Assignment -1

MTH 314-Multivariate Analysis 2024

1. Draw random samples of sizes $5,50,200,500$, and 1000 from $N_{3}(\mu, \Sigma)$
where $\underline{\mu}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right), \quad \sum=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2\end{array}\right)$
and (i) establish $E(\overline{\bar{X}})=\mu$ and $E(S)=\Sigma$. Use any s/w language to do this.
2. Partition the random vector $\underline{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)^{\prime}$ of order 5×1 into two components $\underline{X}=\left(X_{1}, X_{2}\right)^{\prime}$ such that $\underline{X}_{1}=\left(X_{1}, X_{4}\right)^{\prime}$ and $\underline{x}_{2}=\left(X_{2}, X_{3}, X_{5}\right)^{\prime}$. The random vector \underline{X} is having a multivariate normal distribution $N_{5}(\underline{\mu}, \Sigma)$ with mean vector and covariance matrix as follows:

$$
\underline{\mu}=\left(\begin{array}{c}
2 \\
15 \\
6 \\
20 \\
-10
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 10 & 0 & 0 \\
0 & 0 & 0 & 20 & 0 \\
0 & 0 & 0 & 0 & 30
\end{array}\right)
$$

(i) Write the suitable partitioned vectors μ_{1}, μ_{2} and matrices $\Sigma_{11}, \Sigma_{12}, \Sigma_{12}$ and Σ_{21}
(ii) Compute $\mathrm{E}\left(\underline{X}_{1} \mid \underline{X}_{2}=\underline{x}_{2}\right), \mathrm{E}\left(\underline{X}_{2} \mid \underline{X}_{1}=\underline{x}_{1}\right), \mathrm{V}\left(\underline{X}_{1} \mid \underline{X}_{2}=\underline{x}_{2}\right)$, and $\mathrm{V}\left(X_{2} \mid \underline{X}_{2}=\underline{x}_{2}\right)$
(iii) Simulate $\underline{X}_{1} \mid \underline{X}_{2}=\underline{x}_{2}$, and $\underline{X}_{2} \mid \underline{X}_{1}=\underline{x}_{2}$ by draw random samples of sizes 5, 50, 200, 500 , and 1000 from $N(\underline{\mu}, \Sigma)$ and establish the unbiased properties of the estimators of $\mathrm{E}\left(\underline{X}_{1} \mid \underline{X_{2}}=\underline{x}_{2}\right), \mathrm{E}\left(\underline{X}_{2} \mid \underline{X}_{1}=\underline{x}_{1}\right), \mathrm{V}\left(\underline{X} \mid \underline{X_{2}}=\underline{x}_{2}\right)$, and $\mathrm{V}\left(X_{2} \mid \underline{X}_{2}=\underline{x}_{2}\right)$
3. Draw the contour diagram of $\underline{X}=\left(X_{1}, X_{2}\right)^{\prime}$ from $N_{2}(\underline{\mu}, \Sigma)$ by generating the random numbers where $\underline{\mu}=\binom{2}{10}, \sum=\left(\begin{array}{cc}2 & 3 \\ 3 & 15\end{array}\right)$.
4. Let the random vector $\underline{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ is having a multivariate normal distribution $N_{3}(\underline{\mu}, \Sigma)$. Find the distribution of $\binom{X_{1}-X_{2}}{X_{2}-X_{3}}$.
5. If the random vector \underline{X} is having a multivariate normal distribution $N_{p}(\underline{\mu}, \Sigma)$ with $|\Sigma| \neq 0$, Show that the joint density can be written as the product of marginal densities of $\quad \underline{X}_{1}$ and \underline{X}_{2} if $\Sigma_{12}=0$ where \underline{X}_{1} and \underline{X}_{2} are of orders $q \times 1$ and $((p-q) \times 1)$ respectively, and Σ_{12} is of order $((p-q) \times q)$.
6. Suppose $X^{(1)}$ and $X^{(2)}$ of q and $(p-q)$ components, respectively have the density

$$
\begin{aligned}
& \frac{1 A 1^{1 / 2}}{(2 \pi)^{\frac{p}{2}}} \exp \left(\frac{Q}{2}\right), \text { where } \\
& Q=\left(x^{(1)}-\mu^{(1)}\right)^{\prime} A_{11}\left(x^{(1)}-\mu^{(1)}\right)+\left(x^{(1)}-\mu^{(1)}\right)^{\prime} A_{12}\left(x^{(2)}-\mu^{(2)}\right) \\
& \\
& \quad+\left(x^{(2)}-\mu^{(2)}\right)^{\prime} A_{21}\left(x^{(1)}-\mu^{(1)}\right)+\left(x^{(2)}-\mu^{(2)}\right)^{\prime} A_{22}\left(x^{(2)}-\mu^{(2)}\right) .
\end{aligned}
$$

Show that Q can be written as $Q_{1}+Q_{2}$, where
$Q_{1}=\left[\left(x^{(1)}-\mu^{(1)}\right)+A_{11}^{-1} A_{12}\left(x^{(2)}-\mu^{(2)}\right)\right]^{\prime} A_{11}\left[\left(x^{(1)}-\mu^{(1)}\right)+A_{11}{ }^{-1} A_{12}\left(x^{(2)}-\mu^{(2)}\right)\right]$,
$Q_{2}=\left(x^{(2)}-\mu^{(2)}\right)^{\prime}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)\left(x^{(2)}-\mu^{(2)}\right)$.
(i) Show that the marginal density of $X^{(2)}$ is $\frac{\left|A_{22}-A_{22} A_{11}^{-1} A_{12}\right|^{1 / 2}}{(2 \pi)^{\frac{p-q}{2}}} \exp \left[-\frac{Q_{2}}{2}\right]$.
(ii) Show that the conditional density of $X^{(1)}$ given $x^{(2)}$ is $\frac{\left|A_{11}\right|^{1 / 2}}{(2 \pi)^{\frac{q}{2}}} \exp \left[-\frac{Q_{1}}{2}\right]$.
7. Describe the set up of finding the marginal distribution of a submatrices of $A \sim W(\Sigma, n)$ when the partitioning of Z_{α} is partitioned in two subvectors with q and $(p-q)$ elements such that the partitions are not independent. Find the marginal density of A_{11} and A_{22} in this case where $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$.
8. Given $A \sim W(\Sigma, n)$, find the density of inverted Wishart Distribution.

