$\underline{\text { Assignment } 3}$

MTH 314-Multivariate Analysis

All questions are in reference of the chapter on correlation coefficients. So all terms have the usual meaning. The numerical-based questions have to be analyzed using any open-source software.
Q. 1 Consider the distribution of the set of correlation coefficients when the population covariance matrix is a diagonal matrix with different elements. Find out the case for $p=2$.
Q.2: Consider the distribution of the set of correlation coefficients when the population covariance matrix is a diagonal matrix with different elements. Find out the case when $N=2, p=2$ and find the mean and variance.
Q.3: Consider the distribution of the set of correlation coefficients when the population covariance matrix is a diagonal matrix with different elements. Find out the case when $N=4, p=2$ and find the mean and variance.
Q.4: Consider the distribution of the set of correlation coefficients when the population covariance matrix is a diagonal matrix with different elements. Consider the case when $N=5$ and $p=2$. If $P(|r| \geq K)=\alpha$ then show that K is the root of the equation $K \sqrt{\left(1-K^{2}\right.}+\operatorname{Sin}^{-1} K-\frac{\pi(1-\alpha)}{2}=0$.
Q.5: Derive the likelihood ratio test for a bivariate correlation coefficient where a sample of size N is drawn from $N_{2}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right],\left[\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}\end{array}\right]\right)$ for testing $H_{0}: \rho=$ ρ_{0} against $H_{0}: \rho \neq \rho_{0}$. Find the decision rule.
Q.6: Derive the likelihood ratio test for a multiple correlation coefficient where a sample of size N is drawn from $N_{p}(\mu, \Sigma)$ for testing $H_{0}: \bar{R}=0$ against $H_{0}: H_{0}: \bar{R}>0$.
Q.7: Compute the bias and standard error of simple correlation coefficient using the bootstrap technique. Use any sample of size 30 .

