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Chapter 13 

Asymptotic Theory and Stochastic Regressors 

The nature of the explanatory variable is assumed to be non-stochastic or fixed in repeated samples in any 

regression analysis. Such an assumption is appropriate for experiments conducted inside the laboratories 

where the experimenter can control the values of explanatory variables.  Then the repeated observations on 

the study variable can be obtained for fixed values of explanatory variables. In practice, such an assumption 

may only sometimes be satisfied. Sometimes, the explanatory variables in a given model are the study 

variable in another model. Thus the study variable depends on the explanatory variables that are stochastic in 

nature. Under such situations, the statistical inferences drawn from the linear regression model based on the 

assumption of fixed explanatory variables may not remain valid. 

 

We assume now that the explanatory variables are stochastic but uncorrelated with the disturbance term. If 

they are correlated, the issue is addressed through instrumental variable estimation. Such a situation arises in 

the case of measurement error models. 

 

Stochastic regressors  model 

Consider the linear regression model 

 y X  = +  

where X  is a ( )n k  matrix of observations on k  explanatory variables, which are stochastic in nature,  y  

is a  ( )1n  vector of observations on study variable,    is a ( )1k   vector of regression coefficients, and    

is the ( )1n  vector of  disturbances. Under the assumption ( ) 2( ) 0, ,E V I  = =  the distribution of  ,i  

conditional on satisfies these properties for all values of X  where '

ix  denotes  the thi  row of  X . This is 

demonstrated as follows: 

 

Let ( )'|i ip x  be the conditional probability density function of  i  given '

ix  and ( )ip   is the unconditional 

probability density function of i .  Then 
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In case, they are independent, then ( ) ( )'| .i i ip x p =  

 

Least squares estimation of parameters 

The additional assumption that the explanatory variables are stochastic poses no problem in the ordinary 

least squares estimation of    and  2 .  The OLSE of    is obtained by minimizing ( ) ( )'y X y X − −  

with respect   as 

 ( )
1

' 'b X X X y
−

=  

and estimator of  2  is obtained as  

 ( ) ( )2 1
's y Xb y Xb

n k
= − −

−
. 

 

Maximum likelihood estimation of parameters: 

Assuming ( )2~ 0,N I   in the model y X  = +  along with X  is stochastic and independent of   , the 

joint probability density function   and X  can be derived from the joint probability density function of  y  

and X  as follows: 
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This implies that the maximum likelihood  estimators of    and 2  will be based  on 

 ( ) ( )'

1 1

|
n n

i i i

i i

f y x f 
= =

=   

so they will be the same as based on the assumption that ' , 1, 2,...,i s i n = are distributed as ( )20, .N   So 

the maximum likelihood estimators of 2and   when the explanatory variables are stochastic are obtained 

as  

 

( )

( ) ( )

1

2

' '

1
.

X X X y

y X y X
n



  

−
=


= − −

 

 

Alternative approach for deriving the maximum likelihood estimates    

Alternatively, the maximum likelihood estimators of    and 2  can also be  derived using the joint 

probability density function of and .y X  

 

Note: Note that the vector  'x   is represented  by an underscore  in this section  to denote that its order is 

( )1 1k −    which excludes  the intercept term.  

 

Let  ' , 1, 2,...,ix i n=  are from a multivariate normal distribution with mean vector  x  and covariance matrix 

xx , i.e.,  ( )' ~ ,i x xxx N    and the joint distribution of  y  and '

ix  is 

 
'

~ , .
y yy yx

x xy xxi

y
N

x

 



     
             

 

 

Let the linear regression model is 

 
'

0 1 , 1,2,...,i i iy x i n  = + + =  

where  
'

ix  is a ( )1 1k −    vector of observation of random vector  0,x   is the intercept  term and 1  is the 

( )1 1k −     vector of regression coefficients.  Further i  is disturbance term with  ( )2~ 0,i N   and is 

independent of  'x . 
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Suppose 

 ~ , .
y yy yx

x xy xx

y
N

x

 



     
             

 

The joint probability density function of  ( )', iy x  based on a random sample of size n  is 

 ( )
( )

'
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22
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Now using the following result, we find 1 :−  

Result:  Let  A  be a nonsingular matrix which is partitioned suitably as 

 ,
B C

A
D E

 
=  
 

 

where E  and 
1F B CE D−= −  are nonsingular matrices, then 

 
1 1 1
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1 1 1 1 1 1
.

F F CE
A

E DF E E DF CE
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−
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 −
=  

− + 
 

Note that   
1 1 .AA A A I− −= =  

Thus 
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,
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−

−

− − − −

 − 
 =   −   +    

 

where 

  
2 1 .yy yx xx xy  −= −    

Then 

( )
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( ) ( ) ( ) 
2
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22

1 1
, ' exp ' ' .

2
2

y x xx xy x xx xk
f y x y x x x    




− −  = − − − −   + −  −   

 

The marginal distribution of  'x  is obtained by integrating  ( ), 'f y x  over y  and the resulting distribution is  

( )1k −  variate multivariate normal distribution as 
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The conditional probability density function of the given 'x  is 

( )
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which is the probability density function of normal distribution with 

• conditional mean  

( ) 1( | ') 'y x xx xyE y x x  −= + −    and 

• conditional variance 

 ( ) ( )2| ' 1yyVar y x  = −  

where 

1

2 yx xx xy

yy




−  
=  

is the population multiple correlation coefficient. 

In the model 

 0 1' ,y x  = + +  

the conditional mean is  

 
( ) ( )'
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| ' |
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i iE y x x E x
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= + +

= +
 

Comparing this conditional mean with the conditional mean of normal distribution, we obtain the 

relationship with 0  and 1  as follows: 

 

1

1
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0 1.
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−=  

= −
 

The likelihood function of  ( ), 'y x  based on a sample of size n  is 
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Maximizing the log-likelihood function with respect to , , and ,y x xx xy      the maximum likelihood 

estimates of respective parameters are obtained as 
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1
where  ( , ,..., ),   is [( -1) ( -1)] matrix with elements ( )( ) and  is 

1
[( -1) 1] vector with elements ( )( ). 

i i i ik xx ti i tj j xy

t

ti i i
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Based on these estimates, the maximum likelihood estimators are obtained as  
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Properties of the estimators of least squares estimator: 

The estimation error of OLSE is 
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Then assuming that ( )
1

' 'E X X X
− 

 
 exists, we have  
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because ( )
1

' 'X X X
−

 and    are independent.   So b  is an unbiased estimator of   . 
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The covariance matrix of  b  is obtained as 
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Thus the covariance matrix involves a mathematical expectation. The unknown 2  can be estimated by 

 
( ) ( )

2 '
ˆ
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−
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where e y Xb= −  is the residual and  
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Note that the OLSE ( )
1

' 'b X X X y
−

=  involves the stochastic matrix X  and stochastic  vector y , so b  is 

not a linear  estimator. It is also no more the best linear  unbiased estimator of   as in the case when X  is 

non-stochastic.  The estimator of  2  as being conditional on given X  is an efficient estimator. 

 

Asymptotic theory: 

The asymptotic properties of an  estimator concern the properties of the  estimator when sample size n  

grows large. 

 

For the need and understanding of asymptotic theory, we consider an example. Consider the  simple linear 

regression model with  one explanatory variable and  n  observations as 

 ( ) ( ) 2

0 1 , 0, , 1,2,..., .i i i i iy x E Var i n     = + + = = =  
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The OLSE of  1  is 

 

( )( )

( )

1
1

2

1

n

i i

i
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x x

=

=

− −

=
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and its variance is 

 ( )
2

1 .Var b
n


=  

If  the sample size grows large, then the variance of  1b  gets smaller.  The shrinkage  in variance implies that 

as sample size n  increases, the probability density of OLSE b  collapses around  its mean because ( )Var b  

becomes zero. 

 

Let there be three  OLSEs based on sample sizes 1 2 3, andn n n  respectively such that 1 2 3 ,n n n   say.  If  c  

and   are some arbitrarily chosen positive  constants, then the probability that  the value of b  lies within the 

interval c   can be made to be  greater than ( )1 −  for a large  value of  n.  This property is the 

consistency  of  b  which ensures that even if the  sample is very large, then we can be  confident with a high 

probability that b  will yield an estimate that is close to  . 

 

Probability in limit  

Let  ˆ
n  be an estimator of    based on a sample of size n .  Let     be any small positive  constant.  Then 

for large n , the requirement  that nb  takes values with probability almost one in an arbitrarily small  

neighborhood of the true parameter value   is 

 ˆlim 1n
n

P   
→

 −  =
 

 

which is denoted as 

 ˆplim n =  

and it is said that ˆ
n  converges to   in probability.  The  estimator ˆ

n  is said to be a consistent estimator of  

 . 

A sufficient but not necessary condition for ˆ
n  to be a consistent estimator of    is that 

 ˆlim n
n

E  
→

  =
 

 

and  ˆlim 0.n
n

Var 
→

  =
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Consistency of estimators 

Now we look at the consistency of the estimators of   and 2.  

 

 (i) Consistency of b 

Under the assumption that  
'

lim
n

X X

n→

 
=  

 
 exists as a nonstochastic and nonsingular matrix (with finite 

elements), we have 
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=

 

This implies that OLSE converges to    in quadratic mean.  Thus OLSE is a consistent estimator of   . 

This also holds true for maximum likelihood estimators  also. 

 

Same conclusion can also be proved using the concept of  convergence in probability.  

 

The consistency of OLSE can be obtained under the weaker assumption that 

 
*

'
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=  

 
  

exists and is a nonsingular and nonstochastic matrix and 
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Thus  b  is a consistent estimator of   .  The same  is true for maximum likelihood estimators also. 
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(ii) Consistency of  s2 

Now we look at the consistency of 2s  as an estimate of  2 . We have  

2
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Note that 
'
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i
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1
and { , 1,2,..., }

n

i

i
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=

=  is a sequence of  independently and identically 

distributed  random variables with mean  2 .  Using the law of  large numbers 
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Thus  2s  is a consistent estimator of  2 .  The same holds true for maximum likelihood estimates also. 

 

Asymptotic distributions: 

Suppose we have a sequence of random variables  n  with a corresponding sequence of cumulative  

density functions  nF  for a random variable   with cumulative density function .F   Then  n  converges 

in distribution to   if nF  converges to F  point wise.  In this case, F  is called the asymptotic distribution of  

.n  

 

Note that since convergence  in probability implies the convergence  in distribution, so 

plim D

n n   =  ⎯⎯→  ( n  tend to   in distribution), i.e., the asymptotic distribution of  n  is  F  

which is the distribution of   . 
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Note that 

 ( ) :E   Mean of asymptotic distribution 

 ( )Var  : Variance of asymptotic distribution 

 lim ( )n
n

E 
→

: Asymptotic mean 

 
2

lim lim ( )n n
n n

E E 
→ →

 −
 

:  Asymptotic variance. 

 

Asymptotic distribution of sample mean and least squares estimation 

Let  
1

1 n

n n i

i

Y Y
n


=

= =   be the sample mean based on a sample of size n .  Since the sample mean is a 

consistent estimator of the population mean Y , so 

 plim nY Y=  

which is constant. Thus the asymptotic distribution of  nY  is the distribution of a constant. This is not a 

regular distribution as all the probability mass is concentrated at one point. Thus as sample size  increases, 

the distribution of  nY  collapses. 

 

Suppose consider only the one-third  observations in the sample and find the sample mean as 

 
3
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Then    ( )*

nE Y Y=  
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Thus   *plim nY Y=  and *

nY  has the same degenerate distribution as  .nY   Since ( ) ( )*

n nVar Y Var Y , so  nY  is 

preferred over *.nY  
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Now we observe the asymptotic behaviour of  nY and *.nY   Consider a sequence of random variables { }.n  

Thus for all  n , we have 
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Assuming the population to be normal, the asymptotic distribution of 

• ( )2is 0,n N   

• ( )* 2is 0,3n N  . 

 

So now  nY  is preferable over  *

nY . The central limit theorem can be  used to show that n  will have an 

asymptotically normal distribution even if the population is not normally distributed. 

 

Also, since 
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n Y Y N

n Y Y
Z N





−

−
 =

 

and this statement holds true in the finite sample as well as asymptotic distributions.   

 

Consider the  ordinary least squares estimate ( )
1

' ' ofb X X X y 
−

=  in a linear regression model 

.y X  = +   If  X  is nonstochastic then the finite  covariance matrix of b is 

 
2 1( ) ( ' ) .V b X X −=  
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The asymptotic covariance matrix of b under the assumption that 
'

lim xx
n

X X

n→
=    exists and is nonsingular.  

It is  given by 
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which is a null matrix. 

 

Consider the asymptotic distribution of  ( )n b − .  Then even if    is not necessarily normally distributed, 

then asymptotically 
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If  
'X X

n
 is considered as an estimator of  ,xx   then 
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is the usual test statistic as is in the case of  finite samples with ( )( )12~ , ' .b N X X 
−

 

 


