

       
   

   
SS

               (unadjusted)      (adjusted for blocks)

 

The degrees of freedom associated with the different sum of squares are as follows: 

 

Block SS (unadjusted)    : b – 1 

Treatment SS (adjusted) : v – 1   

Error SS : n – b – v + 1  

Total SS : n – 1 

 

The adjusted treatment sum of squares and the sum of squares due to error are independently distributed 

and follow a Chi-square distribution with ( 1)v   and ( 1)n b v    degrees of freedom, respectively. 
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The analysis of variance table for  0 : 0H    is as follows: 

Source of Degrees of        Sum of   Mean sum                       F 
 variation        freedom            squares                 of squares 

Treat               v – 1           
ˆ     '

(Adjusted)

Q 
                  

ˆ'

1

Q

v




               
ˆ' / ( 1)

/ ( 1)e

Q v
F

S n b v

 


  
 

Blocks    b – 1             

2
1'

(Unadjusted)

G
B K B

n
 

 

Error n – b – v + 1           eS                  
1

eS

n b v  
 

Total n – 1                   
2

'
G

y y
n

  

 

Under  0

ˆ' /( 1)
,   ~ ( 1, 1)

/( 1)e

Q v
H F v n b v

S n b v

 
   

  
. 

Thus  in an incomplete block design, it matters whether we are  estimating the block effects first  and then 

the treatment effects are estimated 

                                       or 

first estimate the treatment effects and then the block effects are estimated. 

 

In complete block designs, it doesn’t matter at all. So the testing of hypothesis related to the block and 

treatment effects can be done from the same estimates. 

 

A reason for this is  as follows: In an incomplete block design, either the  

 Adjusted sum of squares due to treatments, the unadjusted sum of squares due to blocks and the 

corresponding sum of squares due to errors  are orthogonal  

 or 
 

 Adjusted sum of squares due to blocks, the unadjusted sum of squares due to treatments and the 

corresponding sum of squares due to errors are orthogonal. 
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Note that the adjusted sum of squares due to treatment and the adjusted sum of squares due to blocks are 

not orthogonal. So  

either  

Error S.S =Total SS– SS block (Unadjusted) – SS treat (Adjusted)  

holds  true 

or 

Error S.S = Total  SS – SS block (Adjusted) – SS treat (Unadjusted)  

holds true due to  Fisher Cochran theorem. 

Since 1 0,vCE   so C is a rank deficient matrix. Also,  since 

1
1 1 1

1
1 1 1

1

1

2
1

1 2

1 1

' ' ( ' )

( ,..., ) '

( ) ' '

1 1 1
( ,..., ) , ,...,

( ..... )

 

         0

v v v

v v v

i
i

i b
i b

b

i b b
i

i j
i j

Q E V E N K B E

V V E B K NE

V B K k

k

k
V B B diag

k k k

k

V B B E

V B

G G







 

 

 

 
         
 

 

 

 








 

  

so the  intrablock equations are consistent.  

We will confine our attention to those designs for which rank(C) = v - 1.  These are called connected 

designs and for which all contrasts in the treatments, i.e., all linear combinations '   where   1' 0vl E    

have unique least-squares solutions. This we prove now as follows. 

 

Let  G* and H*  be any two generalized inverses of C by which we mean that they are the square matrix 

of order v such that G*Q and H*Q are both the solution vectors to the intrablock equation, i.e., 

ˆ ˆ* and *G Q H Q   , respectively. 
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Then   

ˆ

*

and * for all

so that ( * *) 0.

Q C

Q CG Q

Q CH Q Q

C G H Q


 


 

 

 

It follows that  (G* - H*)Q  can be written as 1* va E  where a is any scalar which may be zero. 

Let    be a vector such that  1' 0.vE    The two estimates of   '  are  ' * and ' *l G Q l H Q  but  

  
1

1

' * ' * '( * *)

' *

* '

0

  '  is unique.

v

v

G Q H Q G H Q

a E

a E

l 

  







  

  

 

Theorem: The adjusted treatment totals are orthogonal to the block totals. 

Proof:  It is enough to prove that 

 ( , ) 0 for all , .i jCov B Q i j  

Now 

 

( , ) ,

( , ) ( )

ij
i j i j i

i i

ij
i j i

i

n
Cov B Q Cov B V B

k

n
Cov B V Var B

k

  
   

  

 


 

because the  block totals are mutually orthogonal, see how: 

11 12 1 1 1
1

21 22 2 2 2
1

2
1 1 1 1

1

2
2 2 2 2

For , ,..., ,  the block total .

For , ,..., ,  the block total .

( ) ( )   as  ( , ) 0 for 

( ) ( )   as  ( , ) 0 for 

v

v j
j

v

v j
j

v

j j k
j

j j k
j

y y y B y

y y y B y

Var B Var y v Cov y y j k

Var B Var y v Cov y y j k















   

   







1

2
1 2 1 2

1 2

( ) ( ) 2    as  ( , ) 0 for 

  and  are mutually orthogonal as all 's are independent.

v

j k

ij

Var B Var B v Cov y y j k

B B y




   




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As  andi jB V  have ijn  observations  in common and the observations are mutually independent, so 

2

2

2 2

( , )

( )

Thus ( , ) 0

i j ij

i i

ij
i j ij i

i

Cov B V n

Var B k

n
Cov B Q n k

k





 





  
 

Hence proved. 

 

Theorem: 

  
2

( )

( )

E Q C

Var Q C








 

Proof: 

1 1

1

1

1

...

( ) ( ) ( )

( ) ( )

( ) 

j bj b
j j

b

b
ij i

j
i i

b
ij

j j i
i i

j ijm
i m

i j ijm
i m

ij i ij j ij
i i i

j i ij j j
i

n B n B
Q V

k k

n B
V

k

n
E Q E V E B

k

E V E y

E

n n n

r n r

   

  

  





 
    

 

 

 



   

  

  









  



 

( ) ( )

( )

( )

i ijm
j m

i j ijm
j m

i j
j m

i i i j ij
j

E B E y

E

k k n

   

  

  



   

  

  









 

1 1

( )

( ).

b b
ij ij

i i i i j ij
i i ji i

ij
j i ij j ij

i i ji

n n
E B k k n

k k

n
r n n

k

  

  

 

 
   

 

  

  

  
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Thus substituting these expressions in ( ),jE Q   we have 

2

' '
( ) '( )

( ) ( )ij
j j j j ij

i ji

ij ij
i j i jj j j j

i i j ji i

n
E Q r n

k

n n
r n c c

k k

 

   
 

 

 
      
 

 

     
 

 

Further, substituting  ( )jE Q  in 1 2( ) ( ( ), ( ),..., ( )) 'bE Q E Q E Q E Q , we get  

( )E Q C  

Next 

1 1 2 1

2 1 2 2

1 2

( )        ( , )   ...  ( , )

( , )     ( )       ...  ( , )
( )

                                                

( , )     ( , )   ... ( )

(

v

v

v v v

j

Var Q Cov Q Q Cov Q Q

Cov Q Q Var Q Cov Q Q
Var Q

Cov Q Q Cov Q Q Var Q

Var Q

 
 
 
 
 
 

   

2

) [ ]

       ( ) ( ) 2 ( , ),

ij
j i

i i

ij ij
j i j i

i ii i

n
Var V B

k

n n
Var V Var B Cov V B

k k

 

 
   

 



 

 

Note that 

           

2

2

2

( ) ( )

( ) ( )

( , ) ,

j ijm j
i m

i ijm i
j m

j i ijm ijm ij
i m j m

Var V Var y r

Var B Var y k

Cov V B Cov y y n







 

 

 
  

 





 

  

2

2 2 2

2 2
2 2 2

2
2 2

2

( ) 2

2

.

ij ij
j j i ij

i ii i

ij ij
j

i ii i

ij
j

i i

jj

n n
Var Q r k n

k k

n n
r

k k

n
r

k

c

  

  

 



  
          

 
     

 
 

    
 



 

 


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2

2

2

( , ) ,

( , ) ( , ) ( , ) ( , )

0 ( , ) ( , ) ( )

ij i
j j i i

i ii i

ij ij ii
j j i i i i

i i ii i i

ij ij ii
j i i i

i i ii i i

i ij ij i

i i

n n
Cov Q Q Cov V B V B

k k

n n nn
Cov V V Cov V B Cov B V Cov B B

k k k

n n nn
Cov V B Cov B V Var B

k k k

n n n n

k k


 
   

 

   

   

  
   

  

 

  

  


 


 




  2 2
2

2

ij i
i

i i i i

j

n n
k

k

c

 




 




   



 

Substituting the terms of   2 2 2( )  and ( , )  in ( ),  we get ( ) .j jj j l jlVar Q c Cov Q Q c Var Q Var Q C    
 

Hence proved. 

[Note: We will prove this result using the matrix approach later].
 

 

Covariance matrix of adjusted treatment totals: 

Consider 
V

Z
B

 
  
 

 with b + v variables.  

We can express 

              

1

1

1

'

[      ' ]

   [       ' ] .

Q V N K B

V
I N K

B

I N K Z







 

 
   

 
 

   

So  

             1

1

'
( ) [       ' ] ( ) .

( ' ) '

I
Cov Q I N K Cov Z

N K




 
    

  

 

Now we find that  

            
( ) ( , )

( )
( , ) ( )

Var V Cov V B
Cov Z

Cov B V Var B

 
  
 

  

 

Since iB  and jV  have  ijn  observations  in common and  the observations  are mutually independent, so 

            

2

2

2

( , )

( )

( ) .

i j ij

i i

j j

Cov B V n

Var B k

Var V r












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Thus  

           

2

1 2

1

1 2

1

1 2

2

'
( )

  '
( ) [      ' ]

  

[ ' ' ']

( ' )

.

R N
Cov Z

N K

IR N
Cov Q I N K

N K K N

I
R N K N N N

K N

R N K N

C



















 
  
 

  
        

 
     
 



 

 

Next, we show that ( , ) 0Cov B Q   

      

1

1

2 1 2

( , ) ( , ) ( , ' )

( , ) ( )

0.

Cov B Q Cov B V Cov B V N K B

Cov B V Var B K N

N KK N 







  

 

 


 

  

An alternative approach to find/ prove   2( ) , ( )E Q C D Q C    

Now we illustrate another approach to find the expectations etc in the set up of an incomplete block 

design. We have now learnt three approaches- the classical approach based on summations, the approach 

based on matrix theory and this new approach which is also based on the matrix theory. We can choose 

any of the approaches. The objective here is to let the reader know these different approaches. 

 

Rewrite the linear model  

            
, 1, 2,..., ; 1, 2,..., ; 0,1,.., .         ijm i j ijm ijy i b j v m n  

as  

         
' '

1 1 2ny E D D      
 

where 

             

1 2

1 2

( , ,..., ) '

( , ,..., ) '

   
   



v

b . 
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Since  Bi  and  Vj   have  nij   observations  in common and  the observations  are mutually independent, so 

denote  

 
1 : D v n  matrix of treatment effect  versus  N, i.e., (i,  j)th  element of this matrix is given by  

            1

1 if observation comes from treatment

0 otherwise


 


th thj i
D

 

2 :D b n  matrix of block effects versus  N, i.e., (i,  j)th  element of this matrix is given by  

            
2

1 if observation comes from block

0 otherwise.


 


th thj i
D  

Following results can be verified: 

              

'
1 1 1 2

'
2 2 1 2

' '
2 1 1 2

1 1 1 2

2 1 1 2

' '
1 1 1 2 1

( , ,..., ),

( , ,..., ),

  or '

( , ,..., ) '

( , ,..., ) '

.

v

b

n v

n b

v n b

D D R diag r r r

D D K diag k k k

D D N D D N

D E r r r

D E k k k

D E E D E

 

 

 





 

 

In earlier notations, 

        

1 2 1

1 2 2

( , ,..., ) '

( , ,..., ) '
v

b

V V V V D y

B B B B D y

 
 

 

Express Q  in terms of  1 2and asD D   

       
1

' ' 1
1 1 2 2 2 2

'

( ) .

Q V N K B

D D D D D D y





 

   
 

Then 

        

' ' 1
1 1 2 2 2 2

' ' 1 ' '
1 1 2 2 2 2 1 1 2

' ' 1 ' ' ' 1 '
1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1

' ' ' 1 '
1 2 1 2 2 2 2 2

1
1 2 1

( ) ( ) ( )

( ) ( )

( ) ( )

  ( )

( , ,..., ) ' ' ( ,..., )

n

n n

v b

E Q D D D D D D E y

D D D D D D E D D

D E D D D D D E D D D D D D D D

D D D D D D D D

r r r N K k k

  

 







 





   
     
         
   

  1 1' ' ' ' .R N K N N N K K                

 



Analysis of Variance  |  Chapter 5  |  Incomplete Block Designs  |   Shalabh, IIT Kanpur 
24 

1

21
1

1 2

11 21 1

12 22 2

2

1 1 1
Since ' ( ,..., ) ' ' , ,...,

... 1 1

... 1 1
                          '

        

1 1...

       

b
b

b

b

b

iv v bv

k

k
N K k k N diag

k k k

k

n n n

n n n
N

n n n



 
        
 

    
    
     
    
    

    



   

'

1 2 1 2
1 1 1

                   , ,..., ( , ,..., ) '.
b b b

i i iv v
i i i

n n n r r r
  

   
 
  

 

 1 1
1 2 1

1

Thus

       ' ' , ,..., ' ' ( ,..., ) 0

and so

      ( ) '

      .

v bN N K K r r r N K k k

E Q R N K N

C





 



   

   


 

Next 

       

' ' 1 ' ' 1 '
1 2 2 2 2 2 2 2 2 1

2 ' ' 1 '
1 2 2 2 2 1

2 ' ' ' 1 '
1 1 1 2 2 2 2 1

2 1

2

( ) ( ) ( ) ( )

( )     

( )

'

.

Var Q D I D D D D Var y I D D D D D

D I D D D D D

D D D D D D D D

R N K N

C









 







        
   

   
   



 ' ' 1
2 2 2 2Note that ( )  is an idempotent matrix.I D D D D  

 

Similarly, we can also express  

       

1

' 1
2 2 1 1[ ] .

P B NR V

D D D R D y





 

 
 

 

Theorem:    2( ) ,    ( )E P D Var P D    

Proof:        

         

1

1

1
2 1 1

' ' 1
2 1 1 1 1

'

   [ ]

[ ( ) ]









 

 

 

 

D K NR N

P B NR V

D I D R D y

D I D D D D y
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' ' 1 ' '
2 1 1 1 1 1 1 1 2

' 1 ' ' 1 '
2 1 2 1 1 1 2 1 2 1 1 1

' ' 1 '
2 1 2 1 1 2

1 1 1
1 2 1 2

1 2 1

( ) [ ( ) ]( )

[ ] [ ]

[ ]

[( , ,..., ) ' ( , ,..., ) '] [ ] [ ']

[( , ,..., ) ' ] 0

n

n n

b v

b v

E P D I D D D D E D D

D E D D R D E D D D D R D D

D D D D R D D

k k k NR r r r N NR R K NR N

k k k NE

  

 



  




 



  

   

   

 

     
   

1 2 1 2[( , ,..., ) ' ( , ,..., ) ']b b

D

k k k k k k D

D


 


  
  

Next 

           

2 ' ' 1 '
2 1 1 1 1 2

2 ' ' ' 1 '
2 2 2 1 1 1 1 2

2 1 2

( ) [ ( ) ]

    [ ( ) ]

    [ ']





 







 

 

  

Var P D I D D D D D

D D D D D D D D

K NR N D

 Note that ' ' 1
1 1 1 1[ ( ) ]I D D D D  is an idempotent matrix. 

 

Alternatively, we can also find Var(P) as follows: 

            

1 1

1

1

1 2

1

1 1 2

1

(     ) (      ) where ( ,    ) '

( ) =(     ) ( )
'

   
            = (     )

'  '

            = ( '     )
'

  

B
P I NR I NR Z Z B V

V

I
Var P I NR Cov Z

R N

IK N
I NR

N R R N

I
K NR N N NR R

R N





 







 


 
     

 
 

  
 
  

      
 

   
 

 1 2

2

          = '

            = 

K NR N

D







 

 

Now we consider some properties of incomplete block designs. 

Lemma: b + rank(C) = v + rank(D) . 

Proof:  Consider   (b + v)x(b + v) matrix 

 
'

 
  
 

K N
A

N R
 

Note that A is a submatrix of C. 

Using the result that the rank of a matrix does not change by the pre-multiplication of the nonsingular 

matrix, consider the following matrices: 



Analysis of Variance  |  Chapter 5  |  Incomplete Block Designs  |   Shalabh, IIT Kanpur 
26 

1

1

0

'

and

 0
.

'  

b

v

b

v

I
M

N K I

I
S

R N I





 
  

 

 
  

 

 

M and S are nonsingular, so we have  

rank(A) = rank(MA) = rank(AS). 

 

Now 

1

0

' 0'   

.
0

b

v

I K N K N
MA

N R CN K I

D N
AS

R



     
           
 

  
 

 

 
Thus 

0 0

or

( ) ( ) ( ) ( )

or

( ) ( )

K N D N
rank rank

C R

rank K rank C rank D rank R

b rank C v rank D

   
   

   

  

  

 

 
Remark: 

:  and :  are symmetric matrices. C v v D b b  

One can verify that 

               1 0vCE   

and         1 0bDE      

Thus   ( ) 1 rank C v  

and    ( ) 1. rank D b  

 

Lemma: 

If rank(C) = v - 1, then all blocks and treatment contrasts are estimable. 

Proof: 

If  rank(C) = v – 1, it is obvious that all the treatment contrasts are estimable. 
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Using the result from the lemma  b + rank(C) = v + rank(D),  we have  

rank(D) + v = rank(C) + b 

                      = v - 1 + b 

Thus 

rank(D) = b - 1. 

Thus all the block contrasts are also estimable. 

 

Orthogonality of Q and P: 

Now we explore the conditions under which Q and P can be orthogonal. 

1

' 1
1 1 2 2

1

' 1
2 2 1 1

' 1 ' 1 2
1 1 2 2 2 2 1 1

' ' 1 ' ' 1 ' ' 1 ' 1 ' 2
1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2

1 1 1

'

( )

( )

( , ) ( )( ) '

                 = ( )

( ' ' ' '

Q V N K B

D D D K D y

P B NR V

D D D R D y

Cov Q P D D D K D D D D R D

D D D D R D D D D K D D D D K D D R D D

N RR N N K K N K NR













 

   

   

 

 

 

 

  

  

    1 2

1 1 2

')

( ' ' ')

N

N K NR N N



  

 

Q and P (or equivalently  iQ  and  jP ) are orthogonal when 

  

1 1

1 1

1

1 1

1 1

1

      ( , ) 0

or  ' ' ' 0 (i)

( ) ' ' 0  (Using ' )

' 0         (ii)

or equivalently

      ' ' ' 0

 ' ( ) ' 0  (Using ')

 ' 0                     

 

 



 

 





 

     

 

 

     

 

Cov Q P

N K N R N N

R C R N N C R N K N

CR N

N K NR N N

N K K D N D K NR N

N K D                           (iii)

 

 

Thus   andi jQ P  are orthogonal if 

1 1

1

1

' '

or equivalently

0

or equivalently

0.

NR N K N N

NR C

DK N

 










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Orthogonal block design: 

A block design is said to be orthogonal if  ' and 'i jQ s P s  are orthogonal for all i and j.  Thus the 

condition for the orthogonality of design is 1 1 1 -1' , 0 or  0.NR N K N N NR C DK N      

Lemma:  If   ij

j

n

r
  is constant for all j, then ij

i

n

k
 is constant for all i and vice versa.  In this case, we have  

                   i j
ij

k r
n

n
 . 

Proof.   If  ij

j

n

r
 is constant for all j then  ij

j

n

r
= ia , say. 

 Hence proved.

or 

or 

or 

Thus

or

So : independent of .

ij i j

ij i j i j i
j j j

i i

i
i

ij i

j

i j
ij

ij j

j

n a r

n a r a r a n

k a n

k
a

n

n k

r n

k r
n

n
n r

i
k n

 

  











  

 

 
Contrast:   

A linear function 
1

'
v

j j
j

c C 


   where  1 2, ,..., vc c c  are given number such that  
1

0
v

j
j

c


  is called a 

contrast of  ' .j s  

Elementary contrast: 

A contrast  1 2
1

' with ( , ,..., ) '
v

j j v
j

c C C c c c 


   in treatment effects  1 2( , ,..., ) 'v     is called an 

elementary contrast if C has only two non-zero components 1 and -1. 

 
Elementary contrasts in the  treatment effects involve all  the differences in the form  , .i j i j      

 
It is desirable to design experiments where all the elementary contrasts are estimable.  
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Connected Design: 

A design where all the elementary contrasts are estimable is called a connected design otherwise it is 

called a disconnected  design. 

 
The physical meaning of connectedness  of a design is as follows: 

 
Given any two treatment effects 1 2and  i i , it is possible to have a chain of treatment effects like 

1 1 2 2, , ,..., , ,i j j nj i    
 
such that two adjoining treatments in this chain occur in the same block. 

 
Example of connected design: 

In a connected design, within every block, all the treatment contrasts are estimable and pair-wise 

comparison  of estimators have similar variances. 

 
Consider a disconnected incomplete block design as follows: 

b = 8 (Block numbers: I, II,…,VIII), k = 3, v  = 8 (treatment numbers: 1,2,…,8), r = 3 

 
Blocks                         Treatments 

I 1  3  5 

II 2  4  6 

III 3  5  7 

IV 4  6  8 

V 5  7  1 

VII 6  8  2 

VII 7  1  3 

VIII 8  2  4 
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The blocks of this design can be represented graphically as follows: 

 

 

 

 

 
  

 

 

 

 

 

 
 
 
Note that it is not possible to reach the treatment, e.g., 7 from 2, 3 from 4 etc.  So the design is not 
connected. 
 
Moreover, if the blocks of the design are given like in the following figure, then any treatment can be 

reached from any treatment. So the design, in this case, is connected.  For example, treatment 2 can be 

reached from treatment 6 through different routes like 

6 5 4 3 2, 6 3 2, 6 7 8 1 2,6 7 2             etc. 

 

 

 

 

 

 

 

 

 

 

 

A design is connected if every treatment can be reached from every  treatment via lines in the connectivity 

graph. 

2 3

1 4

7

8 5

6

6 4

28 

71 

3 5

No 
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Theorem: An incomplete block design with v treatments is connected if and only if  rank(C) = v - 1. 

 

Proof: Let the design be connected.  Consider a set of (v - 1) linearly independent contrasts i j   (j = 2, 

3,…,v).  Let these contrasts be  ' ' '
2 3, , ..., vC C C     where  .1 .2( , ,..... ) '.v      Obviously, vectors  

2 3, ,..., vC C C  form the basis of vector space of dimension (v - 1).  Thus any contrast 'p    is 

expressible as a linear combination of the contrasts  ' ( 2,3,..., ).iC i v   Also 'p   is estimable if and only 

if  p belongs to the column space of C-matrix of the design. 

 

Therefore, the dimension of column space of C  must be the same as that of the vector space spanned by 

the vectors ( 2,3,..., ),iC i v  i.e., equal to  (v - 1). 

 Thus rank(C) = v – 1. 

 

Conversely, let rank(C) = v – 1 and let 1 2 1, ,..., v     be a set of orthonormal eigenvectors corresponding 

to the (not necessarily distinct) non-zero eigenvalues 1 2 1, ,..., v     of C . 

Then 

       
' '

1

'

( )

.

i

i i

E Q C  

  




 

Thus an unbiased estimator of   '
i   is  

'

i

i

Q
. 

Also, since each  i  is orthogonal to  1vE    and  '
i s  are mutually orthogonal, so any contrast 'p   

belongs to the vector space spanned by  
1

1

{ , 1... }, . .,
v

i i i
i

i v i e p a 




   . 

So   
1

1

'
 






 
 

 

v

i
i

i i

Q
E a p . 

Thus 'p   is estimable and this completes the proof.    
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Lemma: For a connected block design  
'

( , ) 0  if and only if ' .
rk

Cov Q P N
n

   

Proof:  “if”  part 

When  
'

' ,
rk

N
n

  we have    

1 1
2

1 1

2

1

21
1 2

1 2

1

1

1
1 2

1 2

1
( , ) ' ' '

' ' '
'

1 1 1
Since ' ( , ,..., ) , ,...,

    (1,...,1)

and

1 1 1
' ( , ,..., ) , ,...,

b
b

b

b

i
i

b

v
v

Cov Q P N K NR N N

rk K kr R N
N

n
k

k
k K k k k k diag

k k k

k

k

k n

k

r R r r r diag
r r r


 

 







 

 

 
        
 

 
    
 
 












1 .vE

 



 

Then 

1
2 2

1

'1
( , ) '

' '
' '

' ' 0.


 

   

  

v

v

rnE N
Cov Q P N

n
rE N rk

N N
n n

N N

 

 

“Only if part” 

 
1 1 1

1

1

Let ( , ) 0

' ' ' 0 (Since ' )

or ( ) ' ' 0

or ' 0.

Cov Q P

N K NR N N C R N K N

R C R N N

CR N

  







    

  



 

 

Let   

1
1 2

1 2

' ( , ,..., )

where , ,...,  are the columns of .

   b

b

R N A a a a

a a a A
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Since the design is connected, so the columns of A are proportional to   1vE . Also, all row/column sums of 

C are zero.  

1 1 1

1 2

1

1

So ( , ,..., ) 0

and

0

or ( , ,..., ) 0

or ; 1,2,...,

v v v

b

i v

i i v

CE CE CE

CA

C a a a

a E

a E i b






 
 

 

where  i   are some scalars. 

 

This gives  

1
1 1' '  where ( .... ) '.v bA R N E                                                                   

So we have 

1 1 2

1 2

' ( , ,.., ) ' '

' where ( , ,.., ) '.
v v

v

N RE r r r

r r r r r

 


 
 

 

 

Pre-multiply by  1vE  gives  

1 1 2 1

1 2

' ( , ,..., ) ' ' '

or '

'
 ' =   where ( , ,..., ) '

Thus

'
' ' .

v b v

b

E N k k k E r n

k n

k
k k k k

n

rk
N r

n

 






  



 

 

 

Hence proved. 

 

Definition:   A connected block design is said to be orthogonal if and only if the incidence matrix of the 

design satisfies the condition
'

'
rk

N
n

 .   

Designs which do not satisfy this condition are called non-orthogonal.  It is clear from this result that if 

at least one entry of  N is zero, the design cannot be orthogonal. 

 

A block design with at least one zero-entry in its incidence matrix is called an incomplete block design. 
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Theorem:  A sufficient condition for the orthogonality of design is that  ij

j

n

r
 is constant for all  j. 

 

Conclusion:  It is obvious from the condition of orthogonality of a  design that a design which is not 

connected and an incomplete design even though it may be connected cannot have an orthogonal 

structure. 

 

Now we illustrate the general nature of the incomplete block design. We try to obtain the results for a 

randomized block design through the results of an incomplete block design. 

 

Randomized block design: 

The randomized block design is an arrangement of  v  treatment in  b blocks of  v  plots each, such that 

every treatment occurs in every block, one treatment in each plot. 

The arrangement of treatment within a block  is random and in terms of incidence matrix,  

1 for all 1, 2,..., ; 1, 2,..., .ijn i b j v    

Thus we have 

for all 

for all .

i ij
j

j ij
j

k n v i

r n b j

 

 




 

'

1
We have constant for all .

.

ij

j

jj

jj

j j

n
j

r b

b
C b

v
b

C
v

G
Q V

v



 

 

 

 

 Normal equations for  's  are 

 

 

 

 

 

'
' 1

1 2

; 1....

.... 0.

v

j j j
i j

v

b b G
b V j v

v v v
 

  
 

      
 

  


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Thus    

                

1
ˆor  .

j j j
j

j j oj oo

b G
b V

v v

G
V y y

b v

 



  

     
 


 

The sum of squares due to treatments adjusted for blocks is  

                
2

2

2

ˆ

1

,



   
 

 







j j
j

j
j

j
j

Q

G
V

b v

V
G

b bv

   

which is also the sum of squares due to treatments which are unadjusted for blocks because the design is 

orthogonal. 

2
2

2

Sum of squares due to blocks

Sum of squares due to error .

i
i

ji
ij

i j

B
G

v bv

VB G
y

v b bv

 

 
    

 




     

These expressions are the same as obtained under the analysis of variance in the set up of a randomized 

block design. 

 

Interblock analysis of incomplete block design 

The purpose of block designs is to reduce the variability of response by removing the part of the 

variability as block numbers. If in fact, this removal is illusory, the block effects being all equal, then the 

estimates are less accurate than those obtained by ignoring the block effects and using the estimates of 

treatment effects. On the other hand, if the block effect is very marked, the reduction in the basic 

variability may be sufficient to ensure a reduction of the actual variances for the block analysis. 

 

In the intrablock analysis related to treatments, the treatment effects are estimated after eliminating the 

block effects.  If the block effects are marked,  then the block comparisons may also provide information 

about the treatment comparison. So a question arises how to utilize the block information additionally to 

develop an analysis of variance to test the hypothesis about the significance of treatment effects. 

 



Analysis of Variance  |  Chapter 5  |  Incomplete Block Designs  |   Shalabh, IIT Kanpur 
36 

Such an analysis can be derived regarding the block effects as random variables.  This assumption 

involves the random allocation of different blocks of the design to be the blocks of the material selected 

(at random from the population of possible blocks) in addition to the random allocation of treatments 

occurring in a block to the units of the block selected to contain them. Now the two responses from the 

same block are correlated because the error associated with each contains the block number in common. 

Such an analysis of incomplete block design is termed as interblock analysis. 

 
To illustrate the idea behind the interblock analysis and how the block comparisons also contain 

information about the treatment comparisons, consider an allocation of four selected treatments in two 

blocks each. The outputs  ( )ijy  are recorded as follows: 

 14 16 17 19

23 25 26 27.

Block 1:

Block 2 :

y y y y

y y y y
 

 
The block totals are 

 1 14 16 17 19

2 23 25 26 27

,

.

B y y y y

B y y y y

   

   
 

 

Following the model  , 1, 2, 1, 2,...,9,ij i j ijy i j          we have 

 

14 1 4 14

16 1 6 16

17 1 7 17

19 1 9 19

23 2 3 23

25 2 5 25

26 2 6 26

27 2 7 27

,

,

,

,

,

,

,

,

y

y

y

y

y

y

y

y

   
   
   
   
   
   
   
   

   
   
   
   

   
   
   

   

 

and thus 

1 2 1 2 4 6 7 9 3 5 6 7

14 16 17 19 23 25 26 27

4( ) ( ) ( )

( ) ( ).

B B          
       

          

       
 

If we assume additionally that the block effects 1 2and   are random with mean zero, then 

 1 2 4 9 3 5( ) ( ) ( )E B B          

which reflects that the block comparisons can also provide information about the treatment comparisons. 
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The intrablock analysis of an incomplete block design is based on estimating the treatment effects (or 

their contrasts) by eliminating the block effects. Since different treatments occur in different blocks, so 

one may expect that the block totals may also provide some information on the treatments.  The interblock 

analysis utilizes the information on block totals to estimate the treatment differences. The block effects 

are assumed to be random and so we consider the set up of mixed effect model in which the treatment 

effects are fixed but the block effects are random. This approach is applicable only when the number of 

blocks is more than the number of treatments. We consider here the interblock analysis of binary proper 

designs for which 0ijn   or  1 and  1 2 ... bk k k k     in connection with the intrablock analysis. 

 

Model and Normal Equations 

Let  ijy  denotes the response from the jth treatment in ith block from the model 

 ** , 1, 2,..., ; 1, 2,...,ij i j ijy i b j v          

where 

*   is the general mean effect; 

*
i    is the random additive ith block effect; 

j    is the fixed additive jth treatment effect; and 

ij   is the i.i.d. random error with  2~ (0, )ij N  .  

 

Since the block effect is now considered to be random, so we additionally assume that  * ( 1, 2,.., )i i b   

are independently distributed following  2(0, )N   and are uncorrelated with  ij .  One may note that we 

can not assume here  * 0i
i

   as in other cases of fixed-effect models.  In place of this, we take 

*( ) 0iE   .  Also,  'ijy s  are no longer independently distributed but 

 

2 2

2

' '

( ) ,

', '
( , )

0 otherwise.

ij

ij i j

Var y

if i i j j
Cov y y





 



 

   

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In the case of interblock analysis, we work with the block totals iB  in place of  ijy  where 

 

1

*

1

( * )

*

v

i ij ij
j

v

ij i j ij
j

ij j i
j

B n y

n

k n f

   

 







   

  







 

where * , ( 1, 2,..., )i i ij ij
j

f k n i b     are independent and normally distributed with mean 0 and  

 2 2 2 2( )i fVar f k k     . 

Thus 

 2

'

( ) * ,

( ) ; 1,2,.., ,

( , ) 0; '; , ' 1, 2,..., .

i ij j
j

i f

i i

E B k n

Var B i b

Cov B B i i i i b

 



 

 

  


 

 

In matrix notations, the model under consideration can be written as 

 1* bB k E N f     

where  1 2( , ,..., ) '.bf f f f  

 

Estimates of  *and    in interblock analysis:  

In order to obtain the estimates of * and   , we minimise the sum of squares due to error 

1 2( , ,..., ) ',bf f f f , i.e., minimize  1 1( * ) '( * )b bB k E N B k E N       with respect to * and   .  

The estimates of  * and    are the solutions of  following normal equations: 

 

 
' '
1 1

1

2 ' '
1 1 1

1

2 '
1

1 1

1

' '

'' '

( ' )
''

or
  

or using

b b

b

b b b

b

v

b v

v

kE kE
kE N B

N N

kGk E E kE N

N BkN E N N

kGk b kE R
N E r RE

N BkRE N N













    
            

    
            

    
              












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Premultiplying both sides of the equation by 

 
1

1 0
,

v
v

RE
I

b

 
 
  
 

 

we get 

'
1

'
11 1

.
'0 '

v

vv v

bk E G

RE GRE E R N BN N
bb




                  




 

Using the side condition '
1 0vE R   and assuming  'N N  to be nonsingular, we get the estimates of 

* and as and     given by 

 

1 1

1 1
1 1

1
1

1 1

,

( ' ) ( ' )

'
( ' ) ' (using ' )

( ' ) ' '

( ' ) ' .

v

b
v v

v

v

G

bk
RE G

N N N B
b

kGN E
N N N B RE r N E

bk

G
N N N B N NE

bk

GE
N N N B

bk



 









 

     
 
   
 

 





 

 

The normal equations can also be solved in an alternative way also as follows. 

The normal equations  
2 '

1

1 ''
v

v

kGk b kE R

NkRE N N


 

    
    

    




can be written as     

2 '
1

1 ' ' .
v

v

k b kE R kG

kRE N N N B

 
 
 

 

 
 

 

Using the side condition '
1 0vE R   (or equivalently 0)j j

j

r     and assuming 'N N  to be nonsingular, 

the first equation gives  .
G

bk
    Substituting    in the second equation gives  .  

 

 

 

1 1

1 1

' '

' ' .

v

v

RE G
N N N B

b

GE
N N N B

bk

 



   
 

 


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Generally, we are not interested merely in the interblock analysis of variance but we want to utilize the 

information from interblock analysis along with the intrablock information to improve upon the statistical 

inferences. 

 

After obtaining the interblock estimate of treatment effects, the next question that arises is how to use this 

information for improved estimation of treatment effects and use it further for the testing of significance 

of treatment effects. Such an estimate will be  based on the use of more information, so it is expected to 

provide better statistical inferences. 

 

We now have two different estimates of the treatment effect as 

- based on intrablock analysis  ˆ C Q    and 

- based on interblock analysis   1 1( ' ) ' .vGE
N N N B

bk
    

Let us consider the estimation of linear contrast of treatment effects 'L l  .  Since the intrablock and 

interblock estimates of    are based on Gauss-Markov model and least-squares principle, so the best 

estimate of L  based on intrablock estimation is 

 
1 ˆ'

'

L l

l C Q







 

and the best estimate of  L  based on interblock estimation is 

 

2

1 1

1
1

'

' ( ' ) '

'( ' ) ' (since ' 0 being contrast.)

v

v

L l

GE
l N N N B

bk

l N N N B l E









    
 



 

The variances of  1 2andL L  are 

 2
1( ) 'Var L l C l   

and 

2 1
2( ) '( ' ) ,fVar L l N N l   

respectively.  The covariance between Q (from intrablock) and  B (from interblock) is 

 

1

1

2 1 2

( , ) ( ' *, )

( , ) ( ' *, )

' '

0.

f f

Cov Q B Cov V N K B B

Cov V B Cov N K B B

N N K K 







 

 

 

  
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Note that  B*  denotes the block total based on intrablock analysis and B  denotes the block totals based 

on interblock analysis. We are using two notations B and  B* just to indicate that the two block totals are 

different. The reader should not misunderstand that it follows from the result  ( , ) 0Cov Q B   in case of 

intrablock analysis. 

Thus 

 1 2( , ) 0Cov L L   

irrespective of the values of  l . 

 

The question now arises that given the two estimators  ˆ and    of   , how to combine them and obtain a 

minimum variance unbiased estimator of   .  It is illustrated with the following example: 

 

Example: 

Let  1 2
ˆ ˆand   be any two unbiased estimators of a parameter    with   2

1 1
ˆ( )Var    and  2

2 2
ˆ( )Var   .  

Consider a linear combination  1 1 2 2
ˆ ˆ ˆ       with weights 1  and  2 . In order that  ̂  is an unbiased 

estimator of  1 , we need 

 
1 1 2 2

1 2

1 2

ˆ         ( )

ˆ ˆor     ( ) ( )

or     

or     1.

E

E E

 
    
    
 


 

 
 

 

So modify ̂   as  1 1 2 2

1 2

ˆ   
 




  which is the weighted mean of  1̂  and  2̂ . 

Further, if 1 2
ˆ ˆand   are independent, then  

 2 2 2 2
1 1 2 2

ˆ( ) .Var        

Now we find  1  and  2  such that  ˆ( )Var   is minimum such that 1 2 1   . 

2 2
1 1 1 2

1

2 2
1 1 2 2

2
1 2

2
2 1

ˆ( )
         0 2 2(1 ) 0

or      0

or      

1
or      weight    . 

variance

Var     


   

 
 


    



 




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Alternatively,  the Lagrangian function approach can be used to obtain such a result as follows. The 

Lagrangian function with  *  as Lagrangian multiplier is given by  

1 2ˆ( ) *( 1)Var         

and  solving  
1 2

0 , and 0
*

  
  
  

 
  

 also gives the same result that  
2

1 2
2

2 1

.
 
 

  

 
We note that a pooled  estimator of    in the form of weighted arithmetic  mean of uncorrelated  

1 2andL L  is the minimum variance unbiased estimator of    when the weights  1 2and   of 1 2andL L , 

respectively are chosen such that 

 1 2

2 1

( )
,

( )

Var L

Var L




  

i.e., the chosen weights are reciprocal to the variance of respective estimators, irrespective of the values of  

l .  So consider the weighted average of  1 2andL L  with weights 1 2and    , respectively as 

 

 

1 1 2 2

1 2

1 2

1 2

*

ˆ'( )

L L

l

 
 
   
 











 

with 

 
1 1 2

1

1 1 2
2

'

'( ' ) .f

l C l

l N N l

 

 

 

 




 

The linear contrast of  *  is 

 * ' *L l   

and its variance is 

 

2 2
1 1 2 2

1 22
1 2

1 2

( ) ( )
( *) ' (since ( , ) 0)

( )

'

( )

Var L Var L
Var L l l Cov L L

l l

 
 

 


 




  

because the weights of estimators are chosen to be inversely proportional to the variance of the respective 

estimators. We note that  *   can be obtained provided  1 2and   are known.  But 1 2and   are known  

only if  2 2and    are known. So  *  can be obtained when 2 2and    are  known.  In case, if  

2 2and    are unknown, then their estimates can be used. A question arises how to obtain such 
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estimators? One such approach to obtain the estimates of 2 2and    is based on utilizing the results from 

intrablock and interblock analysis both and is as follows. 

 
From intrablock analysis 

 2
( )( ) ( 1) ,Error tE SS n b v      

so an unbiased estimator of  2  is 

 ( )2ˆ .
1

Error tSS

n b v
 

  
 

An unbiased estimator of   2
  is obtained by using the following results based on the intrablock analysis: 

 

2 2

( )
1

2 2

( )
1

( )
1

2
2

1 1

,

,

ˆ ,

,

v
j

Treat unadj
j j

b
i

Block unadj
i i

v

Treat adj j j
j

b v

Total ij
i j

V G
SS

n

B G
SS

k n

SS Q

G
SS y

n











 

 

 



 









 

where 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

.

Hence

.

Total Treat adj Block unadj Error t

Treat unadj Block adj Error t

Block adj Treat adj Block unadj Treat unadj

SS SS SS SS

SS SS SS

SS SS SS SS

  

  

  

 

  

Under the interblock analysis model 

 ( ) ( ) ( ) ( )[ ] [ ] [ ] [ ]Block adj Treat adj Block unadj Treat unadjE SS E SS E SS E SS    

which is obtained as follows: 

 

2 2
( )

2
( ) ( )

[ ] ( 1) ( )

or

1
( ) .

1

Block adj

Block adj Error t

E SS b n v

b
E SS SS n v

n b v





 



   

       

 

Thus an unbiased estimator of  2
  is 

 2
( ) ( )

1 1
ˆ .

1Block adj Error t

b
SS SS

n v n b v
       
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Now the estimates of weights  1 2and   can be obtained by replacing 2 2 2ˆand by     and  2ˆ   

respectively.  Then the estimate of  *  can be obtained by replacing  1 2and   by their estimates and can 

be used in place of  * .  It may be noted that the exact distribution of the associated sum of squares due 

to treatments is difficult to find when  

2 2and    are replaced by  2 2ˆ ˆand   , respectively in * . Some approximate results are possible 

which we will present while  dealing with the balanced incomplete block design. An  increase in the 

precision using interblock analysis as compared to intrablock analysis is measured by 

 

 
1/variance of pooled  estimate

1.
1/variance of intrablock estimate

  

 

In the interblock analysis, the block effects are treated as a random variable which is appropriate if the 

blocks can be regarded as a random sample from a large population of blocks. The best estimate of the 

treatment effect from the intrablock analysis  is further improved by utilizing the information on block 

totals. Since the treatments in different blocks are not all the same, so the difference between block totals 

is expected to provide some information about the differences between the treatments. So the interblock 

estimates are obtained and pooled with intrablock estimates to obtain the combined estimate of   .  The 

procedure of obtaining the interblock estimates and then obtaining the pooled estimates is called the 

recovery of interblock information. 


