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Chapter 17 

Simultaneous Equations Models 

 
In any regression modeling, generally, an equation is considered to represent a relationship describing a 

phenomenon. Many situations involve a set of relationships which explain the behaviour of certain 

variables. For example, in analyzing the market conditions for a particular commodity, there can be a 

demand equation and a supply equation which explain the price and quantity of commodity exchanged in the 

market at market equilibrium. So there are two equations to explain the whole phenomenon - one for demand 

and another for supply. In such cases, it is not necessary that all the variables should appear in all the 

equations. So estimation of parameters under this type of situation has those features that are not present 

when a model involves only a single relationship. In particular, when a relationship is a part of a system, then 

some explanatory variables are stochastic and are correlated with the disturbances. So the basic assumption 

of a linear regression model that the explanatory variable and disturbance are uncorrelated or explanatory 

variables are fixed is violated and consequently ordinary least squares estimator becomes inconsistent. 

 

Similar to the classification of variables as explanatory variable and study variable in linear regression 

model, the variables in simultaneous equation models are classified as endogenous variables and exogenous 

variables. 

 

Endogenous variables (Jointly determined variables) 

The variables which are explained by the functioning of system and values of which are determined by the 

simultaneous interaction of the relations in the model are endogenous variables or jointly determined 

variables. 

 

Exogenous variables (Predetermined variables) 

The variables that contribute to provide explanations for the endogenous variables and values of which are 

determined from outside the model are exogenous variables or predetermined variables. 

 

Exogenous variables help is explaining the variations in endogenous variables. It is customary to include past 

values of endogenous variables in the predetermined group. Since exogenous variables are predetermined, so 

they are independent of disturbance term in the model. They satisfy those assumptions which explanatory 

variables satisfy in the usual regression model. Exogenous variables influence the endogenous variables but 

are not themselves influenced by them. One variable which is endogenous for one model can be exogenous 

variable for the other model. 
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Note that in the linear regression model, the explanatory variables influence the study variable but not vice 

versa. So relationship is one sided. 

 

The classification of variables as endogenous and exogenous is important because a necessary condition for 

uniquely estimating all the parameters is that the number of endogenous variables is equal to the number of 

independent equations in the system. Moreover, the main distinction of predetermined variable in estimation 

of parameters is that they are uncorrelated with disturbance term in the equations in which they appear. 

 

Simultaneous equation systems: 

A model constitutes a system of simultaneous equations if all the relationships involved are needed for 

determining the value of at least one of the endogenous variables included in the model. This implies that at 

least one of the relationships includes more them one endogenous variable. 

 

Example 1: 

Now we consider the following example in detail and introduce various concepts and terminologies used in 

describing the simultaneous equations models. 

 

Consider a situation of an ideal market where transaction of only one commodity, say wheat, takes place. 

Assume that the number of buyers and sellers is large so that the market is a perfectly competitive market. It 

is also assumed that the amount of wheat that comes into the market in a day is completely sold out on the 

same day. No seller takes it back. Now we develop a model for such mechanism. 

 

Let 

td  denotes the demand of the commodity, say wheat, at time ,t  

ts  denotes the supply of the commodity, say wheat, at time ,t  and  

tq  denotes the quantity of the commodity, say wheat, transacted at time .t  

 

By economic theory about the ideal market, we have the following condition: 

 , 1, 2,...,t td s t n= = . 
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Observe that 

• the demand of wheat depends on 

  - price of wheat ( ) at time .tp t  

  - income of buyer ( ) at time .ti t  

• the supply of wheat depends on 

  - price of wheat ( )tp  at time .t  

  - rainfall ( )tr  at time t . 

 

From market conditions, we have 

 .t t tq d s= =  

Demand, supply and price are determined from each other. 

 Note that 

• income can influence demand and supply, but demand and supply cannot influence the income. 

• supply is influenced by rainfall, but rainfall is not influenced by the supply of wheat. 

 

Our aim is to study the behaviour of ts , tp  and tr  which are determined by the simultaneous equation 

model. 

 

Since endogenous variables are influenced by exogenous variables but not vice versa, so 

• , andt t ts p r  are endogenous variables. 

• andt ti r  are exogenous variables. 

 

Now consider an additional variable for the model as lagged value of price tp , denoted as 1tp − . In a market, 

generally the price of the commodity depends on the price of the commodity on previous day. If the price of 

commodity today is less than the previous day, then buyer would like to buy more. For seller also, today’s 

price of commodity depends on previous day’s price and based on which he decides the quantity of 

commodity (wheat) to be brought in the market. 

 

So the lagged price affects the demand and supply equations both. Updating both the models, we can now 

write that 

• demand depends on 1, and .t t tp i p −  

• supply depends on 1, and .t t tp r p −  
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Note that the lagged variables are considered as exogenous variable. The updated list of endogenous and 

exogenous variables is as follows: 

• Endogenous variables: , ,t t tp d s  

• Exogenous variables: 1, ,t t tp i r− . 

 

The mechanism of the market is now described by the following set of equations. 

• demand 1 1 1t t td p  = + +  

• supply 2 2 2t t ts p  = + +  

• equilibrium condition t t td s q= =  

where ' s  denote the intercept terms, ' s  denote the regression coefficients and ' s  denote the 

disturbance terms. 

 

These equations are called structural equations. The error terms 1  and 2  are called structural 

disturbances. The coefficients 1 2 1 2, , and     are called the structural coefficients. 

 

The system of equations is called the structural form of the model. 

 

Since t t tq d s= = , so the demand and supply equations can be expressed as 

 
1 1 1

2 2 2

(I)

(II)

t t t

t t t

q p

q p

  

  

= + +

= + +
 

 

So there are only two structural relationships. The price is determined by the mechanism of market and not 

by the buyer or supplier. Thus tq  and tp  are the endogenous variables. Without loss of generality, we can 

assume that the variables associated with 1  and 2  are 1 2andX X  respectively such that 

1 2 1 21 and 1. So 1 and 1X X X X= = = =  are predetermined and so they can be regarded as exogenous 

variables. 
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From the statistical point of view, we would like to write the model in such a form so that the OLS can be 

directly applied. So writing equations (I) and (II) as 

1 1 1 2 2 2

1 21 2

2 1 2 1

11 1

2 1 1 22 1 1 2

2 1 2 1

21 2

1 2 2 1 1 2
11 21

2 1 2 1

1 2 2 1 1 2
1 2

2 1 2 1

or

(III)

(IV)

where

,

, .

t t t t

t t
t

t

t t
t

t

t t t t
t t

p p

p

v

q

v

v v

     

  

   



      

   



     
 

   

     

   

+ + = + +

−−
= +

− −

= +

−−
= +

− −

= +

− −
= =

− −

− −
= =

− −

 

 

Each endogenous variable is expressed as a function of the exogenous variable. Note that the exogenous 

variable 1 (from 1 21, or 1)X X= =  is not clearly identifiable. 

 

The equations (III) and (IV) are called the reduced form relationships and in general, called the reduced 

form of the model. 

 

The coefficients 11 21and   are called reduced form coefficients and errors 1 2andt tv v  are called the 

reduced form disturbances. The reduced from essentially express every endogenous variable as a function 

of exogenous variable. This presents a clear relationship between reduced form coefficients and structural 

coefficients as well as between structural disturbances and reduced form disturbances. The reduced form is 

ready for the application of OLS technique. The reduced form of the model satisfies all the assumptions 

needed for the application of OLS. 

 

Suppose we apply OLS technique to equations (III) and (IV) and obtained the OLS estimates of 11  and 12  

as 11 12
ˆ ˆand   respectively which are given by 

 

1 2
11

2 1

2 1 2 1
21

2 1

ˆ

ˆ .

 


 

   


 

−
=

−

−
=

−
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Note that 11 21
ˆ ˆand   are the numerical values of the estimates. So now there are two equations and four 

unknown parameters 1 2 1 2, , and    . So it is not possible to derive the unique estimates of parameters of 

the model by applying OLS technique to reduced form. This is known as problem of identifications.  

 

By this example, the following have been described upto now: 

• Structural form relationship. 

• Reduced form relationship. 

• Need for reducing the structural form into reduced form. 

• Reason for the problem of identification. 

 

Now we describe the problem of identification in more detail. 

 

The identification problem: 

Consider the model in earlier Example 1, which describes the behaviour of a perfectly competitive market in 

which only one commodity, say wheat, is transacted. The models describing the behaviour of consumer and 

supplier are prescribed by demand and supply conditions given as  

1 1 1

2 2 2

Demand : , 1,2,...,

Supply:

Equilibrium condition : .

t t t

t t t

t t

d p t n

s p

d s

  

  

= + + =

= + +

=

 

 

If quantity tq  is transacted at time t  then 

 .t t td s q= =  

So we have two structural equations model in two endogenous variables ( )andt tq p  and one exogenous 

variable (value is 1 given by 1 21, 1)X X= = . The set of three equations is reduced to a set of two equations as 

follows:  

1 1 1

2 2 2

Demand : (1)

Supply: (2)

t t t

t t t

q p

q p

  

  

= + +

= + +
 

Before analysis, we would like to check whether it is possible to estimate the parameters 1 2 1 2, , and     or 

not. 
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Multiplying equations (1) by   and (2) by (1 )−  and then adding them together gives 

     1 2 1 2 1 2(1 ) (1 ) (1 ) (1 )

or                         (3)

t t t t t

t t t

q q p

q p

          

  

+ − = + − + + − + + −

= + +
 

where 1 2 1 2 1 2(1 ) , (1 ) ,   (1 )t t t           = + − = + − = + − and   is any scalar lying between 0 and 

1. 

 

Comparing equation (3) with equations (1) and (2), we notice that they have same form. So it is difficult to 

say that which is supply equation and which is demand equation. To find this, let equation (3) be demand 

equation. Then there is no way to identify the true demand equation (1) and pretended demand equation (3). 

 

A similar exercise can be done for the supply equation, and we find that there is no way to identify the true 

supply equation (2) and pretended supply equation (3). 

 

Suppose we apply OLS technique to these models. Applying OLS to equation (1) yields 

( )( )

( )

1
1

2

1

1 1

ˆ              0.6, say

1 1
where    , .

n

t t

t

n

t

t

n n

t t

t t

p p q q

p p

p p q q
n n

 =

=

= =

− −

= =

−

= =





 

  

 

Applying OLS to equation (3) yields 

 

( )( )

( )

1

2

1

ˆ 0.6.

n

t t

t

n

t

t

p p q q

p p

 =

=

− −

= =

−




 

Note that 1
ˆ ˆand   have same analytical expressions, so they will also have same numerical values, say 0.6. 

Looking at the value 0.6, it is difficult to say that the value 0.6 determines equation (1) or (3). 

Applying OLS to equation (3) fields 

 

( )( )

( )

1
2

2

1

ˆ 0.6

n

t t

t

n

t

t

p p q q

p p

 =

=

− −

= =

−




 

because 2̂  has the same analytical expression as of 1
ˆ ˆand  , so 

 1 2 3
ˆ ˆ ˆ .  = =  
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Thus it is difficult to decide and identify whether 1̂  is determined by the value 0.6 or 2̂  is determined by 

the value 0.6. Increasing the number of observations also does not helps in the identification of these 

equations. So we are not able to identify the parameters. So we take the help of economic theory to identify 

the parameters. 

 

The economic theory suggests that when price increases then supply increases but demand decreases. So the 

plot will look like 

  

and this implies 1 20 and 0. Thus since 0.6 0,     so we can say that the value 0.6 represents 2
ˆ 0   

and so 2
ˆ 0.6. =  But one can always choose a value of   such that pretended equation does not violate the 

sign of coefficients, say 0.   So it again becomes difficult to see whether equation (3) represents supply 

equation (2) or not. So none of the parameters is identifiable. 

 

Now we obtain the reduced form of the model as 

 

1 21 2

2 1 2 1

11 1

2 1 1 21 2 2 1

2 1 2 1

21 2

     

or     (4)

     

or . (5)

t t
t

t t

t t
t

t t

p

p v

q

q v

  

   



      

   



−−
= +

− −

= +

−−
= +

− −

= +

 

 

 



Econometrics | Chapter 17 | Simultaneous Equations Models | Shalabh, IIT Kanpur 
 9 9 

Applying OLS to equations (4) and (5) and obtain OLSEs 11 21
ˆ ˆand   which are given by 

 

1 2
11

2 1

1 2 2 1
21

2 1

ˆ

ˆ .

 


 

   


 

−
=

−

−
=

−

 

 

There are two equations and four unknowns. So the unique estimates of the parameters 1 2 1 2, , and     

cannot be obtained. Thus the equations (1) and (2) can not be identified. Thus the model is not identifiable 

and estimation of parameters is not possible. 

 

Suppose a new exogenous variable income ti  is introduced in the model which represents the income of 

buyer at time t . Note that the demand of commodity is influenced by income. On the other hand, the supply 

of commodity is not influenced by the income, so this variable is introduced only in the demand equation. 

The structural equations (1) and (2) now become 

 
1 1 1 1

2 2 2

Demand : (6)

Supply: (7)

t t t t

t t t

q p i

q p

   

  

= + + +

= + +
 

where 1  is the structural coefficient associate with income. The pretended equation is obtained by 

multiplying the equations (6) and (7) by and (1 ) − , respectively, and then adding them together. This is 

obtained as follows: 

     1 2 1 2 1 1 2     (1 ) (1 ) (1 ) (1 )

or                  (8)

t t t t t t

t t t t

q q p i

q p i

           

   

+ − = + − + + − + + + −

= + + +
 

1 2 1 2 1 1 2where (1 ) , (1 ) , , (1 ) ,t t t             = + − = + − = = + − 0 1   is a scalar. 

 

Suppose now if we claim that equation (8) is true demand equation because it contains tp  and ti  which 

influence the demand. But we note that it is difficult to decide that between the two equations (6) or (8), 

which one is the true demand equation. 

 

Suppose now if we claim that equation (8) is the true supply equation. This claim is wrong because income 

does not affect the supply. So equation (6) is the supply equation. 

 

Thus the supply equation is now identifiable but demand equation is not identifiable. Such situation is termed 

as partial identification. 
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Now we find the reduced form of structural equations (6) and (7). This is achieved by first solving equation 

(6) for tp  and substituting it in equation (7) to obtain an equation in tq . Such an exercise yields the reduced 

form equations of the following form: 

 
11 12 1

21 22 2

(9)

. (10)

t t t

t t t

p i v

q i v

 

 

= + +

= + +
 

 

Applying OLS to equations (9) and (10), we get OLSEs 11 22 12 21
ˆ ˆ ˆ ˆ, , ,    . Now we have four equations 

((6),(7),(9),(10)) and there are five unknowns 1 2 1 2 1( , , , , ).      So the parameters are not determined 

uniquely. Thus the model is not identifiable. 

 

However, here 

 

22
2

11

11
2 21 22

22

.







  



=

= −

 

If 11 22 12 21
ˆ ˆ ˆ ˆ, , and     are available, then 2 2

ˆˆ and   can be obtained by substituting ˆ ' s  in place of ' .s  So 

2 2and   are determined uniquely which are the parameters of supply equation. So supply equation is 

identified but demand equation is still not identifiable. 

 

Now, as done earlier, we introduce another exogenous variable- rainfall, denoted as tr  which denotes the 

amount of rainfall at time t . The rainfall influences the supply because better rainfall produces better yield of 

wheat. On the other hand, the demand of wheat is not influenced by the rainfall. So the updated set of 

structural equations is  

  
1 1 1 1

2 2 2 2

Demand : (11)

Supply: . (12)

t t t t

t t t t

q p i

q p r

   

   

= + + +

= + + +
 

 

The pretended equation is obtained by adding together the equations obtained after multiplying equation (11) 

by   and equation (12) by (1 )−  as follows: 

     1 2 1 2 1 2 1 2(1 ) (1 ) (1 ) (1 ) (1 )

or (13)

t t t t t t t

t t t t t

q q p i r

q p i r

             

    

+ − = + − + + − + + − + + −

= + + + +
 

where 1 2 1 2 1 2 1 2(1 ) , (1 ) , , (1 ) , (1 )  t t t                = + − = + − = = − = + −  and 0 1   is a 

scalar. 
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Now we claim that equation (13) is a demand equation. The demand does not depend on rainfall. So unless 

1 =  so that tr  is absent in the model, the equation (13) cannot be a demand equation. Thus equation (11) is 

a demand equation. So demand equation is identified. 

 

Now we claim that equation (13) is the supply equation. The supply is not influenced by the income of the 

buyer, so (13) cannot be a supply equation. Thus equation (12) is the supply equation. So now the supply 

equation is also identified. 

 

The reduced form model from structural equations (11) and (12) can be obtained which have the following 

forms: 

 11 12 13 1

21 22 23 2

(14)

. (15)

t t t t

t t t t

p i r v

q i r v

  

  

= + + +

= + + +
 

Application of OLS technique to equations (14) and (15) yields the OLSEs 11 12 13 21 22 23
ˆ ˆ ˆ ˆ ˆ ˆ, , , , and      . So 

now there are six such equations and six unknowns 1 2 1 2 1 2, , , , and .       So all the estimates are uniquely 

determined. Thus the equations (11) and (12) are exactly identifiable. 

 

Finally, we introduce a lagged endogenous variable 1tp −  which denotes the price of the commodity on the 

previous day. Since only the supply of wheat is affected by the price on the previous day, so it is introduced 

in the supply equation only as  

1 1 1 1

2 2 2 2 1 2

Demand : (16)

Supply: (17)

t t t t

t t t t t

q p i

q p r p

   

    −

= + + +

= + + + +
 

where 2  is the structural coefficient associated with 1.tp −  

 

The pretended equation is obtained by first multiplying equations (16) by   and (17) by (1 )− and then 

adding them together as follows: 

2 1

1

(1 ) (1 )

or . (18)

t t t t t t t

t t t t t t

q q p i r p

q p i r p

        

     

−

−

+ − = + + + + − +

= + + + + +
 

Now we claim that equation (18) represents the demand equation. Since rainfall and lagged price do not 

affect the demand, so equation (18) cannot be demand equation. Thus equation (16) is a demand equation 

and the demand equation is identified. 
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Now finally, we claim that equation (18) is the supply equation. Since income does not affect supply, so 

equation (18) cannot be a supply equation. Thus equation (17) is supply equation and the supply equation is 

identified. 

 

The reduced form equations from equations (16) and (17) can be obtained as of the following form: 

11 12 13 14 1 1

21 22 23 24 1 2

(19)

. (20)

t t t t t

t t t t t

p i r p v

q i r r p v

   

  

−

−

= + + + +

= + + + +
 

 

Applying the OLS technique to equations (19) and (20) gives the OLSEs as 

11 12 13 14 21 22 23 24
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , and .         So there are eight equations in seven parameters 

1 2, ,  1 2 1 2 2, , , and     . So unique estimates of all the parameters are not available. In fact, in this case, 

the supply equation (17) is identifiable and demand equation (16) is overly identified (in terms of multiple 

solutions). 

 

The whole analysis in this example can be classified into three categories – 

 

(i) Under identifiable case 

The estimation of parameters is not at all possible in this case. No enough estimates are available for 

structural parameters. 

 

 

(2) Exactly identifiable case : 

The estimation of parameters is possible in this case. The OLSE of reduced form coefficients leads to unique 

estimates of structural coefficients. 

 

(3) Over identifiable case : 

The estimation of parameters, in this case, is possible. The OLSE of reduced form coefficients leads to 

multiple estimates of structural coefficients. 
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Analysis: 

Suppose there are G  jointly dependent (endogenous) variables 1 2, ,..., Gy y y  and K  predetermined 

(exogenous) variables 1 2, ,..., .Kx x x  Let there are n  observations available on each of the variable and there 

are G  structural equations connecting both the variables which describe the complete model as follows: 

 

11 1 12 2 1 11 1 12 2 1 1

21 1 22 2 2 21 2 22 2 2 2 2

1 1 2 2

... ...

... ...

                                                                   

...

t t G Gt t t K Kt t

t t G Gt t t k K t

G t G t GG Gt

y y y x x x

y y y x x x

y y y

      

      

  

+ + + + + + + =

+ + + + + + + =

+ + + 1 1 2 2 ... .G t G t Gk Kt Gtx x x   + + + + =

 

 

These equations can be expressed in matrix form as 

11 12 1 1 11 12 1 1 1

21 22 2 2 21 22 2 2 2

1 2 1 2

              

or

              :

G t K t t

G t K t t

G G GG Gt G G GK Kt Gt

t t

y x

y x

y x

S By x

      

      

      

         
         
         + =
         
         
         

+  = , 1, 2,...,t t n =

 

where B  is a G G  matrix of unknown coefficients of predetermined variables, ty  is a ( 1)n  vector of 

observations on G  jointly dependent variables, is ( )G K   matrix of structural coefficients, ( 1)tx is K   

vector of observations on K  predetermined variables and t  is ( 1)G  vector of structural disturbances. 

The structural form S  describes the functioning of model at time .t  

 

Assuming B  is nonsingular, premultiplying the structural form equations by 1B− , we get 

 

1 1 1

or , 1,2,..., .

t t t

t t t

B By B x B

y x v t n





− − −+  =

= + =
 

This is the reduced form equation of the model where 
1B −=   is the matrix of reduced form coefficients 

and 
1

t tv B −=  is the reduced form disturbance vectors. 

 

If B  is singular, then one or more structural relations would be a linear combination of other structural 

relations. If B  is non-singular, such identities are eliminated. 
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The structural form relationship describes the interaction taking place inside the model. In reduced form 

relationship, the jointly dependent (endogenous) variables are expressed as linear combination of 

predetermined (exogenous) variables. This is the difference between structural and reduced form 

relationships. 

 

Assume that 't s  are identically and independently distributed following (0, )N   and 'tV s  are identically 

and independently distributed following 1 1(0, ) where ' withN B B− −  =   

' '

*

' '

*

( ) 0, ( , ) , ( ) 0 for all *.

( ) 0, ( , ) , ( ) 0 for all *.

t t t t t

t t t t t

E E E t t

E v E v v E v v t t

    = =  = 

= =  = 
 

The joint probability density function of ty  given tx  is 

 

( )

( | ) ( )

( )

det( )

t t t

t
t

t

t

p y x p v

p
v

p B






=


=



=

 

where t

tv




 is the related Jacobian of transformation and det( )B  is the absolute value of the determinant of 

.B  

 

The likelihood function is 

 

1 2 1 2

1

1

( , ,..., , ,..., )

( )

det( ) ( ).

n n

n

t t

t

n
n

t

t

L p y y y x x x

p y x

B p 

=

=

=

=

=





 

Applying a nonsingular linear transformation on structural equation S  with a nonsingular matrix ,D  we get 

 
*or *: * * , 1,2,...,

t t t

t t t

DBy D x D

S B y x t n





+  =

+ = =
  

*where * , * , t tB DB D D =  =  =  and structural model *S  describes the functioning of this model at time 

t . Now find ( )t tp y x  with *S  as follows: 

( ) ( )

( ) ( )

*
*

*

|

det * .

t
t t t

t

t

p y x p
v

p B







=



=
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Also 

 

*

*

.

t t

t

t

D

D

 





=


 =



 

Thus 

 

( ) ( )

( )

( )

( )

*

1

1

det( *)

det( ) det( )

det( ) det( ) det( )

det( ) .

t
t t t

t

t

t

t

p y x p B

p D DB

p D D B

p B












−

−


=



=

=

=

 

 

The likelihood function corresponding to *S  is 

 

( )

( )

( )

*

1

*
1

1

1

* det( *)

det( ) det( )

det( ) det( ) det( )

.

n
n

t

t

n
n n t

t

t t

n
n n

t

t

L B p

D B p

D B p D

L










=

=

−

=

=


=



=

=







 

 

Thus both the structural forms and *S S  have the same likelihood functions. Since the likelihood functions 

form the basis of statistical analysis, so both S  and *S  have same implications. Moreover, it is difficult to 

identify whether the likelihood function corresponds to S  and *S . Any attempt to estimate the parameters 

will result into failure in the sense that we cannot know whether we are estimating S  and *S . Thus S  and 

*S  are observationally equivalent. So the model is not identifiable. 

 

A parameter is said to be identifiable within the model if the parameter has the same value for all equivalent 

structures contained in the model. 

 

If all the parameters in the structural equation are identifiable, then the structural equation is said to be 

identifiable. 

 

Given a structure, we can thus find many observationally equivalent structures by non-singular linear 

transformation. 
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The apriori restrictions on B  and   may help in the identification of parameters. The derived structures may 

not satisfy these restrictions and may therefore not be admissible. 

 

The presence and/or absence of certain variables helps in the identifiability. So we use and apply some 

apriori restrictions. These apriori restrictions may arise from various sources like economic theory, e.g. it is 

known that the price and income affect the demand of wheat but rainfall does not affect it. Similarly, supply 

of wheat depends on income, price and rainfall. There are many types of restrictions available which can 

solve the problem of identification. We consider zero-one type restrictions.  

 

Zero-one type restrictions: 

Suppose the apriori restrictions are of zero-one type, i.e., some of the coefficients are one and others are zero. 

Without loss of generality, consider S  as 

 , 1, 2,..., .t t tBy x t n+  = =  

When the zero-one type restrictions are incorporated in the model, suppose there are G  jointly dependent 

and *K  predetermined variables in S  having nonzero coefficients. Rest ( )G G−  jointly dependent and 

( )*K K−  predetermined variables are having coefficients zero. 

 

Without loss of generality, let *and   be the row vectors formed by the nonzero elements in the first row 

of andB   respectively. Thus the first row of B  can be expressed as ( )0 . So hasB G   coefficients 

which are one and ( )G G−  coefficients which are zero. 

 

Similarly, the first row of   can be written as ( )* 0 .  So in ,  there are *K  elements present ( those take 

value one) and ( )*K K−  elements absent (those take value zero). 

 

The first equation of the model can be rewritten as 

( ) ( )
* *11 1 12 2 1 11 1 12 2 1 1

* 1

         ... ...

or     0 0 , 1,2,..., .

t t G G t t t K K t t

t t t

y y y x x x

y x t n

      

  

 



+ + + + + + + =

+ = =
 

Assume every equation describes the behaviour of a particular variable, so that we can 11take 1. =  

11If 1,   then divide the whole equation by 11  so that the coefficient of 1ty  is one. 
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So the first equation of the model becomes 

*1 12 2 1 11 1 12 2 1 * 1... ... .t t G G t t t K K t ty y y x x x     
 

+ + + + + + + =  

 

Now the reduced form coefficient relationship is 

 1B −= −   

( ) ( )

( )

*

* *

or

or 0 0 .

elements elements elementselements

B

G GG K K K



  



= −

= −

   

− −

 

 

Partition 

 
* **

* **

 


 

 

 

 
=  
 

 

 where the orders of ( )* * **is ,G K     is ( )**G K  , * is ( )*G K   and **  is ( )**G K   

where G G G = −  and ** *K K K= − . 

 

We can re-express 

( ) ( )

( ) ( )

( ) ( )

*

* **

* **

* **

* **

* *

** **

0 0

0 0

or 0 0

( )

     0 . ( )

i

ii

  

  

 
 

 

  

 







 

 

 

 

 

= −

= −

 
= − 

 

 = −

=

 

 

Assume   is known. Then (i) gives a unique solution for *  if   is uniquely found from (ii). Thus 

identifiability of S  lies upon the unique determination of  . Out of G  elements in  , one has coefficient 

1, so there are ( )1G −  unknown elements in   that are unknown. 
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Note that 

 ( )12 11, ,..., G  
 = . 

As 

 ** **0   =  

 ( ) ** **or 1 0  = . 

So ( )1G −  elements of   are uniquely determined as non-trivial solution when 

 ( )** 1.rank G = −  

Thus 0  is identifiable when 

 ( )** 1.rank G = −  

This is known as a rank condition for the identifiability of parameters in .S  This condition is necessary 

and sufficient. 

   

Another condition, known as order condition is only necessary and not sufficient. The order condition is 

derived as follows: 

 

We now use the result that for any matrix A  of order m n , the ( ) ( , ).rank A Min m n=  For identifiability, if 

( )rank A m=  then obviously .n m  

**Since 0   =  and   has only ( 1)G −  elements which are identifiable when 

 
( )**

*

1

1.

rank G

K K G

 



= −

 −  −
 

This is known as the order condition for identifiability. 

 

There are various ways in which these conditions can be represented to have meaningful interpretations. We 

discuss them as follows: 

 

( ) ( ) ( )

( )

*

*

1. ( ) 1

or ( ) 1

G G K K G G G

G G K K G

  



− + −  − + −

− + −  −
 

Here :G G−  Number of jointly dependent variables left out in the equation 

 1 12 2 1 11 1 1 1... ...t t G G t K Kt ty y y x x    
 

+ + + + + + =  

* :K K−  Number of predetermined variables left out in the equation 
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 1 12 2 1 11 1 1 1... ...t t G G t K Kt ty y y x x    
 

+ + + + + + =  

1:G −  Number of total equations - 1. 

So left-hand side of the condition denotes the total number of variables excluded is this equation. 

 

Thus if the total number of variables excluded in this equation exceeds ( 1),G −  then the model is 

identifiable.  

 

2. * -1K K G +  

Here 

* :K The number of predetermined variables present in the equation. 

G : The number of jointly dependent variables present is the equation. 

 

3. Define * ( 1)L K K G= − − −  

L  measures the degree of overidentification. 

 

If 0L =  then the equation is said to be exactly identified. 

 0L  , then the equation is said to be over identified. 

 0L    the parameters cannot be estimated. 

 0L =  the unique estimates of parameters are obtained. 

 0L    the parameters are estimated with multiple estimators. 

 

So by looking at the value of L , we can check the identifiability of the equation. 

Rank condition tells whether the equation is identified or not. If identified, then the order condition tells 

whether the equation is exactly identified or over identified. 

 

Note 

We have illustrated the various aspects of estimation and conditions for identification in the simultaneous 

equation system using the first equation of the system. It may be noted that this can be done for any equation 

of the system and it is not necessary to consider only the first equation. Now onwards, we do not restrict to 

first equation but we consider any, say ih equation (i = 1, 2, …,G).  
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Working rule for rank condition 

The checking of the rank condition sometimes, in practice, can be a difficult task. An equivalent form of rank 

condition based on the partitioning of structural coefficients is as follows. 

 

Suppose 

* **

* **

0 0
, ,B

B B

  

 

   
=  =   

    
 

where * **, ,0 and 0    are row vectors consisting of * **, , andG K G K   elements respectively in them. 

Similarly the orders of B  is ( )( 1 ),G G B −   is *(( 1) ),G G−    is 

**

* **(( 1) ) and is (( 1) ).G K G K−   −   Note that **andB   are the matrices of structural coefficients for 

the variable omitted from the thi  equation (i = 1,2,…,G) but included in other structural equations. 

 

Form a new matrix 

( )

( )
( )

* **

* **

1 1 1

,* ,**

, ,* ,**

0 0

0
.

0

B

B B

B B B B

I

I

I

 



 

 

 

 

− − −

  

   

 = 

 
=  

  

 = 

= −

− − 
=  

− − 

 

If 

 
**

*

**

0 0

B





 
 =  

 
 

then clearly the rank of *  is same as the rank of   since the rank of a matrix is not affected by enlarging 

the matrix by a rows of zeros or switching any columns. 
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Now using the result that if a matrix A  is multiplied by a nonsingular matrix, then the product has the same 

rank as of ,A  we can write 

 1

* *( ) ( )rank rank B− =   

( ) ( )

( ) ( ) ( )

,**1

*

, ,**

, ,**

1

* * **

0
( )

( ) ( )

1

1

   .

rank B rank
I

rank I rank

G G G

G

rank B rank rank B







−

  

  

 

−



− 
 =  

− 

= +

= − + −

= −

 =  = 

 

So 

 **(    ) 1rank B G  = −  

and then the equation is identifiable. 

 

Note that ( )**    B   is a matrix constructed from the coefficients of variables excluded from that particular 

equation but included in other equations of the model. If ( )**    1,rank G  = −  then the equation is 

identifiable and this is a necessary and sufficient condition. An advantage of this term is that it avoids the 

inversion of matrix. A working rule is proposed like following. 

 

Working rule:  

1. Write the model in tabular form by putting ‘X’ if the variable is present and ‘0’ if the variable is 

absent. 

2. For the equation under study, mark the 0’s (zeros) and pick up the corresponding columns 

suppressing that row. 

3. If we can choose ( )1G −  rows and ( 1)G −  columns that are not all zero, then it can be identified. 
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Example 2:  

Now we discuss the identifiability of following simultaneous equations model with three structural 

equations 

1 13 3 11 1 13 3 1

1 21 1 23 3 2

2 33 3 31 1 32 2 3

(1)

(2)

(3) .

y y x x

y x x

y y x x

   

  

   

= + + +

= + +

= + + +

 

First, we represent the equation (1)-(3) in tabular form as follows 

Equation number y1    y2    y3 x1    x2    x3 1G −  K* L 

1 

2 

3 

X    0   X 

X    0    0 

0   X    X 

X   0   X 

X   0   X 

X   X   0 

2 – 1 = 1 

1 – 1 = 0 

2 – 1 = 1 

2 

2 

2 

3 – 3 = 0 

3 – 2 = 1 

3 – 3 = 0 

 

• G =  Number of equations = 3. 

• `X’ denotes the presence and '0 '  denotes the absence of variables in an equation. 

• G =  Numbers of ‘X’ in ( )1 2 3    .y y y  

• K* = Number of ‘X’ in 1 2 3(     )x x x . 

 

Consider equation (1): 

❖ Write columns corresponding to '0 '  which are columns corresponding to 2y  and 2x  and write as 

follows 

   2y  2x  

Equation (2) 0 0 

Equation (3) X X 

   
❖ Check if any row/column is present with all elements ‘0’. If we can pick up a block of order ( 1)G −  

is which all rows/columns are all ‘0’ , then the equation is identifiable. 

Here **

0 0
1 3 1 2, ,

X X
G B

   
− = − = =  =   

   
. So we need ( )2 2  matrix in which no row and no 

column has all elements ‘0’ . In case of equation (1), the first row has all ‘0’, so it is not identifiable.  

 

Notice that from order condition, we have 0L =  which indicates that the equation is identified and  

this conclusion is misleading. This is happening because order condition is just necessary but not  

sufficient. 
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Consider equation (2): 

❖ Identify ‘0’ and then 

  2 3y y   2x  

Equation (1)  0 X   0 

Equation (3)  X X   X 

 

❖ 
**

0 X 0
, .

X X X
B

   
=  =   
   

 

❖ 1 3 1 2.G − = − =  

❖ We see that there is atleast one block in which no row is ‘0’ and no column is ‘0’. So the equation (2) 

is identified. 

❖ Also, 1 0L =    Equation (2) is over identified. 

 

Consider equation (3) 

❖ identify ‘0’. 

 
1y  3x  

Equation (1) X X 

Equation (2) X X 

 

❖ So 
**

X X
, .

X X
B

   
=  =   
   

 

❖ We see that there is no ‘0’ present in the block. So equation (3) is identified. 

❖ Also, 0L =   Equation (3) is exactly identified. 
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Estimation of parameters 

To estimate the parameters of the structural equation, we assume that the equations are identifiable. 

 

Consider the first equation of the model 

 11 1 12 2 1 11 1 12 2 1 1... ... , 1, 2,.., .t t G Gt t t K Kt ty y y x x x t n      + + + + + + + = =  

Assume 11 1 =  and incorporate the zero-one type restrictions. Then we have  

 
*1 12 2 1 11 1 12 2 1 1... ... , 1, 2,.., .t t G G t t K K t ty y y x x x t n     

 = − − − − − − + =  

Writing this equation in vector and matrix notations by collecting all n  observations, we can write 

 1 1 1 1y Y X  = + +  

where 

 

2

*

*

**

21 31 111

22 3212

1 1

1 2 3

11 21 1 1112

12 22 2 1213

1

111 2

,

, , .

G

G

n n n G n

K

K

KGn n K n

y y yy

y y yy
y Y

y y y y

x x x

x x x
X

x x x




 











  
  
  = =
  
    

   

  −−   
     −−    = = =    
        −−    

 

The order of 1y  is ( ) ( ) ( ) ( )1 1 * *1 , ( ( 1)), , ( 1) 1 1is is is and is xn Y n G X n K G K    −  −  . 

This describes one equation of the structural model. 

Now we describe the general notations in this model.  

 

Consider the model with incorporation of zero-one type restrictions as 

 1 1 1y Y X  = + +  

where 1y  is a ( )1n  vector of jointly dependent variables, 1Y  is ( )( )1n G −  matrix of jointly dependent 

variables where G  denote the number of jointly dependent variables present on the right hand side of the 

equation,   is a ( )( 1 1)G −   vector of associated structural coefficients, 1X  is a ( )*n K  matrix of n  

observations on each of the *K  predetermined variables and   is a ( )1n  vector of structural disturbances. 

This equation is one of the equations of complete simultaneous equation model. 
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Stacking all the observations according to the variance, rather than time, the complete model consisting of G  

equations describing the structural equation model can be written as  

 YB X+  =    

where Y  is a ( )n G  matrix of observation on jointly dependent variables, B  is ( )G G  matrix of 

associated structural coefficients, X  is ( )n K  matrix of observations on predetermined variables,   is 

( )K G  matrix of associated structural coefficients and   is a ( )n G  matrix of structural disturbances. 

 

Assume ( ) ( )
1

0, 'E E
n

 =  =   where   is positive definite symmetric matrix. 

The reduced form of the model is obtained from the structural equation model by post multiplying by 1B−  as  

 
1 1 1YBB X B B

Y X V

− − −+  = 

= +
 

where 1 1andB V B − −= − =   are the matrices of reduced-form coefficients and reduced form disturbances 

respectively. 

 

The structural equation is expressed as  

 ( )

1 1 1

1 1 1   

y Y X

Y X

A

  






 

= + +

 
= + 

 

= +

 

where ( ) ( )1 1,    ,    'A Y X   = =  and 1 = . This model looks like a multiple linear regression model. 

Since 1X  is a submatrix of ,X  so it can be expressed as 

 1 1X XJ=  

where 1J  is called as a select matrix and consists of two types of elements, viz., 0 and 1. If the 

corresponding variable is present, its value is 1 and if absent, its value is 0. 
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Method of consistent estimation of parameters  

1. Indirect least squares (ILS) method 

This method for the consistent estimation of parameters is available only for exactly identified equations. 

 

If equations are exactly identifiable, then 

 * 1.K G K= + −  

 

Step 1: Apply ordinary least squares to each of the reduced form equations and estimate the reduced form 

coefficient matrix. 

 

Step 2: Find algebraic relations between structural and reduced-form coefficients. Then find the structural 

coefficients. 

 

The structural model at a time t  is 

 ; 1, 2,...,t t ty x t n + = =  

where ( ) ( )1 2 1 2, ,..., ', , ,..., '.t t t Gt t t t Kty y y y x x x x= =  

 

Stacking all n  such equations, the structural model is obtained as 

 BY X+  =   

where Y  is ( )n G  matrix, X  is ( )n K  matrix and   is ( )n K  matrix. 

The reduced form equation is obtained by premultiplication of 1B−  as 

1 1 1

1 1

         

         

where and .

B BY B X B

Y X V

B B





− − −

− −

+  = 

= +

= −  

 

 

Applying OLS to reduced form equation yields the OLSE of   as 

 
( )

1
ˆ ' ' .X X X Y

−
=

 

This is the first step of ILS procedure and yields the set of estimated reduced form coefficients. 
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Suppose we are interested in the estimation of following structural equation 

 1 1y Y X  = + +  

where y  is ( )1n  vector of n  observation on dependent (endogenous) variable, ( )1 is ( 1Y n G −  matrix of 

observations on 1G  current endogenous variables, ( )1 *isX n K  matrix of observations on *K  

predetermined (exogenous) variables in the equation and   is ( )1n  vector of structural disturbances. Write 

this model as 

 ( )1 1 1

1

      y Y X  



 
 
− = 
 − 

 

or more general 

 ( )1 1 2 1 2

1

            0

0

y Y Y X X







 
 
−
 
  =
 
− 
 
 

 

where 2 2andY X  are the matrices of observations on ( )1G G− +  endogenous and ( )K K−  predetermined 

variables which are excluded from the model due to zero-one type restrictions. 

 

Write 

 
1

or .
0

0

B


 

= −

 
  

− =   
  

 

 

Substitute   as ( )
1

ˆ ' 'X X X Y
−

=  and solve for   and  . This gives indirect least squares estimators b  

and c  of   and   respectively by solving 
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( )

( ) ( )

1

1

1 1 2

1 1

1

ˆ             
0

0

1

or         ' '
0

0

1

or         ' '
0

0

           ' ' '
0

c
b

c
X X X Y b

c
X X X y Y Y b

c
X y X Y b X X



−

−

 
  

− =   
  

 

 
  

− =   
  

 

 
  

− =   
  

 

 
 − =  

 

 

 

( )

( )

( )

1 2

' ' '

1 1 1 1 1 1

' ' '

2 1 2 1 2 1

Since      

      ( ) ( )

     ( ) . ( )

X X X

X Y b X X c X y i

X Y b X X c X y ii

=

 + =

+ =

 

These equations (i) and (ii) are K  equations is *( 1)G K + −  unknowns. Solving the equations (i) and (ii) 

gives ILS estimators of and  .  

 

2. Two stage least squares (2SLS) or generalized classical linear (GCL) method: 

This is more widely used estimation procedure as it is applicable to exactly as well as overidentified 

equations. The least-squares method is applied in two stages in this method. 

1 1 1Consider equation .y Y X  = + +  

Stage 1: Apply least squares method to estimate the reduced form parameters in the reduced form model 

 

1 1 1

1

1 1

1 1

ˆ ( ' ) '

ˆ .

Y X V

X X X Y

Y X







−

= +

 =

 =

 

Stage 2: Replace 1Y  is structural equation 1 1 1y Y X  = + +  by 1Ŷ  and apply OLS to thus obtained structural 

equation as follows: 

 

( )

( )

1 1 1

1

1 1

1

1 1

ˆ

' '

ˆ' '

ˆ .

y Y X

X X X X Y X

X X X X Y X

A

  

  






 

−

−

= + +

= + +

 
 = +  

 

= +
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where ( ) ( )
1 1

1 1 1 1
ˆ ˆ' ' , ' ' ,A X X X X Y X A X X X X Y X HA

− −   = = =
   

 ( )
1

' 'H X X X X
−

=  is idempotent and 

( ) '.  =  

 

Applying OLS to 1
ˆY A = +  gives OLSE of   as  

( )

( )

1

1

1

1

1
' ' '

1 1 1 1 1 1

' ' '

1 1 1 1 1 1

1
' ' ' ' '

1 1 1 1 1 1 1 1
1' ' '

1 1 1 1 1

ˆ ˆ ˆ ˆ       

        ' '

ˆ
or

ˆ

ˆ ˆ ˆ
 .

A A Ay

A HA A Hy

Y HY Y X Y y

X Y X X X y

Y Y V V Y X Y V
y

X Y X X X







−

−

−

−

=

=

     
=     
    

   − −
=       
   

 

where 1 1 1V Y X= −  is estimated by ( )1 1 1 1 1
ˆ ˆ , .V Y X I H Y HY H I H= − = − = = −  Solving these two 

equations, we get ̂  and ̂  which are the two stage least squares estimators of   and   respectively. 

 

Now we see the consistency of ̂ . 

 

( )

( ) ( )

( )

( )

1

1

1

1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ' '

ˆ ˆ ˆ ˆ' '

1 1ˆ ˆ ˆplim plim ' plim ' .

A A Ay

A A A A

A A A

A A A
n n



 

  

  

−

−

−

−

=

= +

− =

   
− =    

   

 

The 2SLS estimator ̂  is consistent if 

 

'

1

'

1

1 ˆplim
1 ˆplim ' 0.

1
plim

Y
n

A
n

X
n







 
  

= =  
   

  

 

Since by assumption, X  variables are uncorrelated with   in limit, so 

 
1

plim ' 0.X
n


 

= 
 

 

For 
1

1 ˆplim ,Y
n


 
 
 

 we observe that  
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 ( )

'

1 1

1

1

1 1ˆ ˆplim plim '

1
ˆplim plim '

.0

0.

Y X
n n

X
n

  

 



   
=   

   

 
=  

 

=

=

 

Thus ( )ˆplim - 0  =  and so the 2SLS estimators are consistent. 

The asymptotic covariance matrix of ̂  is 

 

( ) ( )( )

( ) ( )

1

1 1
1

1 1

1

1

1 2

ˆ ˆ ˆAsy Var plim '

ˆ ˆ ˆ ˆ ˆ ˆplim ' ' '

1 1 1ˆ ˆ ˆ ˆ ˆ ˆplim ' plim ' ' plim '

1 ˆ ˆplim '

n n

n n A A A A A A

n A A A A A A
n n n

n A A
n



    







−

− −
−

− −

−

−

−

 = − −
 

 =
  

     
=      

     

 
=  

 

 

2where ( )Var  = . 

 

The asymptotic covariance matrix is estimated by 

 ( )
' 1 '

1
2 2 1 1 1 1

' '

1 1 1 1

( ' ) 'ˆ ˆ'
Y X X X X Y Y X

s A A s
X Y X X

−
−  
=  

 
 

where 

 
( ) ( )1 1 1 12

ˆ ˆˆ ˆ'y Y X y Y X
s

n G K

   − − − −
=

− −
 

 

 

 

 

 

 

 

 

 


