Chapter 5

Incomplete Block Designs

If the number of treatments to be compared is large, then we need a large number of blocks to
accommodate all the treatments. This requires more experimental material and so the cost of
experimentation becomes high which may be in terms of money, labour, time etc. The completely
randomized design and randomized block design may not be suitable in such situations because they will
require a large number of experimental units to accommodate all the treatments. In such cases, when the
sufficient number of homogeneous experimental units are not available to accommodate all the treatments
in a block, then incomplete block designs can be used. In incomplete block designs, each block receives
only some of the selected treatments and not all the treatments. Sometimes it is possible that the available
blocks can accommodate only a limited number of treatments due to several reasons. For example, the
goodness of a car is judged by different features like fuel efficiency, engine performance, body structure
etc. Each of this factor depends on many other factors, e.g., the engine consists of many parts and the
performance of every part combined together will result in the final performance of the engine. These
factors can be treated as treatment effects. If all these factors are to be compared, then we need a large
number of cars to design a complete experiment. This may be an expensive affair. The incomplete block
designs overcome such problems. It is possible to use much less number of cars with the set up of
incomplete block design and all the treatments need not be assigned to all the cars. Rather some
treatments will be implemented in some cars and remaining treatments in other cars. The efficiency of
such designs is, in general, not less than the efficiency of a complete block design. In another example,
consider a situation of destructive experiments, e.g., testing the life of television sets, LCD panels, etc. If
there are a large number of treatments to be compared, then we need a large number of television sets or
LCD panels. The incomplete block designs can use a lesser number of television sets or LCD panels to
conduct the test of the significance of treatment effects without losing, in general, the efficiency of the
design of the experiment. This also results in the reduction of experimental cost. Similarly, in any
experiment involving animals like as biological experiments, one would always like to sacrifice fewer
animals. Moreover, the government guidelines also restrict the experimenter to use a smaller number of
animals. In such cases, either the number of treatments to be compared can be reduced depending upon
the number of animals in each block or to reduce the block size. In such cases when the number of
treatments to be compared is larger than the number of animals in each block, then the block size is
reduced and the setup of incomplete block designs can be used. This will result in a lower cost of

experimentation. The incomplete block designs need less number of observations in a block than the
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observations in a complete block design to conduct the test of hypothesis without losing the efficiency of

the design of experiment, in general.

Complete and incomplete block designs:

The designs in which every block receives all the treatments are called the complete block designs.

The designs in which every block does not receive all the treatments but only some of the treatments are

called incomplete block design.

The block size is smaller than the total number of treatments to be compared in the incomplete block

designs.

There are three types of analysis in the incomplete block designs
e intrablock analysis,
e interblock analysis and

e recovery of interblock information.

Intrablock analysis:

In intrablock analysis, the treatment effects are estimated after eliminating the block effects and then the
analysis and the test of significance of treatment effects are conducted further. If the blocking factor is not
marked, then the intrablock analysis is sufficient enough to provide reliable, correct and valid statistical

inferences.

Interblock analysis:

There is a possibility that the blocking factor is important and the block totals may carry some important
information about the treatment effects. In such situations, one would like to utilize the information on
block effects (instead of removing it as in the intrablock analysis) in estimating the treatment effects to
conduct the analysis of design. This is achieved through the interblock analysis of an incomplete block

design by considering the block effects to be random.
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Recovery of interblock information:

When both the intrablock and the interblock analysis have been conducted, then two estimates of
treatment effects are available from each of the analysis. A natural question then arises -- Is it possible to
pool these two estimates together and obtain an improved estimator of the treatment effects to use it for
the construction of test statistic for testing of hypothesis? Since such an estimator comprises of more
information to estimate the treatment effects, so this is naturally expected to provide better statistical
inferences. This is achieved by combining the intrablock and interblock analysis together through the

recovery of interblock information.

Intrablock analysis of incomplete block design:
We start here with the usual approach involving the summations over different subscripts of y’s. Then
gradually, we will switch to a matrix-based approach so that the reader can compare both the approaches.

They can also learn the one-to-one relationships between the two approaches for better understanding.

Notations and normal equations:
Let
- Vtreatments have to be compared.
- b blocks are available.
- k,: Number of plots in i™ block (i = 1,2,...,b).

. . . - h =
- 1, :Number of plots receiving j*™ treatment (j = 1,2,...,V).

- n: Total number of plots.
nN=r+n+..+r =k +k, +..+k,.
- Each treatment may occur more than once in each block
or
may not occur at all.

- n;denotes the number of times the j™ treatment occurs in i block

For example, n; =1or 0 for all i, j means that no treatment occurs more than once in a block and

treatment may not occur in some blocks at all. Similarly, n; =1 means that j™ treatment occurs in i

block and n; =0 means that ji" treatment does not occurs in i" block.
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It may be noticed that
Znij =k i=1,.,b
j=1
dny=r j=1..,v
=22
i

Model:

Let y;,, denotes the response (yield) from the m'" replicate of j treatment in i block and
Yim =B +7;+ &, 1=12,..b, j=12,,v,m=12,.,n;

[Note: We are not considering here the general mean effect in this model for better understanding of the

issues in the estimation of parameters. Later, we will consider it in the analysis.]

Following notations are used in further description.

Block totals : B,,B,,...,B, where B => >y, .
jom

Treatment totals: V,V,,..,V, where V, =>"%"y.
Grand total : Y ="' >y,
i j m

Generally, a design is denoted by D(v,b,r,k,n) where v, b, r, k and n are the parameters of the design.

Example:

Let us consider an example to understand the meaning of these notations. Suppose there are 3 blocks

(Block 1, Block 2 and Block 3) and 5 treatments (z,, 7,, 7;, 7,, 75). So b =3 and Vv = 5. These

treatments are arranged in different plots in blocks as follows:

Block 1: 5 plots Plotl 7, | Plot2 7, | Plot3 7z, | Plot4 1, | Plot5 =z,

Block 2: 4 plots Plotl 7, | Plot2 7, | Plot3 7z, | Plot4 7,

Block 3: 2 plots Plot1 1z, | Plot2 7,
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Ki

Number of plots in Block 1: ki =5
Number of plots in Block 2: k2 = 3
Number of plots in Block 1: k3 =2

I?Iumber of times 7, appears in
- Block1=2
- Block2=0
- Block3=0.

Total number of times 7, appears in the entire designis i =2+0+0=2.

Number of times 7, appears in

- Block1=2
- Block2=1
- Block 3 =2.

Total number of times 7, appears in the entire designisr2=2+1+2=5.

Number of times 7, appears in

- Block1=1
- Block2=0
- Block 3=0.

Total number of times 7, appears in the entire designisr3=1+0+0=1.

Number of times 7, appears in

- Block1=0
- Block2=1
- Block 3=0.

Total number of times 7, appears in the entire designisra=0+1+0=1.

Number of times 7, appears in

- Block1=0
- Block2=2
- Block3=0.

Total number of times 7, appears in the entire designisrs=0+2+0=2.
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Nij

Total number of times 7, appears in Block 1: ni1 =2
Total number of times 7, appears in Block 1: ni2=2
Total number of times 7, appears in Block 1: ni3 =1
Total number of times 7, appears in Block 1: ni4 =0

Total number of times 7, appears in Block 1: nis =0

Total number of times 7, appears in Block 2: n21 =0
Total number of times 7, appears in Block 2: n22 =1
Total number of times 7, appears in Block 2: n23 =0
Total number of times z, appears in Block 2: n2s = 1

Total number of times 7, appears in Block 2: n2s =2

Total number of times 7, appears in Block 3: n31 =0

Total number of times 7, appears in Block 3: ns2 =2

Total number of times 7, appears in Block 3: n3z =0

Total number of times 7, appears in Block 3: n34 =0

Total number of times 7, appears in Block 3: n3s =0

Yijm

Yijm : response from the m™ replicate of j™ treatment in i® block, i = 1,2,3; j=1,2,3,4,5; m=1,2,..., Njj

Following are the notations for for Yijm different treatments in the blocks

Block 1: 7, yiur | 7, iz | 7, yior | 7, Y22 | 7, Y131
Block 2: 7, y2r | 7, y21 | 7 yasi | 7 Y252
Block 3: 7, ys1 | T, Y322
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Bi Vi

Bi= Viti+Yi2+VYi21+ Yiz+Yisi Vi= Yiuir+VYine
Bo = Y21+ Y241 + Y251 + Y252 Vo= Yo+ Y122+ Y221+ Y321 + Y322
B3 = yai+Ys V3= Vi3

Vi= Yo

Vs= Yyos1+Y252

Normal equations:

Minimizing S =ZZZ£§m with respect to B and z;, we obtain the least-squares estimators of the

i ] om

parameters as follows:

S= ZZZ(yijm -5 _Tj)2

i j m

S

p,

3ZZ(yijm_ﬂi -7;)=0

j m

or

B4 2.2 1-2.7,2,1=0 (1)
j om j m

or

B, =k +n, +n,0,+...+n,7, i=1..b

v v?

B, = Sk, +Z:z'jnij [b equations]
i

S _

or; -
:ZZ(yijm -p _Tj):()

or 3> Vim—2 B2 1-7,2. 2 1=0

V=2 A= 3 n; =0 )

or V=00 40,0 +..+0, [ +17;, J=12,..V

0

or V= Zﬂinij +r;7; [V equations]
I

Equations (1) and (2) constitute (b + V) equations.

Analysis of Variance | Chapter 5 | Incomplete Block Designs | Shalabh, IIT Kanpur



Note that
Zequation 1= Zequation (2)
i i

2.B=2V,
i i
Z(ZZ yijmj = Z(ZZ yijmj'
i j om j i m
Thus there are at most (b + v - 1) degrees of freedom for estimates. So the estimates of only (b + v - 1)

parameters can be obtained out of all (b + V) parameters.

[Note: We will see later that degrees of freedom may be less than or equal to (b + Vv - 1) in special cases.

Also, note that we have not assumed any side conditions like Zai =Zﬂj =0 as in the case of
i i

complete block designs.]

To obtain the estimates of the parameters, there are two options-

1. Using equation (1), eliminate /3, from equation (2) to estimate z; or

2. Using equation (2), eliminate 7; from equation (1) to estimate /.

We consider first the approach 1., i.e., using equation (1), eliminate £, from equation (2).

From equation (1),

i=1

Use it in (2) as follows.

Vj = nijﬂ1 +...+ nbjﬂb +1,7;

1
:nlj |:k_(B1 —nllTl —...—nlvl'lv :|
1

1
+N,; L(—(B2 N, 7, = — nzva)} +...

2

1
+n, L(—(Bb —Nyy 7y = =N, 7)) |+ 1T
b
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V _nljBl nszz anBb
j
kl k2 kb
_z_|: nllnlj n2]n2j nmnbj}
=7 | ——F-——=-
K, k, K,
n.n n, n,. n.n
pp |2V v by bj +rz., j=1,.,v
v k k 17
1 2 b
or
vV _inu BI _ _nllnlj nblnbj + o+ _nlvnlj nbvnb] +r
j K |k k| Tk K i
i=1 i 1 b 1 b
or
n,.n n..n n.n,. n.n .
Q —rl[— o) d b’}+ +z'v[— v d b’}+rjrj, j=1..v
kl kb kl kb
where
n B n.B .
Q =V —| L4+ + 2 j=1,2,..,v
J J k k
1 b

are called adjusted treatment totals.
n;B;
k.

b
[Note: Compared to the earlier case, the j" treatment total V ; 1s adjusted by a factor Z , that is why
i=1

it is called “adjusted”. The adjustment is being made for the block effects because they were eliminated to

estimate the treatment effects. ]

Note that

k. : Number of plots in i block.

% is called the average (response) yield per plot from i block.
n.B

i is considered as an average contribution to the j™ treatment total from the i block.

i
Q, is obtained by removing the sum of the average contributions of the b blocks from the j™ treatment

total V -
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K, K, K, K,
as
Qj =Cj12'l +Cj22'2 +...+ijrv
where
2 2 2
n> n? nz
—r 4 _2i_ _ b
CJJ _rj k k
1 2 b
n.n. n,.n,. n..N..
1j 1j' 2] 25" bj"'bj' . - - .
ij.:— - —— =1L 1=12,..,V.
kl k2 kb

The vxv matrix C=((C;)), j=12,..,v;j'=1,2,..,v with C; as diagonal elements and C;, as off-

diagonal elements is called the C-matrix of the incomplete block design.

C matrix is symmetric. Its row sum and column sum are zero. (proved later)

Rewrite

k

n, nlj nblnbj n1vn11 nbvnbj .
szr{— R +.47,| - — +rz;, J=12,..,V.

ki K, K,

1

as

Q=Cr.

This equation is called as reduced normal equations where Q'=(Q,,Q,,..,Q,), 7'=(7,,7,,...,7,)

Equations (1) and (2) are EQUIVALENT.

Alternative presentation in matrix notations:

Now let us try to represent and translate the same algebra in matrix notations.

Let

E,., : Mxn matrix whose all elements are unity.

N = (n;) is bxV matrix called as incidence matrix.

ki = Zvlnij

j

n=>.n

n= ZZnij
i

E,N=(,01,,...10,)=r1'

NE,, = (k,Kk,,....k;))"'=k.

=1
b
=1
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For illustration, we verify one of the relationships as follows.

E,=0LL...,1),,

N, NNy
N = ‘21 ‘22‘ .2v
Ny Ny oo Ny,
Ny NNy
n n ...n
21 2 v
EpN =Ly, .7
Mo My oo Ny bxv
b b b
=[ >N, D n,,.. 00N,
i=1 i=1 i=1
=(I,r,,...,T,
:r'

It is now clear that the treatment and blocks are not estimable as such as in the case of complete block

designs. Note that we have not made any assumption like Z a, = Z B; =0 also.
i i

Now we introduce the general mean effect (denoted by ) in the linear model and carry out further

analysis on the same lines as earlier.

Consider the model
Yim = 4+ B+ 7+ &, 1=1,2,..0; j=1,2,..,v;m=0,1,..,n;.

The normal equations are obtained by minimizing S=">"% & with respect to the parameters
o

u, B and 7; and solving them, we can obtain the least-squares estimators of the parameters.

Minimizing S =Zzzf;§m with respect to the parameters u, /5 and z;, the normal equations are

i jom

obtained as
N+ NS+ nt =G
i j
na+nB +y.né =B i=L..b
j

Ny A+ Ny 7, +Znijﬂi =V, j=L..v.
I
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Now we write these normal equations in matrix notations. Denote
B =Col(B,, By, )
7 =Col(z,7,,...,7,)
B =Col(B,,B,,...,B,) \
V =Col(V,,V,...,V,)
N =((n;)): incidence matrix of order bxv

where Col (.) denotes the column vector.
Let

K =diag(k,..,k,): bxb diagonal matrix
R =diag(r,,..,r,): vxVv diagonal matrix.
Then the (b + v +1) normal equations can be written as
G n E,K E,R

B|=|KE, K N
v) (RE, N' R

v1

*)

v ™

Since we are presently interested in the testing of hypothesis related to the treatment effects, so we

eliminate the block effects A to estimate the treatment effects. For doing so, multiply both sides on the
left of equation (*) by

1 0 0
0 1, ~NR™'
0 -NK |

where

R =diag lll , K™ =diag iii )
rl r2 I’-V I(l k2 kb

Solving it further, we get set of three equations as follows:
G=na+E,KB+ER?
B—NR'V =[K -NR'N]3
V-NK'B=[R-NK'N]J?

These are called as ‘reduced normal equations’ or ‘reduced intrablock equations’.

The same reduced intrablock equations can also be obtained as follows. Rewrite equation (*) as

G=ni+E,KpB+E,R? (i)
B=KE, i+KA+N7 (ii)
V =RE, i+N'f+R? (iii)
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Pre-multiply equation (ii) by N'K ™ as
N'’K™'B = NK'KE, 2+ NK'KS+NK'N?
and subtract it from equation (iii) as
V-NK'B=(RE,, ~NK'KE,)i+(N'- NK'K)B+(R-NK'N)?

or  V-NK'B=[R-NK'NJ.

Next, pre-multiply equation (ii) by NR ™' as
NR™V =NR'RE 2+ NR'N 'B+NR'R?
and subtract it from equation (ii) as
B-NR'V =(KE,, ~NR'RE,,) 2+ (K —NR™'N YB+(N-NR'R)?

or  B-NR'V=[K-NR'N]3

The reduced normal equation in the treatment effects can be written as

Q=Cr

where
Q=V-NK'B
C=R-NK™N.

The vector Q is called as the vector of adjusted treatment totals since it contains the treatment totals

adjusted for the block effects, the matrix C is called as C-matrix.
The C matrix is symmetric and its row sums and columns sums are zero.

To show that row sum is zero in C matrix, we proceed as follows:
Row sum:
CE, =RE,, —~N'K'NE,,

=(r,n,..r)'=N'K'k" =(r,r,,....1,)' =N "'E,,

=r-r=0

Similarly, the column sum can also be shown to be zero.

In order to obtain the reduced normal equation for treatment effects, we first estimated the block effects
from one of the normal equation and substituted it into another normal equation related to the treatment

effects. This way the adjusted treatment total vector Q (which is adjusted for block effects) is obtained.
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Similarly, the reduced normal equations for the block effects can be found as follows. First, estimate the
treatment effects from one of the normal equations and substitute it into another normal equation related

to the block effects. Then we get the adjusted block totals (adjusted for treatment totals).

So, similar to Q =C7, we can obtain another equation which can be represented as
DA=P
where

D:diag(kl,kz,..,kb)—Ndiag(l,i,...,lJN’:K—NR“N’
o

\

P =B - Ndiag (l,i,...,ljv =B-NR™V
hn

\

ﬁ:(&’ﬁ2"'7ﬁb)'

and P is the adjusted block totals which are obtained after removing the treatment effects

Analysis of variance table:

Under the null hypothesis H, : 7 =0, the design is one-way analysis of variance set up with blocks as

classifications. In this set up, we have the following:

b 2 2
sum of squares due to blocks = Zk—'——
i=l1 i n
Bl
. 1 1 1)B,| G?
=(B,B,,...,B,)'diag| —,—,...,— || .. |-—
(B,,B, o) g(kl K kb] : .
Bb
2
=B'K’IB—G—
n

If yis the vector of all the observations, then

Error sum of squares(S,) = Zzz(yijm — - f3 —7; )’
i j m
= Z Z Z Yijm (yijm —a- ,3, -7 j) [Using normal equations, other terms will be zero]
i j m
= ZZZ yi?m _/A‘G _ijvj _ZIE’iBi
i jom j i

=y'y-AG-V'F-B'S.
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Using original normal equations given by

B=KE, i+Kfg+N7,

we have

B =K 'B-E,i-K'N7.

Since G=V'E, =B'E,,, substituting 4 in S, gives

S.,=y'y-Gi-B[K'B-E, a-K'N7]-V'7?

=y'y-Ga-B'[K'B-E, a—-K'Nz7]-V'?
=y'y-GAa-B'K'B+Ga+B'K'N7-V'?
=y'y-B'K'B+(B'K'N-V"7

2 2
=(y'y—G—]—(B'KIB—G—J—(\/ ~N'K'B)'¢
n n

2 2
S, :(y'y—G—j—(B'KIB—G—J - Q'7
n n

\A 2 \2 \2
Error SS = TotalSS Block SS Adjusted treatment SS
(unadjusted) (adjusted for blocks)

The degrees of freedom associated with the different sum of squares are as follows:

Block SS (unadjusted) :b-1
Treatment SS (adjusted) : v —1
Error SS:n—-b-v+1

Total SS:n-1

The adjusted treatment sum of squares and the sum of squares due to error are independently distributed

and follow a Chi-square distribution with (v—1) and (n—b—v+1) degrees of freedom, respectively.
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The analysis of variance table for H,:7 =0 is as follows:

Source of  Degrees of Sum of Mean sum F
variation freedom squares of squares
Treat v—1 QT Q7 F— Q'z/(v-1)
(Adjusted) v—1 S./(n—-b-v+1)
2
'WW-lp_ 2
Blocks b-1 B'K™B n
(Unadjusted)
Error n-b-v+1 S, S
n-b-v+1
2
Total n-1 y'y— &
n

Under H, —270V=D  py in_b-v+i).
S./(n-b-v+1)

Thus in an incomplete block design, it matters whether we are estimating the block effects first and then

the treatment effects are estimated
or

first estimate the treatment effects and then the block effects are estimated.

In complete block designs, it doesn’t matter at all. So the testing of hypothesis related to the block and

treatment effects can be done from the same estimates.

A reason for this is as follows: In an incomplete block design, either the
e Adjusted sum of squares due to treatments, the unadjusted sum of squares due to blocks and the
corresponding sum of squares due to errors are orthogonal

or

e Adjusted sum of squares due to blocks, the unadjusted sum of squares due to treatments and the

corresponding sum of squares due to errors are orthogonal.
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Note that the adjusted sum of squares due to treatment and the adjusted sum of squares due to blocks are
not orthogonal. So
either
Error S.S =Total SS— SS block (Unadjusted) — SS treat (Adjusted)
holds true
or
Error S.S = Total SS — SS block (Adjusted) — SS treat (Unadjusted)
holds true due to Fisher Cochran theorem.
Since CE,, =0, so C is a rank deficient matrix. Also, since
Q'E,=V'E,—(N'K'B)E,

=V,,....,V,)E,, —B'K"'NE,,

=QV,)-B'K k'
K,
(11 K,
=>»V.—(B,...,B,)diag| —,—,...,— || .
iz i ( 1 b) g[kl k2 ka :
kb
:ZV‘_(BI ..... B,)E,,
:Zvi—ZBJ
[ J
=G-G

so the intrablock equations are consistent.

We will confine our attention to those designs for which rank(C) = v - 1. These are called connected

designs and for which all contrasts in the treatments, i.e., all linear combinations ¢'z where |'E, =0

have unique least-squares solutions. This we prove now as follows.

Let G* and H* be any two generalized inverses of C by which we mean that they are the square matrix
of order v such that G*Q and H*Q are both the solution vectors to the intrablock equation, i.e.,

7=G*Q and 7=H *Q, respectively.
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Then

Q=Cr

=Q=CG*Q

and Q=CH *Q for all Q
so that C(G*-H*)Q = 0.

It follows that (G* - H*)Q can be written as a* E,, where a is any scalar which may be zero.

Let ¢ beavectorsuchthat ('E, =0. The two estimates of /'zr are I'G*Q and |'H *Q but
f'G*Q—f'H *ngv(G*_H*)Q

=/'a*E,

=a*(l'E,

=0

= |'r is unique.

Theorem: The adjusted treatment totals are orthogonal to the block totals.
Proof: It is enough to prove that

Cov(B;,Q;)=0 foralli,]j.

Now

Cov(B,,Q)) :Cov{Bi V, —Z(%J Bi

n.
=Cov(B, V)~ - Var(B,)

because the block totals are mutually orthogonal, see how:
Fory,,,¥,,,---» ¥,,» the block total B, = Z Yij-
j=1

Fory,,,¥,,..., Y, the block total B, = Z Y-
j=1

Var(B,) =Y Var(y,;)=vo’ as Cov(y,;,Y,) =0 forj=k

j=1

Var(B,) =Y Var(y,;)=Vo’ as Cov(y,;,¥,) =0 forj=k
j=l1

Var(B,)+Var(B,)=2vo® as Cov(y,;,Y,) =0 forj=k

= B, and B, are mutually orthogonal as all y;'s are independent.
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As B, andV; have n; observations in common and the observations are mutually independent, so
2
Cov(B,V,)=n;o
Var(B,)) =k’

n.
Thus Cov(B;,Q;) =n,c” —k—”ki02 =0

Hence proved.

Theorem:

E(QQ)=Cr
Var(Q)=c°C

Proof:

E@Q;)=EV))- Zb‘,JE(Bi)

E(V)) = ZZE(Y.,m
=ZZE(y+ﬁi+rj+gijm)
—ﬂZnu Y2 AN AT 2,
= uf, +Z,Binij +T,,

E(B) =D E(¥in)
:izm:E(ﬂ+ﬂi+rj+gijm)
=Z_J:Z(ﬂ+ﬂi +7;)
=ylj<i:ﬂiki+21jnij

i%E(B.) iﬂukﬁﬂiki@qnu}

i=1 i=1

= uf, +Zﬂinij +Z%(ernij).
i i Ko
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Thus substituting these expressions in E(Q;), we have
nij
EQ)=r7, -2 ()
I i J
n

=(ri _Zn_g}j =D DT, =T D Gy,
K ~ ki@ 0

Further, substituting E(Q;) in E(Q)=(E(Q,),E(Q,),...E(Q,))", we get

E(Q)=Cr

Next

Var(Q) Cov(Q,,Q,) ... Cov(Q,;,Q,)
var(Q) = Covaz,Ql) Var(.Qz) Cov(:Qz,QV)

Cov(Q,.Q) Cov(Q,.Q,) .. Var(Q)
Var(Q,) =VarV, —Z% B]

ZVar(vj)+Z£%j Var(Bi)—ZZ%COV(\/PBi),

Note that
Var(V,) :Var(zz Yim) = 1;0°

Var(B)) :Var(zz Yim) = kio®

Cov(V,,B,) = COVEZZ Vims 22 2. yijmJ: n,o”

Var(Q) = rja2 +Z(%J ko’ _22(%] nijaz
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COV(Qj,Q//):Cov{Vj —Z%Bi,\/y _Z%Bi}

nunw
e Cov(B;,B))

_ Cov(Vj,V[)—Z%COV(Vj,Bi)—zk—”Cov(Bi N+

~0-L-Couv,.B) - Cou(B.V,)+ Y

nij ni(
% Var(B,)

. 2
=C,,0

Substituting the terms of Var(Q;)=c;0” and Cov(Q;,Q,) =c;o’ in Var(Q), we get Var(Q) =Co”.

Hence proved.

[Note: We will prove this result using the matrix approach later].

Covariance matrix of adjusted treatment totals:

V
Consider Z = [Bj with b + v variables.

We can express

Q=V-N'K'B
=[I N'K™ v
=[l - ] B
=[I ~N'K™"]Z.
So
—1 IV
Cov(Q) =11 -N'K ]COV(Z)L—N'K"')}

Now we find that

Cov(z) = (Var(\/) Cov(V, B)j

Cov(B,V) Var(B)

Since B, and V; have n; observations in common and the observations are mutually independent, so

Cov(B,V,)=n;o’
Var(B) =k’
Var(V,)=r,c”.
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Thus

R N,
Cov(Z):[N K ]0'
. [R N*W } ,
Cov(Q)=[I —-N'K™] o

N K ||-K'N
|
=[R-N'K'N  N'-N" o’
-K'N
=(R-N'K™'N)o”
=Co”.

Next, we show that Cov(B,Q)=0
Cov(B,Q) =Cov(B,V)-Cov(B,V —N'K'B)
=Cov(B,V)-Var(B)K™'N
=No’ -KK'Ng?
=0.

An alternative approach to find/ prove E(Q)=Cr, D(Q)=Co”

Now we illustrate another approach to find the expectations etc in the set up of an incomplete block
design. We have now learnt three approaches- the classical approach based on summations, the approach
based on matrix theory and this new approach which is also based on the matrix theory. We can choose

any of the approaches. The objective here is to let the reader know these different approaches.

Rewrite the linear model
Vim =M+ B +7;+ &5, 1=12,..b; j=12,.,v;m=0,L..n;.
as

y=uE, +Dr+D,B+¢

where

T=(7,T5,...,7,)'

ﬁ:(ﬁl9ﬁ2”"9ﬁb)'.
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Since Bi and Vj have nij observations in common and the observations are mutually independent, so

denote

D, :Vxn matrix of treatment effect versus N, i.e., (i, j)™ element of this matrix is given by

B {1 if j" observation comes from i" treatment
=

0 otherwise

D, :bxn matrix of block effects versus N, i.e., (i, j) element of this matrix is given by

2

D _ ! if j™ observation comes from i" block
0 otherwise.

Following results can be verified:
D,D, =R =diag(r,,r,,...,T,),
D,D, =K =diag(k,,k,,...,k, ),
D,D,=N or DD,=N"
DE, =(.,1,,...1)"
D,E,, =(Kk,K,,....k;,)'
DE

1=v1

= En1 = Dz Ebl'
In earlier notations,

V=(V.V,,..V,)' =Dy
B=(B,B,,...B,)'=D,y

Express Q in terms of D, and D, as
Q=V-N'K'B
=[D,-D,D,(D,D;) "D, |y.
Then
E(Q) =[D,-DD;(D,D;) "D, |E(y)
D, - D,D,(D,D,)' D, |(E,, + Dz + D, /)
DE,, - D,D;(D,D;) ' D,E,, |4+ | D,D; -~ D,Dy(D,D;) "' D,D; |
+| b,D, - D,D,(D,D;) ' D,D, | 8
=[(0 et = N'K (K ky) e+ R=NTKTIN ]2+ N'=N'K 'K ] 8.

|
|
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Thus
N'=N'K'K=(5,n,.r)=N'K'(K,...k) =0
and so
EQ=[R-N'K'N]z
=Cr.
Next

Var(Q) =D,[1-D,(D,D,)"'D, |Var(y)[ I -D,(D,D))"'D, | D,
=0’D,[1-D,(D,D,)"'D, | D,
= ¢’ D,D, - D,D,(D,D;) " D,D, |
=0’[R-N'K'N ]|
=o°C.
Note that [I -D,(D,D,)™ D2] is an idempotent matrix.
Similarly, we can also express
P=B-NRV
=[D,-D,D,R™'D,1y.

Theorem: E(P)=Dg, Var(P)=c’D
Proof:
D=K-NR'N'
P=B-NRV
=D,[1-DR'D,ly
=D,[I -D,(D,D)'D,ly
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E(P)=D,[l,-D,(D,D))"'D,l(4E, + D;z +D,f)
=[D,E,, —D,D,R'D,E,, Ju+[D,D, - D,D,R'D,D, ]z
+[D2D1'_D2D1'R71D1D£]ﬂ
=[(k;,Ky,.... k. )'=NR7'(r,,1,,....,1,) Nt +[N =NR'R]z +[K = NR'N "8
=[(k,k,,....k,)'=NE, Ju+0+Dp
=[(k;, Ky, k) = (ks Ky k) N+ DB
= Dﬂ
Next
Var(P)=0c’D,[I -D,(D,D,) ' D,1D,
=0’[D,D,-D,D,(D,D)"DD,]
=0’[K-NR'N"T=0c°D

Note that [| — D,(D,D,)"'D,] is an idempotent matrix.

Alternatively, we can also find Var(P) as follows:

P=( —NR-‘)(\E;j:(l ~NR™")Z where Z=(B, V)'

Var(P)=(1 - NR‘l)Cov(Z)(I . J

= NR™' KN g
= -NRD| e

|
=(K-NR'N' N-NR'R) o lo?
“R'N"
=(K—NR4N)02
=Do?

Now we consider some properties of incomplete block designs.
Lemma: b + rank(C) = v + rank(D)

Proof: Consider (b+ Vv)x(b + V) matrix

K N
A=

Note that A is a submatrix of C.

Using the result that the rank of a matrix does not change by the pre-multiplication of the nonsingular

matrix, consider the following matrices:
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and

| 0
S=|" .
“R'N' 1,

M and S are nonsingular, so we have

rank(A) = rank(MA) = rank(AS).

Now

or

rank(K) + rank(C) = rank(D) + rank(R)
or

b-+rank(C)=v+rank(D)

Remark:
C:vxvand D:bxb are symmetric matrices.

One can verify that
CE, =0

and DE,, =0

Thus rank(C)<v-1

and rank(D) <b-1.

Lemma:
If rank(C) = v - 1, then all blocks and treatment contrasts are estimable.
Proof:

If rank(C) =v — 1, it is obvious that all the treatment contrasts are estimable.
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Using the result from the lemma b + rank(C) = v + rank(D), we have
rank(D) + v =rank(C) + b
=v-1+D
Thus
rank(D)=b - 1.

Thus all the block contrasts are also estimable.

Orthogonality of Q and P:

Now we explore the conditions under which Q and P can be orthogonal.
Q=V-N'K'B
=(D,-D,D,K'D,)y
P=B-NR'V
=(D,-D,D,R'D,)y
Cov(Q,P)=(D,-D,D,K'D,)D,-D,D,R"'D,)'c”
=(D,b,-D,D,R"'D,D, - D,D,K'D,D, + D,D,K'D,D,R'D,D,)c?
=(N'-RR'N'-N'K"'K+N'K'NR'N "o’
=(N'K'NR™'N'=N"o*

Q and P (or equivalently Q; and P;) are orthogonal when

Cov(Q,P)=0
or N'K'N R'N'-N"=0 (i)
—=(R-C)R'N'-=N'=0 (UsingC=R-N'K"'N)
—CR'N'=0 (i)

or equivalently

N'K'NR'N'-N"'=0
= N'K'(K-D)-N'=0 (UsingD=K-NR'N")
= N'K'D=0 (iii)

Thus Q; and P, are orthogonal if

NR'N'K'N =N
orequivalently
NR'C =0
orequivalently
DK™'N =0.
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Orthogonal block design:

A block design is said to be orthogonal if Q,'s and P;'s are orthogonal for all i and j. Thus the

condition for the orthogonality of design is NR'N'K™'N =N, NR"'C =0 or DK'N =0.

Lemma: If —L is constant for all J, then k—” is constant for all i and vice versa. In this case, we have

j i

) n.
Proof. If — is constant for all j then —-= a,, say.
I r

i i
=n; =ar,
or Znij :Zairj :ainj =an
i i i
ork, =an
org =—
n
Thus

n. .
So — =-L: independent of i.
Hence proved. J

Contrast:

\ \
A linear function ZC ;7;=C't where ¢,,C,,...,C, are given number such that ZC ; =0 is called a
i=l j=1

contrast of 7; 's.

Elementary contrast:

\
A contrast z ¢,z; =C't with C =(c,,C,,...,¢,)" in treatment effects 7=(z,,7,,..,7,)" is called an
j=1

elementary contrast if C has only two non-zero components 1 and -1.

Elementary contrasts in the treatment effects involve all the differences in the form 7, —z;, i# j.

It is desirable to design experiments where all the elementary contrasts are estimable.
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Connected Design:

A design where all the elementary contrasts are estimable is called a connected design otherwise it is

called a disconnected design.
The physical meaning of connectedness of a design is as follows:

Given any two treatment effects 7 and 7,,, it is possible to have a chain of treatment effects like

Tiys Ty > Tajsemes Tos Tip» SUCh that two adjoining treatments in this chain occur in the same block.

2 ¥njo iz

Example of connected design:

In a connected design, within every block, all the treatment contrasts are estimable and pair-wise

comparison of estimators have similar variances.

Consider a disconnected incomplete block design as follows:

b =8 (Block numbers: I, I1,...,VIII), k = 3, v = 8 (treatment numbers: 1,2,...,8), r =3

Blocks Treatments
I 135
II 246
I 357
v 468
\Y% 571
VII 682
VII 713
VIII 824
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The blocks of this design can be represented graphically as follows:

Note that it is not possible to reach the treatment, e.g., 7 from 2, 3 from 4 etc. So the design is not
connected.

Moreover, if the blocks of the design are given like in the following figure, then any treatment can be
reached from any treatment. So the design, in this case, is connected. For example, treatment 2 can be
reached from treatment 6 through different routes like

6>5545352,6>352,6>7>8>1>2,6>7—>2 etc.

2 3

7 6
A design is connected if every treatment can be reached from every treatment via lines in the connectivity

graph.
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Theorem: An incomplete block design with Vv treatments is connected if and only if rank(C)=v - 1.

Proof: Let the design be connected. Consider a set of (v - 1) linearly independent contrasts 7, -z, (j = 2,
3,...,¥). Let these contrasts be C,7,C,z,..,.C.z where 7=(7,,7,,....7,)". Obviously, vectors
C,.C,,...,C, form the basis of vector space of dimension (v - 1). Thus any contrast p'r is

expressible as a linear combination of the contrasts C.z(i =2,3,...,v). Also p'r is estimable if and only

if p belongs to the column space of C-matrix of the design.

Therefore, the dimension of column space of C must be the same as that of the vector space spanned by
the vectors C,(i=2,3,...,v), i.e., equal to (v - 1).

Thus rank(C) =v - 1.

Conversely, let rank(C) =v — 1 and let &,¢&,,...,&, , be a set of orthonormal eigenvectors corresponding

to the (not necessarily distinct) non-zero eigenvalues 6,,6,,...,6, , of C .

Then
E(5Q)=&Cr
=04
Thus an unbiased estimator of &7 is %
Also, since each & is orthogonalto E,, and &5 are mutually orthogonal, so any contrast p'r

belongs to the vector space spanned by {&,i=1..v}, ie, p= Z ac, .

So E{iai iTQ}: p'r.

Thus p'z is estimable and this completes the proof.
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1

Lemma: For a connected block design Cov(Q,P) =0 ifand onlyif N'= K
n

Proof: “if” part

1

When N '=K, we have
n

1 1 - - 1 '
—Cov(Q,P)=N'K 'NR'N'=N

_rk'K“kr'R‘lN'_

n’ N'

. 1 1 1)K
Since k'K 'k = (k,, k. ...,k )diag| —,—,...,— || .°
mece (k;,k, b) g£k1 k2 kb} :
kb
k, .
=(L...)| i [=D) k=n
kb i=1
and
r'rR"=(r,r,...,r,)diag (l,i,...,iJ =E,,.
nn I,
Then
1 re, N' .
—Cov(Q.P)= #— N
CIEN K
n n
=N'-N"'=0.

“Only if part”

Let Cov(Q,P)=0

= N'K'NR'N'-N'=0 (Since C=R—-N'K™'N)
or (R-C)R'N'-N'=0

or CR'N'=0.

Let

RIN'=A=(a,8,,...a)
where a,,4,,...,a, are the columns of A.
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Since the design is connected, so the columns of A are proportional to E,,. Also, all row/column sums of

C are zero.

So (CE,,,CE,,,...,CE,)=0
and
CA=0

orC(a,a,,...,8,)=0
:>aiOCEv1
ora =aE,;i=12,..,b

i—vl»

where ¢, are some scalars.

This gives
A=R'N'=E,a"' where a =(a,...a;))".
So we have

N'=RE, a=(r,r,,...1,)'a'
zra' WheI'e r=(r1;r29-'5rv)"

Pre-multiply by E,, gives

E N"=(Kk.k,,...k ) =E, ra'=na'

ork =ng'
'

N av:‘% where k = (k ,k,,...k,)"

Thus

N':roc'zK
n

Hence proved.

Definition: A connected block design is said to be orthogonal if and only if the incidence matrix of the

'

design satisfies the condition N '= —.
n

Designs which do not satisfy this condition are called non-orthogonal. It is clear from this result that if

at least one entry of N is zero, the design cannot be orthogonal.

A block design with at least one zero-entry in its incidence matrix is called an incomplete block design.
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n.
Theorem: A sufficient condition for the orthogonality of design is that — is constant for all j.
r.

J

Conclusion: It is obvious from the condition of orthogonality of a design that a design which is not
connected and an incomplete design even though it may be connected cannot have an orthogonal

structure.

Now we illustrate the general nature of the incomplete block design. We try to obtain the results for a

randomized block design through the results of an incomplete block design.

Randomized block design:

The randomized block design is an arrangement of v treatment in b blocks of v plots each, such that
every treatment occurs in every block, one treatment in each plot.

The arrangement of treatment within a block is random and in terms of incidence matrix,

n.=1 forall i=1,2,...b; j=12,...,V.

ij
Thus we have

ki :Znij =v forall i
]

r,=>.n;=b forall j.

n
We have — =% constant for all j.

T
b
Cj= Y
b
Cw:_;
G
Q=V;-—.
v

Normal equations for 7's are

b b G .

T, +7,..+7,=0.
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Thus

b G
b2y
.1 G) - _
or 7; ZB(V,-—VJZVOJ-_VOO-

The sum of squares due to treatments adjusted for blocks is

b bv
which is also the sum of squares due to treatments which are unadjusted for blocks because the design is

orthogonal.

SE

Sum of squares due to blocks =

v by
V ’
Sum of squares due to error = ZZ(VH BLY +Ej .
s v b by

These expressions are the same as obtained under the analysis of variance in the set up of a randomized

block design.

Interblock analysis of incomplete block design

The purpose of block designs is to reduce the variability of response by removing the part of the
variability as block numbers. If in fact, this removal is illusory, the block effects being all equal, then the
estimates are less accurate than those obtained by ignoring the block effects and using the estimates of
treatment effects. On the other hand, if the block effect is very marked, the reduction in the basic

variability may be sufficient to ensure a reduction of the actual variances for the block analysis.

In the intrablock analysis related to treatments, the treatment effects are estimated after eliminating the
block effects. If the block effects are marked, then the block comparisons may also provide information
about the treatment comparison. So a question arises how to utilize the block information additionally to

develop an analysis of variance to test the hypothesis about the significance of treatment effects.
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Such an analysis can be derived regarding the block effects as random variables. This assumption
involves the random allocation of different blocks of the design to be the blocks of the material selected
(at random from the population of possible blocks) in addition to the random allocation of treatments
occurring in a block to the units of the block selected to contain them. Now the two responses from the
same block are correlated because the error associated with each contains the block number in common.

Such an analysis of incomplete block design is termed as interblock analysis.

To illustrate the idea behind the interblock analysis and how the block comparisons also contain
information about the treatment comparisons, consider an allocation of four selected treatments in two

blocks each. The outputs (y;) are recorded as follows:

Block 1: Y., Vie Yir Yo
Block 2: Y, Vo5 Yas Yar,

The block totals are

Bl =Yt YietYir t Yoo
Bz =Yt Yos + Yos T Yos-

Following the model y, = u+ g +7,+¢;,i=1,2,j=1,2,..,9, we have

ij 2
Yig =+ P +7,+ 86,
Yie = H+ B +75+ &4,
Yy =1+ +7,+ 86,
Yio =M+ B +7y+ &y,
Yos = 1+ Py + T3+ 6y,
Yos = U+ B, + 75 + &5,
Yoo = H+ o + T + &y,
Yoy =M+ T+ 6y,
and thus
B -B,=4(8-B)+(z,+14+7,+7)—(r;+ 75+ 7, +7,)

(6, T8 TE, HEG) = (6 +E5 +Ex5 +Ey7).
If we assume additionally that the block effects S, and f, are random with mean zero, then
E(B,-B,)=(r,+7,)— (7, +7,)

which reflects that the block comparisons can also provide information about the treatment comparisons.
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The intrablock analysis of an incomplete block design is based on estimating the treatment effects (or
their contrasts) by eliminating the block effects. Since different treatments occur in different blocks, so
one may expect that the block totals may also provide some information on the treatments. The interblock
analysis utilizes the information on block totals to estimate the treatment differences. The block effects
are assumed to be random and so we consider the set up of mixed effect model in which the treatment
effects are fixed but the block effects are random. This approach is applicable only when the number of
blocks is more than the number of treatments. We consider here the interblock analysis of binary proper

designs for which n; =0 or 1 and k =k, =...=k, =k in connection with the intrablock analysis.

Model and Normal Equations

Let y, denotes the response from the j™ treatment in i block from the model

Yy =M T e, i=12,00 =12,V
where

u* 1is the general mean effect;
B’ is the random additive i block effect;

7; s the fixed additive j™ treatment effect; and

g; 1sthe i.i.d. random error with &; ~ N 0,0%).

Since the block effect is now considered to be random, so we additionally assume that ,Bi*(i =1,2,..,b)
are independently distributed following N (0,0'2) and are uncorrelated with ¢;. One may note that we

can not assume here Z B =0 as in other cases of fixed-effect models. In place of this, we take
i

E(8)=0. Also, y; 's are no longer independently distributed but

Var(y;) = cr; +07,
2

loj if i=ij=]j'
Cov(yy, Yij) Z{Oﬂ

otherwise.
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In the case of interblock analysis, we work with the block totals B; in place of 'y, where

B, = Znij Yii
il
= Znij(,u*+ﬁi* +7;+&;)
=

=kp*+y o+ f,
i

i» (i=1,2,...,b) are independent and normally distributed with mean 0 and

where f, = gk +Z N
i
Var(f,)= kzo'lz, +ko’ =07 .
Thus
E(B)=ku*+Y n,,
i

Var(B,) = 0'?; i=12,..b,
Cov(B,,B,)=0; i=i%i,i'=1,2,...,b.

In matrix notations, the model under consideration can be written as

B=ku*E, +Nz+f

where f =(f,f,,....f)"

Estimates of x*and ¢ in interblock analysis:
In order to obtain the estimates of #* and 7 , we minimise the sum of squares due to error
f=(f,f,.,f),,1e, mnimize (B-ku*E,, —N7)'(B-ku*E,, — N7)with respect to #* and 7 .

The estimates of u* and 7 are the solutions of following normal equations:

KE, 7 KE,
bl (kEm N) H | Ko B

N' T N'
(KEE KENYE) (kG
KN'E, N'NJ\#) (N'B

k’b kE,,R\( 4 kG _
or = (using N'E,, =r=RE))
kRE,, N'N 7 N'B
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Premultiplying both sides of the equation by

1 0
_RE, | |
b Vv
we get
bk E, i G
' = RE, G
0 N'N——REV‘bEVIR )| NB-=E

Using the side condition E,,Rz=0 and assuming N'N to be nonsingular, we get the estimates of
p#*and 7 as j1 and 7 given by

.G
ﬂ:_

bk’
f=(N'N)‘(N'B——REt:‘G)
KGN 'E,,

=(N'N)" (N'B— v

j (using RE,, =r =N'E,,)

:(N'N)l[N'B—EN'NEvlj
bk

~(N'N)'N'B-SEu
bk

The normal equations can also be solved in an alternative way also as follows.

) kb  KE,R\( & kG ,
The normal equations _ = can be written as
kRE, N'N 7 N'p

kbji+KE, R7 =KG
KRE, ii+N'N7=N'B.

Using the side condition E, R7 =0 (or equivalently z r,7; =0) and assuming N'N to be nonsingular,
i

. . . G o .. . : -
the first equation gives i = K Substituting £ in the second equation gives 7.

f:(N'N)I(N'B—%j
=(N'N)" N'B-CSEu
bk
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Generally, we are not interested merely in the interblock analysis of variance but we want to utilize the
information from interblock analysis along with the intrablock information to improve upon the statistical

inferences.

After obtaining the interblock estimate of treatment effects, the next question that arises is how to use this
information for improved estimation of treatment effects and use it further for the testing of significance
of treatment effects. Such an estimate will be based on the use of more information, so it is expected to

provide better statistical inferences.

We now have two different estimates of the treatment effect as
- based on intrablock analysis 7=C Q and

GE,,
bk

Let us consider the estimation of linear contrast of treatment effects L =1'z. Since the intrablock and

- based on interblock analysis 7=(N'N)"'N'B-

interblock estimates of 7 are based on Gauss-Markov model and least-squares principle, so the best

estimate of L based on intrablock estimation is

L=I'r
=1'CQ
and the best estimate of L based on interblock estimation is
L =I't
=I'[(N '"N)'N 'B—%}
bk

=I'(N'N)"'N'B (since I'E, =0 being contrast.)
The variances of L, and L, are
Var(L)=o’1'C’l
and
Var(L,)=o71'(N'N)'I,
respectively. The covariance between Q (from intrablock) and B (from interblock) is
Cov(Q,B)=Cov(V —N'K'B*,B)
=Cov(V,B)-Cov(N'K™'B* B)
=N'c; —-N'K'Ko;
= 0.
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Note that B* denotes the block total based on intrablock analysis and B denotes the block totals based
on interblock analysis. We are using two notations B and B* just to indicate that the two block totals are

different. The reader should not misunderstand that it follows from the result Cov(Q,B) =0 in case of

intrablock analysis.

Thus
Cov(L,,L,) =0

irrespective of the values of 1.

The question now arises that given the two estimators 7 and 7 of 7, how to combine them and obtain a

minimum variance unbiased estimator of 7 . It is illustrated with the following example:

Example:
Let ¢, and @, be any two unbiased estimators of a parameter ¢ with Var(¢,)=o; and Var(g,) =o;.
Consider a linear combination ¢ = 6,¢, + 0,¢, with weights 6, and 6,. In order that ¢ is an unbiased

estimator of 6, we need

E(@=¢
or OE(@)+0,E(@)=0¢
or Gop+0p=¢
or 6 +6,=1.

01@1 + 02(2)2

1+2

So modify @ as which is the weighted mean of ¢, and ¢,.

Further, if ¢, and ¢, are independent, then
Var(p) = 6’} +0;0;.

Now we find 6, and 6, such that Var(¢) is minimum such that 6, +6, =1.

M:O:>291012_2(1_91)0-22 =0
06,
or oy ~6,0,=0
or ﬁ=a—€
0, o

or weight o . .
variance
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Alternatively, the Lagrangian function approach can be used to obtain such a result as follows. The
Lagrangian function with A* as Lagrangian multiplier is given by

¢=Var(p)-1*(6,+6,-1)

and solving 9 =0 ,%and

op _ 6 _o,
00, 00,  oA*

0 also gives the same result that —=—-.
0, o

We note that a pooled estimator of 7 in the form of weighted arithmetic mean of uncorrelated

L, and L, is the minimum variance unbiased estimator of 7z when the weights 6, and 6, of L, and L,,

respectively are chosen such that

6 _Var(l,)
0, Var(L)’

1.e., the chosen weights are reciprocal to the variance of respective estimators, irrespective of the values of

|. So consider the weighted average of L, and L, with weights 6, and 6, , respectively as

6+ 6,
_1'Gr+6,7)
6+ 0,
with
6?1’1 =1'C'lo?

-1 _ ] -1 2
6, =I'(N'N) lo;.
The linear contrast of z* is
L*=]'z*
and its variance is

6 Var(L,) + GVar(L,)

Var(L*) = @16,

I'l (since Cov(L,,L,)=0)

'l
(6 +0,)

because the weights of estimators are chosen to be inversely proportional to the variance of the respective

estimators. We note that 7* can be obtained provided 6, and 6, are known. But 6, and 6, are known
only if o* and oj are known. So 7* can be obtained when o* and o, are known. In case, if

o’ and 02 are unknown, then their estimates can be used. A question arises how to obtain such
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estimators? One such approach to obtain the estimates of o and a; is based on utilizing the results from

intrablock and interblock analysis both and is as follows.

From intrablock analysis

E(SSError(t)) =(n- b-v+ 1)0'2,

so an unbiased estimator of o is

6_2: SSError(t) )
n—b-v+1

2

An unbiased estimator of o 5

_ J
SSTreat(unadj) - Z T T

j=1 T n
b B»Z G2
_ i
SSBlock(unadj) - z_ - >

SS

Treat(adj) — QjTj’

b v G2
SSTotal ZZ % yj T

where

SSTotal = SSTreat(adj) + SSBlock(unadj) + SSError(t)
SS + SS

= Treat(unadj) Block (adj) + SSError(t) .

Hence

SSBlock(aldj) = SSTr(-:*at(adj) + SSBlock(unadj) - SSTrea\t(unadj)'

Under the interblock analysis model

E[SSeioccaci) ] = E[SStreatcadiy ] + E[SSbiock (unaci) 1 = E[SSrreat(unac) ]
which is obtained as follows:

E[SSgioeaq) 1= (0~ Do” +(n —V)aj

or

E {ssmock(adj) __ bl

vy e | =00}

Thus an unbiased estimator of a; is

b-1

ngj;:?ssamni'

1

~2

62 = ——| SSgioeadis —
B n—v Block (adj)

is obtained by using the following results based on the intrablock analysis:
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Now the estimates of weights 6 and 6, can be obtained by replacing o and o, by 6* and &,

respectively. Then the estimate of 7* can be obtained by replacing 6, and 6, by their estimates and can

be used in place of 7*. It may be noted that the exact distribution of the associated sum of squares due

to treatments is difficult to find when

2 2 A2 A2 . . P . .
o” and o, are replaced by &° and 6, , respectively in 7*. Some approximate results are possible

which we will present while dealing with the balanced incomplete block design. An increase in the

precision using interblock analysis as compared to intrablock analysis is measured by

1/variance of pooled estimate

1/variance of intrablock estimate

In the interblock analysis, the block effects are treated as a random variable which is appropriate if the
blocks can be regarded as a random sample from a large population of blocks. The best estimate of the
treatment effect from the intrablock analysis 1is further improved by utilizing the information on block
totals. Since the treatments in different blocks are not all the same, so the difference between block totals
is expected to provide some information about the differences between the treatments. So the interblock
estimates are obtained and pooled with intrablock estimates to obtain the combined estimate of 7. The
procedure of obtaining the interblock estimates and then obtaining the pooled estimates is called the

recovery of interblock information.
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