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Chapter 16 

Measurement Error Models 

 

A fundamental assumption in all the statistical analysis is that all the observations are correctly measured. In 

the context of multiple regression model, it is assumed that the observations on the study and explanatory 

variables are observed without any error. In many situations, this basic assumption is violated. There can be 

several reasons for such a violation. 

 For example, the variables may not be measurable, e.g., taste, climatic conditions, intelligence, 

education, ability etc. In such cases, the dummy variables are used, and the observations can be 

recorded in terms of values of dummy variables.  

 Sometimes the variables are clearly defined, but it is hard to take correct observations. For example, 

the age is generally reported in complete years or in multiple of five. 

 Sometimes the variable is conceptually well defined, but it is not possible to take a correct 

observation on it. Instead, the observations are obtained on closely related proxy variables, e.g., the 

level of education is measured by the number of years of schooling. 

 Sometimes the variable is well understood, but it is qualitative in nature. For example, intelligence is 

measured by intelligence quotient (IQ) scores. 

 

In all such cases, the true value of the variable can not be recorded. Instead, it is observed with some error. 

The difference between the observed and true values of the variable is called as measurement error or 

errors-in-variables. 

 

Difference between disturbances and measurement errors: 

The disturbances in the linear regression model arise due to factors like the unpredictable element of 

randomness, lack of deterministic relationship, measurement error in study variable etc. The disturbance 

term is generally thought of as representing the influence of various explanatory variables that have not 

actually been included in the relation. The measurement errors arise due to the use of an imperfect measure 

of true variables. 
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Large and small measurement errors 

If the magnitude of measurement errors is small, then they can be assumed to be merged in the disturbance 

term, and they will not affect the statistical inferences much. On the other hand, if they are large in 

magnitude, then they will lead to incorrect and invalid statistical inferences. For example, in the context of 

linear regression model, the ordinary least squares estimator (OLSE) is the best linear unbiased estimator of 

the regression coefficient when measurement errors are absent. When the measurement errors are present in 

the data, the same OLSE becomes biased as well as inconsistent estimator of regression coefficients. 

 

Consequences of measurement errors: 

We first describe the measurement error model. Let the true relationship between correctly observed study 

and explanatory variables be  

 y X    

where y  is a  1n  vector of true observation on study variable, X  is a  n k  matrix of true observations 

on explanatory variables and   is a  1k   vector of regression coefficients. The value y  and X  are not 

observable due to the presence of measurement errors. Instead, the values of andy X  are observed with 

additive measurement errors as  

 
y y u

X X V

 

 


  

where y  is a  1n  vector of observed values of study variables which are observed with ( 1)n  

measurement error vector u . Similarly, X  is a (n k ) matrix of observed values of explanatory variables 

which are observed with  n k  matrix V of measurement errors in .X  In such a case, the usual disturbance 

term can be assumed to be subsumed in u  without loss of generality. Since our aim is to see the impact of 

measurement errors, so it is not considered separately in the present case. 

 

Alternatively, the same setup can be expressed as 

 
y X u

X X V

 

 




 

where it can be assumed that only X  is measured with measurement errors V and u  can be considered as the 

usual disturbance term in the model. 
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In case, some of the explanatory variables are measured without any measurement error then the 

corresponding values in V  will be set to zero. 

 

We assume that 

 
2( ) 0, ( ')

( ) 0, ( ' ) , ( ' ) 0.

E u E uu I

E V E V V E V u

 
   

 

 

The following set of equations describes the measurement error model 

 

y X

y y u

X X V


 

 





 

which can be re-expressed as 

 

 
 

=

y y u

X u

X V u

X u V

X




 
 

 

 

  

  






 

where u V    is called as the composite disturbance term. This model resemble like a usual linear 

regression model. A basic assumption in linear regression model is that the explanatory variables and 

disturbances are uncorrelated. Let us verify this assumption in the model y X w   as follows: 

 

     
   

( ) ' ( ) '( )

' '

0

0.

E X E X E E V u V

E V u E V V

  






     
 

 
 


 

Thus X  and   are correlated. So OLS will not provide efficient result. 

  

Suppose we ignore the measurement errors and obtain the OLSE. Note that ignoring the measurement errors 

in the data does not mean that they are not present. We now observe the properties of such an OLSE under 

the setup of measurement error model.  
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The OLSE is 
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as X  is a random matrix which is correlated with  . So b  becomes a biased estimator of  . 

 

Now we check the consistency property of OLSE. Assume 
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Thus b  is an inconsistent estimator of  . Such inconsistency arises essentially due to correlation between 

andX  . 

 

Note: It should not be misunderstood that the OLSE   1
' 'b X X X y

  is obtained by minimizing 

   ' 'S y X y X        in the model y X    . In fact '   cannot be minimized as in the case of 

usual linear regression, because the composite error u V    is itself a function of  . 

 

To see the nature of consistency, consider the simple linear regression model with measurement error as 
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we have 
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Thus we find that the OLSEs of 0 1and   are biased and inconsistent. So if a variable is subjected to 

measurement errors, it not only affects its own parameter estimate but also affect other estimator of 

parameter that are associated with those variable which are measured without any error. So the presence of 

measurement errors in even a single variable not only makes the OLSE of its own parameter inconsistent but 

also makes the estimates of other regression coefficients inconsistent which are measured without any error. 

 

 

 

 



Econometrics | Chapter 16 | Measurement Error Models | Shalabh, IIT Kanpur 
 77

Forms of measurement error model: 

Based on the assumption about the true values of the explanatory variable, there are three forms of 

measurement error model .  

 

Consider the model 

 

0 1 , 1, 2,...,

 .

i i

i i i

i i i

y x i n

y y u

x x v

   

 

 

 





  

 

1. Functional form: When the 'ix s  are unknown constants (fixed), then the measurement error model is 

said to be in its functional form. 

 

2. Structural form: When the 'ix s  are identically and independently distributed random variables, say, with 

mean   and variance  2 2 0   , the measurement error model is said to be in the structural form. 

 

Note that in case of functional form, 2 0.   

 

3. Ultrastructural form: When the 'ix s  are independently distributed random variables with different 

means, say i  and variance  2 2 0   , then the model is said to be in the ultrastructural form. This form is 

a synthesis of function and structural forms in the sense that both the forms are particular cases of 

ultrastructural form. 

 

Methods for consistent estimation of  : 

The OLSE of   which is the best linear unbiased estimator becomes biased and inconsistent in the presence 

of measurement errors. An important objective in measurement error models is how to obtain the consistent 

estimators of regression coefficients. The instrumental variable estimation and method of maximum 

likelihood (or method of moments) are utilized to obtain the consistent estimates of the parameters. 
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Instrumental variable estimation: 

The instrumental variable method provides the consistent estimate of regression coefficients in linear 

regression model when the explanatory variables and disturbance terms are correlated. Since in measurement 

error model, the explanatory variables and disturbance are correlated, so this method helps. The instrumental 

variable method consists of finding a set of variables which are correlated with the explanatory variables in 

the model but uncorrelated with the composite disturbances, at least asymptotically, to ensure consistency. 

 

Let 1 2, ,..., kZ Z Z  be the k  instrumental variables. In the context of the model 

 , ,y X u V        

let be theZ n k  matrix of k  instrumental variables 1 2, ,..., kZ Z Z , each having n  observations such that 

  andZ X  are correlated, atleast asymptotically and  

  andZ   are uncorrelated, at least asymptotically. 

So we have 
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The instrumental variable estimator of   is given by 
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So ˆ
IV  is consistent estimator of  . 

 

Any instrument that fulfils the requirement of being uncorrelated with the composite disturbance term and 

correlated with explanatory variables will result in a consistent estimate of parameter. However, there can be 

various sets of variables which satisfy these conditions to become instrumental variables. Different choices 

of instruments give different consistent estimators. It is difficult to assert that which choice of instruments 
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will give an instrumental variable estimator having minimum asymptotic variance. Moreover, it is also 

difficult to decide that which choice of the instrumental variable is better and more appropriate in 

comparison to other. An additional difficulty is to check whether the chosen instruments are indeed 

uncorrelated with the disturbance term or not.  

 

Choice of instrument: 

We discuss some popular choices of instruments in a univariate measurement error model. Consider the 

model 

 0 1 1, , 1, 2,..., .i i i i i iy x u v i n           

A variable that is likely to satisfy the two requirements of an instrumental variable is the discrete grouping 

variable. The Wald’s, Bartlett’s and Durbin’s methods are based on different choices of discrete grouping 

variables. 

 

1. Wald’s method 

Find the median of the given observations 1 2, ,..., nx x x . Now classify the observations by defining an 

instrumental variable Z  such that 

 1 2

1 2

1 if median ( , ,..., )

1 if median ( , ,..., ).
i n

i
i n

x x x x
Z

x x x x


  

 

In this case, 
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, .

1 1n n
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Z x

   
   
    
   
   
   

   
 

Now form two groups of observations as follows. 

 One group with those 'ix s  below the median of 1 2, ,..., nx x x . Find the means of 'iy s  and 'ix s , say 

1y  and 1x , respectively in this group.. 

 Another group with those 'ix s  above the median of 1 2, ,..., nx x x . Find the means of 'iy s  and 

2' , sayix s y  and 2x , respectively in this group. 
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Now we find the instrumental variable estimator under this set up as follows. Let 
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If n  is odd, then the middle observations can be deleted. Under fairly general conditions, the estimators are 

consistent but are likely to have large sampling variance. This is the limitation of this method. 

 

 

 

 

 



Econometrics | Chapter 16 | Measurement Error Models | Shalabh, IIT Kanpur 
 1111

2. Bartlett’s method: 

Let 1 2, ,..., nx x x  be the n observations. Rank these observation and order them in an increasing or decreasing 

order. Now three groups can be formed, each containing / 3n  observations. Define the instrumental variable 

as  

 

1 if observation is in the top group

0 if observation is in the middle group

1 if observation is in the bottom group.
iZ


 


 

 

Now discard the observations in the middle group and compute the means of ' and ' ini iy s x s  

- bottom group, say 1y  and 1x  and  

- top group, say 3y  and 3x . 

 

Substituting the values of X  and Z  in   1ˆ ' 'IV Z X Z y   and on solving, we get 

 
3 1
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These estimators are consistent. No conclusive pieces of evidence are available to compare Bartlett’s method 

and Wald’s method but three grouping method generally provides more efficient estimates than two 

grouping method is many cases. 

 

3. Durbin’s method 

Let 1 2, ,..., nx x x  be the observations. Arrange these observations in an ascending order. Define the 

instrumental variable iZ  as the rank of ix . Then substituting the suitable values of Z  and X  in 

  1ˆ ' ' ,IV Z X Z y   we get the instrumental variable estimators 
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When there are more than one explanatory variables, one may choose the instrument as the rank of that 

particular variable. 

 

Since the estimator uses more information, it is believed to be superior in efficiency to other grouping 

methods. However, nothing definite is known about the efficiency of this method. 

 

In general, the instrumental variable estimators may have fairly large standard errors in comparison to 

ordinary least square estimators which is the price paid for inconsistency. However, inconsistent estimators 

have little appeal. 

 

Maximum likelihood estimation in structural form 

Consider the maximum likelihood estimation of parameters in the simple measurement error model given by 
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Here  ,i ix y   are unobservable and  ,i ix y  are observable. 

Assume 

 

   

   

 

2

2

if
0,

0 if ,

if
0,

0 if ,

0 for all 1,2,..., ; 1,2,..., .

u
i i j

v
i i j

i j

i j
E u E u u

i j

i j
E v E v v

i j

E uV i n j n





 
  


 

  


  

  

 

For the application of the method of maximum likelihood, we assume the normal distribution for andi iu v .  

 

We consider the estimation of parameters in the structural form of the model in which 'ix s  are stochastic. So 

assume  

  2~ ,ix N     

and 'ix s  are independent of andi iu v . 
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Thus 
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The likelihood function is the joint probability density function of and , 1, 2,...,i iu v i n  as 
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The log-likelihood is 
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The normal equations are obtained by equating the partial differentiations equals to zero as 
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These are  4n   equations in  4n   parameters but summing equation (3) over 1,2,...,i n  and using 

equation (4), we get 

 2 2 2
1v u    

which is undesirable. 

 

These equations can be used to estimate the two means  0 1and    , two variances and one covariance. 

The six parameters 2 2 2
0 1, , , , andu v       can be estimated from the following five structural relations 

derived from these normal equations 

 

0 1

2 2

2 2 2
1

2
1

( )      

( )      

( )     

( )     

( )      

xx v

yy u

xy

i x

ii y

iii m

iv m

v m


  

 

  

 


 

 

 



 

 2 2

1 1 1 1 1

1 1 1 1 1
where , , , ( ) and ( )( ).

n n n n n

i i xx i yy i xy i i
i i i i i

x x y y m x x m y y m x x y y
n n n n n    

              

 



Econometrics | Chapter 16 | Measurement Error Models | Shalabh, IIT Kanpur 
 1515

These equations can be derived directly using the sufficiency property of the parameters in bivariate normal 

distribution using the definition of structural relationship as  
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We observe that there are six parameters 2 2 2
0 1, , , , andu v       to be estimated based on five structural 

equations (i)-(v). So no unique solution exists. Only   can be uniquely determined while remaining 

parameters can not be uniquely determined. So only   is identifiable and remaining parameters are 

unidentifiable. This is called the problem of identification. One relation is short to obtain a unique solution, 

so additional a priori restrictions relating any of the six parameters is required. 

 

Note: The same equations (i)-(v) can also be derived using the method of moments. The structural 

equations are derived by equating the sample and population moments. The assumption of normal 

distribution for ,i iu v  and ix  is not needed in case of method of moments. 

 

Additional information for the consistent estimation of parameters: 

The parameters in the model can be consistently estimated only when some additional information about the 

model is available. 

 

From equations (i) and (ii), we have 

 ˆ x   

and so   is clearly estimated. Further 

 0 1
ˆ ˆy x    

is estimated if 1̂  is uniquely determined. So we consider the estimation of 2 2 2
1, , andu v     only. Some 

additional information is required for the unique determination of these parameters. We consider now 

various type of additional information which are used for estimating the parameters uniquely. 
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21. v  is known: 

Suppose 2
v  is known a priori. Now the remaining parameters can be estimated as follows: 
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Note that 2 2ˆ xx vm    can be negative because 2
v  is known and xxm  is based upon sample. So we assume 

that 2ˆ 0   and redefine 
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Similarly, 2ˆu  is also assumed to be positive under suitable condition. All the estimators 2 2
1̂ ˆ ˆ, and u    are 

the consistent estimators of 2 2, and u    respectively. Note that 1̂  looks like as if the direct regression 

estimator of 1  has been adjusted by 2
v  for its inconsistency. So it is termed as adjusted estimator also. 
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The estimators 2
1̂ ˆ,   and 2ˆv  are the consistent estimators of 2

1,   and 2
v  respectively. Note that 1̂  looks 

like as if the reverse regression estimator of 1  is adjusted by 2
u  for its inconsistency. So it is termed as 

adjusted estimator also. 
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3. 
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Suppose the ratio of the measurement error variances is known, so let 
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Solving this quadratic equation 
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This implies that the positive sign in U  has to be considered and so  
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Other estimates are 
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Note that the same estimator 1 1
ˆ of   can be obtained by orthogonal regression. This amounts to transform 

ix  by /i ux   and iy  by /i vy   and use the orthogonal regression estimation with transformed variables. 

 
4. Reliability ratio is known 

The reliability ratio associated with the explanatory variable is defined as the ratio of variances of true and 

observed values of explanatory variables, so 
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is the reliability ratio. Note that 1,xK   when 2 0v   which means that there is no measurement error in the 

explanatory variable and 0,xK   means 2 0   which means the explanatory variable is fixed. A higher 

value of xK  is obtained when 2
v  is small, i.e., the impact of measurement errors is small. The reliability 

ratio is a popular measure in psychometrics. 

 
Let xK  be known a priori. Then  
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Note that 1
1̂ xK b   

where b  is the ordinary least squares estimator xy
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m
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m
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5. 0  is known 

Suppose 0  is known a priori and ( ) 0.E x   Then 
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6. Both 2
u  and 2

v  are known 

This case leads to over-identification in the sense that the number of parameters to be estimated is smaller 

than the number of structural relationships binding them. So no unique solutions are obtained in this case. 

 

Note: In each of the cases 1-6, note that the form of the estimate depends on the type of available 

information which is needed for the consistent estimator of the parameters. Such information can be 

available from various sources, e.g., long association of the experimenter with the experiment, similar type 

of studies conducted in the part, some external source etc. 

 

Estimation of parameters in function form: 

In the functional form of the measurement error model, 'ix s  are assumed to be fixed. This assumption is 

unrealistic in the sense that when 'ix s  are unobservable and unknown, it is difficult to know if they are fixed 

or not. This can not be ensured even in repeated sampling that the same value is repeated. All that can be said 

in this case is that the information, in this case, is conditional upon 'ix s . So assume that 'ix s  are 

conditionally known. So the model is 
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The likelihood function is  
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The log-likelihood is 
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The normal equations are obtained by partially differentiating *L  and equating to zero as 
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Squaring and summing equation (V), we get 
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Using the left-hand side of equation (III) and right-hand side of equation (IV), we get 
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which is unacceptable because   can be negative also. In the present case, as 0 and 0u v   , so   will 

always be positive. Thus the maximum likelihood breaks down because of insufficient information in the 

model. Increasing the sample size n  does not solve the purpose. If the restrictions like 2
u  known, 2

v  

known or 
2

2
u

v




 known are incorporated, then the maximum likelihood estimation is similar to as in the case of 

structural form and the similar estimates may be obtained. For example, if 2 2/u v    is known, then 

substitute it in the likelihood function and maximize it. The same solution as in the case of structural form 

are obtained.  

 

 


