<u>Assignment -1</u> MTH 314-Multivariate Analysis 2024

1. Draw random samples of sizes 5, 50, 200, 500, and 1000 from $N_3(\mu, \Sigma)$

where
$$\underline{\mu} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$

and (i) establish $E(\bar{X}) = \mu$ and $E(S) = \Sigma$. Use any s/w language to do this.

2. Partition the random vector $\underline{X} = (X_1, X_2, X_3, X_4, X_5)'$ of order 5×1 into two components $\underline{X} = (X_1, X_2)'$ such that $\underline{X}_1 = (X_1, X_4)'$ and $\underline{x}_2 = (X_2, X_3, X_5)'$. The random vector \underline{X} is having a multivariate normal distribution $N_5(\underline{\mu}, \Sigma)$ with mean vector and covariance matrix as follows:

$$\underline{\mu} = \begin{pmatrix} 2\\15\\6\\20\\-10 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\0 & 3 & 0 & 0 & 0\\0 & 0 & 10 & 0 & 0\\0 & 0 & 0 & 20 & 0\\0 & 0 & 0 & 0 & 30 \end{pmatrix}$$

(i) Write the suitable partitioned vectors μ_1 , μ_2 and matrices Σ_{11} , Σ_{12} , Σ_{12} and Σ_{21}

(ii) Compute
$$E(\underline{X}_1 | \underline{X}_2 = \underline{x}_2)$$
, $E(\underline{X}_2 | \underline{X}_1 = \underline{x}_1)$, $V(\underline{X}_1 | \underline{X}_2 = \underline{x}_2)$, and $V(X_2 | \underline{X}_2 = \underline{x}_2)$

- (iii) Simulate $\underline{X}_1 | \underline{X}_2 = \underline{x}_2$, and $\underline{X}_2 | \underline{X}_1 = \underline{x}_2$ by draw random samples of sizes 5, 50, 200, 500, and 1000 from $N(\underline{\mu}, \Sigma)$ and establish the unbiased properties of the estimators of $E(\underline{X}_1 | \underline{X}_2 = \underline{x}_2)$, $E(\underline{X}_2 | \underline{X}_1 = \underline{x}_1)$, $V(\underline{X}_1 | \underline{X}_2 = \underline{x}_2)$, and $V(X_2 | \underline{X}_2 = \underline{x}_2)$
- 3. Draw the contour diagram of $\underline{X} = (X_1, X_2)'$ from $N_2(\underline{\mu}, \Sigma)$ by generating the random numbers where $\underline{\mu} = \begin{pmatrix} 2 \\ 10 \end{pmatrix}$, $\Sigma = \begin{pmatrix} 2 & 3 \\ 3 & 15 \end{pmatrix}$.

4. Let the random vector
$$\underline{X} = (X_1, X_2, X_3)'$$
 is having a multivariate normal distribution $N_3(\underline{\mu}, \Sigma)$. Find the distribution of $\begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$.

5. If the random vector \underline{X} is having a multivariate normal distribution $N_p(\underline{\mu}, \Sigma)$ with $|\Sigma| \neq 0$, Show that the joint density can be written as the product of marginal densities of \underline{X}_1 and \underline{X}_2 if $\Sigma_{12} = 0$ where \underline{X}_1 and \underline{X}_2 are of orders $q \times 1$ and $((p-q) \times 1)$ respectively, and Σ_{12} is of order $((p-q) \times q)$.

6. Suppose $X^{(1)}$ and $X^{(2)}$ of q and (p - q) components, respectively have the density

$$\frac{1A1^{1/2}}{(2\pi)^2} exp\left(\frac{Q}{2}\right), \text{ where }$$

$$Q = (x^{(1)} - \mu^{(1)})'A_{11}(x^{(1)} - \mu^{(1)}) + (x^{(1)} - \mu^{(1)})'A_{12}(x^{(2)} - \mu^{(2)}) + (x^{(2)} - \mu^{(2)})'A_{21}(x^{(1)} - \mu^{(1)}) + (x^{(2)} - \mu^{(2)})'A_{22}(x^{(2)} - \mu^{(2)}).$$

Show that Q can be written as $Q_1 + Q_2$, where

$$Q_{1} = \left[(x^{(1)} - \mu^{(1)}) + A_{11}^{-1} A_{12} (x^{(2)} - \mu^{(2)}) \right]' A_{11} \left[(x^{(1)} - \mu^{(1)}) + A_{11}^{-1} A_{12} (x^{(2)} - \mu^{(2)}) \right],$$

$$Q_{2} = (x^{(2)} - \mu^{(2)})'(A_{22} - A_{21}A_{11}^{-1}A_{12})(x^{(2)} - \mu^{(2)}).$$
(i) Show that the marginal density of $X^{(2)}$ is $\frac{|A_{22} - A_{22}A_{11}^{-1}A_{12}|^{1/2}}{(2\pi)^{\frac{p-q}{2}}}exp\left[-\frac{Q_{2}}{2}\right].$

(ii) Show that the conditional density of
$$X^{(1)}$$
 given $x^{(2)}$ is $\frac{|A_{11}|^{1/2}}{(2\pi)^2} exp\left[-\frac{Q_1}{2}\right]$

- 7. Describe the set up of finding the marginal distribution of a submatrices of $A \sim W(\Sigma, n)$ when the partitioning of Z_{α} is partitioned in two subvectors with q and (p - q) elements such that the partitions are not independent. Find the marginal density of A_{11} and A_{22} in this case where $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$.
- 8. Given $A \sim W(\Sigma, n)$, find the density of inverted Wishart Distribution.