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Chapter 18 

Seemingly Unrelated Regression Equations Models 

 

A basic nature of the multiple regression model is that it describes the behaviour of a particular study 

variable based on a set of explanatory variables. When the objective is to explain the whole system, there 

may be more than one multiple regression equations. For example, in a set of individual linear multiple 

regression equations, each equation may explain some economic phenomenon. One approach to handle such 

a set of equations is to consider the set up of simultaneous equations model is which one or more of the 

explanatory variables in one or more equations are itself the dependent (endogenous) variable associated 

with another equation in the full system. On the other hand, suppose that none of the variables is the system 

are simultaneously both explanatory and dependent in nature. There may still be interactions between the 

individual equations if the random error components associated with at least some of the different equations 

are correlated with each other. This means that the equations may be linked statistically, even though not 

structurally – through the jointness of the distribution of the error terms and through the non-diagonal 

covariance matrix. Such behaviour is reflected in the seemingly unrelated regression equations (SURE) 

model in which the individual equations are in fact related to one another, even though superficially they 

may not seem to be. 

 

The basic philosophy of the SURE model is as follows. The jointness of the equations is explained by the 

structure of the SURE model and the covariance matrix of the associated disturbances. Such jointness 

introduces additional information which is over and above the information available when the individual 

equations are considered separately. So it is desired to consider all the separate relationships collectively to 

draw the statistical inferences about the model parameters. 

 

Example: 

Suppose a country has 20 states and the objective is to study the consumption pattern of the country. There is 

one consumption equation for each state. So all together there are 20 equations which describe 20 

consumption functions. It may also not necessary that the same variables are present in all the models. 

Different equations may contain different variables. It may be noted that the consumption pattern of the 

neighbouring states may have characteristics in common. Apparently, the equations may look distinct 

individually but there may be some kind of relationship that may be existing among the equations. Such 

equations can be used to examine the jointness of the distribution of disturbances. It seems reasonable to 
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assume that the error terms associated with the equations may be contemporaneously correlated. The 

equations are apparently or “seemingly” unrelated regressions rather than independent relationships. 

 

Model: 

We consider here a model comprising of M  multiple regression equations of the form 

 
1

, 1,2,..., ; 1, 2,..., ; 1, 2,...,
ik

ti tij ij ti i
j

y x t T i M j k 


      

where tiy  is the tht  observation on the thi  dependent variable which is to be explained by the thi  regression 

equation, tijx  is the tht  observation on thj  explanatory variable appearing in the thi  equation, ij  is the 

coefficient associated with tijx  at each observation and ti  is the tht  value of the random error component 

associated with thi  equation of the model. 

 

These M  equations can be compactly expressed as 

 , 1, 2,...,i i i iy X i M     

where iy  is  1T   vector with elements tiy ;  i iX is T K  matrix whose columns represent the T 

observations on an explanatory variable in the thi  equation; i  is a  1ik   vector with elements ij ; and i  

is a  1T   vector of disturbances. These M  equations can be further expressed as 
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or y X     

where the orders of y  is    1 , is *TM X TM k  ,   is  * 1 ,k   is  1TM   and * i
i

k k . 
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Treat each of the M equations as the classical regression model and make conventional assumptions for 

1, 2,...,i M  as 

 iX  is fixed.  

  i irank X k . 

 '1
lim wherei i ii ii
T

X X Q Q
T

   
 

 is nonsingular with fixed and finite elements. 

   0iE u  . 

  'i i ii TE u u I  where ii  is the variance of disturbances in thi  equation for each observation in 

the sample.  
 

Considering the interactions between the M  equations of the model, we assume 

 '1
lim i j ij
T

X X Q
T

  

  ' ; , 1, 2,...,i j ij TE u u I i j M    

where ijQ  is non-singular matrix with fixed and finite elements and ij  is the covariance between the 

disturbances of andth thi j  equations for each observation in the sample. 

 

Compactly, we can write  
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where   denotes the Kronecker product operator,   is  MT MT  matrix and     ij is M M    

positive definite symmetric matrix. The definiteness of   avoids the possibility of linear dependencies 

among the contemporaneous disturbances in the M  equations of the model. 

 

The structure  ' TE uu I   implies that 

 variance of ti  is constant for all t . 

 contemporaneous covariance between andti tj   is constant for all t . 

 intertemporal covariance between *andti t j   *t t  are zero for all i  and j . 
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By using the terminologies “contemporaneous” and “intertemporal” covariance, we are implicitly assuming 

that the data are available in time series form but this is not restrictive. The results can be used for cross-

section data also. The constancy of the contemporaneous covariances across sample points is a natural 

generalization of homoskedastic disturbances in a single equation model. 

 

It is clear that the M  equations may appear to be not related in the sense that there is no simultaneity 

between the variables in the system and each equation has its own explanatory variables to explain the study 

variable. The equations are related stochastically through the disturbances which are serially correlated 

across the equations of the model. That is why this system is referred to as SURE model. 

 

The SURE model is a particular case of simultaneous equations model involving M  structural equations 

with M  jointly dependent variable and  for allik k i  distinct exogenous variables and in which neither 

current nor logged endogenous variables appear as explanatory variables in any of the structural equations. 

 

The SURE model differs from the multivariate regression model only in the sense that it takes account of 

prior information concerning the absence of certain explanatory variables from certain equations of the 

model. Such exclusions are highly realistic in many economic situations.  

 

OLS and GLS estimation: 

The SURE model is  

    , 0, .Ty X E V I           

Assume that   is known. 

 

The OLS estimator of   is 

   1
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Further 

 

 
     

   

0

0 0 0

1 1

'

' ' ' .

E b

V b E b b

X X X X X X



 

 



  



 

The generalized least squares (GLS) estimator of   
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Define 

     11 1 1' ' ' 'G X X X X X X 
     

then 0 andGX  we find that 

    0
ˆ 'V b V G G   . 

Since   is positive definite, so 'G G  is atleast positive semidefinite and so GLSE is, in general, more 

efficient than OLSE for estimating  . In fact, using the result that GLSE best linear unbiased estimator of 

 , so we can conclude that ̂  is the best linear unbiased estimator in this case also. 

 

Feasible generalized least squares estimation:  

When   is unknown, then GLSE of   cannot be used. Then   can be estimated and replaced by  M M  

matrix .S  With such replacement, we obtain a feasible generalized least squares (FGLS) estimator of   as  

    1
1 1ˆ ' 'F T TX S I X X S I y


      . 

 

Assume that   ijS s  is a nonsingular matrix and ijs  is some estimator of ij . 

Estimation of   

There are two possible ways to estimate ' .ij s  
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1. Use of unrestricted residuals 

Let K  be the total number of distinct explanatory variables out of 1 2, ,..., mk k k  variables in the full model 

    , 0, Ty X E V I         

and let Z  be a T K  observation matrix of these variables. 

 

Regress each of the M  study variables on the column of Z  and obtain  1T   residual vectors 
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Then obtain 
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and construct the matrix   ijS s  accordingly. 

 

Since iX  is a submatrix of ,Z  so we can write 

 i iX ZJ  

where iJ  is a  iK k  selection matrix. Then 
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and thus 
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Hence 
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Thus an unbiased estimator of ij  is given by .ij

T
s

T K
 

 

2. Use of restricted residuals 

In this approach to find an estimator of ,ij  the residuals obtained by taking into account the restrictions on 

the coefficients which distinguish the SURE model from the multivariate regression model are used as 

follows. 

 

Regress iy  on ,iX  i.e., regress each equation, 1,2,...,i M  by OLS and obtain the residual vector 
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A consistent estimator of ij  is obtained as 
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where 

  
 
 

1'

1' .

i

j

X i i i i

X j j j j

H I X X X X

H I X X X X





 

 
 

Using * ,ijs  a consistent estimator of S  can be constructed. 

If T in *
ijs  is replaced by 

     1 1' ' ' '

i jX X i j i i i j j j j itr H H T k k tr X X X X X X X X
 
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then *
ijs  is an unbiased estimator of .ij   


