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Chapter4 

Predictions In Linear Regression Model 

 

Prediction of values of study variable 

An important use of linear regression modeling is to predict the average and actual values of the study 

variable. The term prediction of the value of study variable corresponds to knowing the value of ( )E y  (in 

case of average value) and value of y  (in case of actual value) for a given value of the explanatory 

variable. We consider both cases. The prediction of values consists of two steps. In the first step, the 

regression coefficients are estimated on the basis of given observations. In the second step, these 

estimators are then used to construct the predictor which provides the prediction of actual or average 

values of study variables. Based on this approach of construction of predictors, there are two situations in 

which the actual and average values of the study variable can be predicted- within sample prediction and 

outside sample prediction. We describe the prediction in both situations. 

 

Within sample prediction in simple linear regression model 

Consider the linear regression model 0 1 .y x      Based on a sample of n  sets of paired 

observations ( , )  ( 1, 2,..., )i ix y i n  following 0 1i i iy x     , where i ’s are identically and 

independently distributed following 2(0, )N  . The parameters 0  and 1  are estimated using the 

ordinary least squares estimation as 0 0 1 1of and  of b b   as 
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 The fitted model is 0 1y b b x  .  

 

Case 1: Prediction of average value of y 

Suppose we want to predict the value of ( )E y  for a given value of 0x x . Then the predictor is given by 

 0 1 0mp b b x  . 

Here m stands for mean value. 
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Predictive bias 

The prediction error is given as 
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Then the prediction bias is given as 

  0 0 1 1 0( ) ( ) ( )

0 0 0.

mE p E y E b E b x     

  
 

Thus the predictor mp  is an unbiased predictor of ( ).E y  

 

Predictive variance:  

The predictive variance of mp  is 
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Estimate of predictive variance 

The predictive variance can be estimated by substituting 2 2ˆby MSE    as 
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Prediction interval : 

The 100(1- )%  prediction interval for ( )E y  is obtained as follows: 

The predictor mp  is a linear combination of normally distributed random variables, so it is also normally 

distributed as 

   0 1 0~ ,m mp N x PV p  . 
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So if 2  is known, then the distribution of 
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is (0,1).N  So the 100(1- )%  prediction interval is obtained as 
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which gives the prediction interval for ( )E y  as 
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When 2  is unknown, it is replaced by 2ˆ MSE   and in this case, the sampling distribution of  
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is t -distribution with ( 2)n   degrees of freedom, i.e., 2nt  . 

 

The 100(1- )% prediction interval in this case is 

 /2, 2 /2, 2
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which gives the prediction interval as 
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Note that the width of the prediction interval ( )E y  is a function of 0x . The interval width is minimum for 

0x x  and widens as 0x x  increases. This is also expected as the best estimates of y  to be made at x -

values lie near the center of the data and the precision of estimation to deteriorate as we move to the 

boundary of the x -space. 
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Case 2: Prediction of actual value 

If 0x  is the value of the explanatory variable, then the actual value predictor for y  is  

 0 1 0ap b b x  . 

Here a means “actual”. The true value of y in the prediction period is given by 0 0 1 0 0y x      where 

0  indicates the value that would be drawn from the distribution of random error in the prediction period. 

Note that the form of predictor is the same as of average value predictor, but its predictive error and other 

properties are different. This is the dual nature of predictor.  

 

Predictive bias:  

The predictive error of ap  is given by 

 0 0 1 0 0 1 0 0

0 0 1 1 0 0
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ap y b b x x

b b x

  
  

     
    

 

Thus, we find that 

 0 0 0 1 1 0 0( ) ( ) ( ) ( )

0 0 0 0
aE p y E b E b x E       

   
 

which implies that ap  is an unbiased predictor of y . 

 

Predictive variance 

Because the future observation 0y  is independent of ap , the predictive variance of ap  is 
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Estimate of predictive variance 

The estimate of predictive variance can be obtained by replacing 2  by its estimate 2ˆ MSE   as 
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Prediction interval: 

If 2  is known, then the distribution of 

 0
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is (0,1).N  So the 100(1- )% prediction interval for 0y is obtained as  
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which gives the prediction interval for 0y  as 
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When 2  is unknown, then  
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follows a t -distribution with ( 2)n   degrees of freedom. The 100(1- )%  prediction interval for 0y  in 

this case is obtained as 

 


0
/2, 2 /2, 2 1

( )

a
n n

a

p y
P t t

PV p
   

      
 
 

 

which gives the prediction interval for 0y as 

2 2
0 0

/2, 2 /2, 2

( ) ( )1 1
1 , 1a n a n

xx xx

x x x x
p t MSE p t MSE

n s n s  

              
     

. 

The prediction interval is of minimum width at 0x x  and widens as 0x x  increases. 

The prediction interval for ap  is wider than the prediction interval for mp  because the prediction interval 

for ap  depends on both the error from the fitted model as well as the error associated with the future 

observations. 
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Within sample prediction in multiple linear regression model 

Consider the multiple regression model with k  explanatory variables as  

 y X   ,  

where 1 2( , ,..., ) 'ny y y y  is a 1n  vector of n  observation on study variable, 

11 12 1

21 22 2

1 2
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n n nk

x x x

x x x
X

x x x

 
 
 
 
 
 




   


 

is a n k  matrix of n observations on each of the k  explanatory variables, 1 2( , ,..., ) 'k     is a 1k   

vector of regression coefficients and 1 2( , ,..., ) 'n     is a 1n  vector of random error components or 

disturbance term following 2(0, )nN I . If the intercept term is present, take the first column of X  to be 

(1,1,...,1)' .  

 
Let the parameter   be estimated by its ordinary least squares estimator 1( ' ) 'b X X X y . Then the 

predictor is p Xb  which can be used for predicting the actual and average values of the study variable. 

This is the dual nature of predictor. 

 
Case 1: Prediction of average value of y 

When the objective is to predict the average value of y , i.e., ( ),E y  then the estimation error is given by 
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 1where ( ' ) '.H X X X X  

Then 

  ( ) 0E p E y X X      

which proves that the predictor p Xb  provides an unbiased prediction for the average value. 

The predictive variance of p  is 
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The predictive variance can be estimated by  2ˆ( )mPV p k  where 2ˆ MSE   is obtained from the 

analysis of variance based on OLSE. 
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When 2  is known, then the distribution of 
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is (0,1).N  So the 100(1- )%  prediction interval for ( )E y  is obtained as 
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which gives the prediction interval for ( )E y  as 

/2 /2( ), ( ) .m mp z PV p p z PV p 
     

 

When 2  is unknown, it is replaced by 2ˆ MSE   and in this case, the sampling distribution of  
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is t -distribution with ( )n k  degrees of freedom, i.e., n kt  . 

 

The 100(1- )% prediction interval for ( )E y in this case is 
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which gives the prediction interval for ( )E y as 

  
/2, /2,( ), ( ) .m mn k n kp t PV p p t PV p  

    
 

 

Case 2: Prediction of actual value of y  

When the predictor p Xb  is used for predicting the actual value of the study variable y , then its 

prediction error is given by 
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Thus 

 ( ) 0E p y   

which shows that p  provides unbiased predictions for the actual values of the study variable. 



Econometrics | Chapter 4 | Predictions In Linear Regression Model | Shalabh, IIT Kanpur 
 8

The predictive variance in this case is 
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The predictive variance can be estimated by 

  2ˆ( ) ( )mPV p n k   

where 2ˆ MSE   is obtained from the analysis of variance based on OLSE.  

 

Comparing the performances of p  to predict actual and average values, we find that p  in better 

predictor for predicting the average value in comparison to actual value when 

        ( ) ( )
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m aPV p PV p
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 i.e. when the total number of observations is more than twice the number of explanatory variables. 

 

Now we obtain the confidence interval for y. 

 

When 2  is known, then the distribution of 
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is (0,1).N  So the 100(1- )%  prediction interval for y is obtained as 
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which gives the prediction interval for y  as 

/2 /2( ), ( ) .a ap z PV p p z PV p 
     

 

When 2  is unknown, it is replaced by 2ˆ MSE   and in this case, the sampling distribution of  

 
 ( )a

p y

PV p


 

is t -distribution with ( )n k  degrees of freedom, i.e., n kt  .  

 



Econometrics | Chapter 4 | Predictions In Linear Regression Model | Shalabh, IIT Kanpur 
 9

The 100(1- )% prediction interval of y, in this case, is obtained as  

 
/2, /2, 1 .

( )
n k n k

a

p y
P t t
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which gives the prediction interval for y as 

  
/2, /2,( ), ( ) .a an k n kp t PV p p t PV p  

    
 

 

Outside sample prediction in multiple linear regression model 

Consider the model 

 (1)y X     

where y  is a 1n  vector of n  observations on study variable, X  is a n k  matrix of explanatory 

variables and   is a 1n  vector of disturbances following 2(0, ).nN I  

Further, suppose a set of fn  observations on the same set of k  explanatory variables are also available, 

but the corresponding fn  observations on the study variable are not available. Assuming that this set of 

observation also follows the same model, we can write 

 (2)f f fy X     

where fy  is a 1fn   vector of future values, fX  is a fn k  matrix of known values of explanatory 

variables and f  is a 1fn   vector of disturbances following 2(0, )
fnN I . It is also assumed that the 

elements of and f   are independently distributed. 

 

We now consider the prediction of fy  values for given fX  from model (2). This can be done by 

estimating the regression coefficients from the model (1) based on n  observations and use it is 

formulating the predictor in the model (2). If ordinary least squares estimation is used to estimate   in 

the model (1) as  

1( ' ) 'b X X X y   

then the corresponding predictor is  

 1( ' ) ' .f f fp X b X X X X y   
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Case 1: Prediction of average value of study variable 

When the aim is to predict the average value ( ),fE y  then the prediction error is  
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Then 
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Thus fp  provides an unbiased prediction for the average value. 

The predictive covariance matrix of fp  is 
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The predictive variance of fp  is 
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If 2  is unknown, then replace 2  by 2̂ MSE  in the expressions of the predictive covariance matrix 

and predictive variance and their estimates are 
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Now we obtain the confidence interval for ( )fE y . 

When 2  is known, then the distribution of 
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is (0,1).N  So the 100(1- )%  prediction interval of ( )fE y  is obtained as 
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which gives the prediction interval for ( )fE y  as 
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When 2  is unknown, it is replaced by 2ˆ MSE   and in this case, the sampling distribution of  
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is t -distribution with ( )n k  degrees of freedom, i.e., n kt  . 

 

The 100(1- )% prediction interval for ( )fE y  in this case is 
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which gives the prediction interval for ( )fE y  as 
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Case 2: Prediction of actual value of study variable 

When fp  is used to predict the actual value fy , then the prediction error is 
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Then 

     ( ) 0.f f f fE p y X E b E       

Thus fp  provides an unbiased prediction for actual values. 

The predictive covariance matrix of fp  in this case is  

 

    
  ' '

' ' 1

2 1 '

'

( ) ( ) '

( ) ( ) (Using ( ) ( ' ) ' )

( ' ) .
f

a f f f f f

f f f f

f f f f

f f n

Cov p E p y p y

E X b b X

X V b X E b X X X

X X X X I

   

   







    
      

   

   

 



Econometrics | Chapter 4 | Predictions In Linear Regression Model | Shalabh, IIT Kanpur 
 12

The predictive variance of fp  is 
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The estimates of the covariance matrix and predictive variance can be obtained by replacing 2  by 

2ˆ MSE   as 
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Now we obtain the confidence interval for fy . 

When 2  is known, then the distribution of 
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which gives the prediction interval for fy  as 
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When 2  is unknown, it is replaced by 2ˆ MSE   and in this case, the sampling distribution of  
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which gives the prediction interval for fy as 
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Simultaneous prediction of average and actual values of the study variable 

The predictions are generally obtained either for the average values of the study variable or actual values 

of the study variable. In many applications, it may not be appropriate to confine our attention to only to 

either of the two. It may be more appropriate in some situations to predict both the values simultaneously, 

i.e., consider the prediction of actual and average values of the study variable simultaneously. For 

example, suppose a firm deals with the sale of fertilizer to the user. The interest of the company would be 

in predicting the average value of yield which the company would like to use in showing that the average 

yield of the crop increases by using their fertilizer. On the other side, the user would not be interested in 

the average value. The user would like to know the actual increase in the yield by using the fertilizer. 

Suppose both seller and user, both go for prediction through regression modeling. Now using the classical 

tools, the statistician can predict either the actual value or the average value. This can safeguard the 

interest of either the user or the seller. Instead of this, it is required to safeguard the interest of both by 

striking a balance between the objectives of the seller and the user. This can be achieved by combining 

both the predictions of actual and average values. This can be done by formulating an objective function 

or target function. Such target function has to be flexible and should allow assigning different weights to 

the choice of two kinds of predictions depending upon their importance in any given application and also 

reducible to individual predictions leading to actual and average value prediction. 

 
Now we consider the simultaneous prediction in within and outside sample cases. 

 

Simultaneous prediction in within sample prediction 

Define a target function 

 (1 ) ( ); 0 1y E y         

which is a convex combination of actual value y  and average value ( ).E y  The weight   is a constant 

lying between zero and one whose value reflects the importance being assigned to actual value 

prediction. Moreover 0   gives the average value prediction and 1   gives the actual value 

prediction. For example, the value of   in the fertilizer example depends on the rules and regulation of 

the market, norms of society and other considerations etc. The value of   is the choice of practitioner. 

 

Consider the multiple regression model 

 2, ( ) 0, ( ') ny X E E I        . 

Estimate   by ordinary least squares estimation and construct the predictor  

 .p Xb  

Now employ this predictor for predicting the actual and average values simultaneously through the target 

function. 
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The prediction error is 

 

(1 ) ( )

( ) (1 )

( ) .

p Xb y E y

Xb X X

X b

  
    
 

    
    
  

 

Thus 

 
( ) ( ) ( )

0.

E p XE b E      


 

So p  provides an unbiased prediction for .  

 
The variance is 

 

  

  11 2

1 2

2 1 2 2

2 2

( ) ( ) '( )

( ) ' ' ' ( )

' ( ' ) ' ' ' ' ( ) ' ' ' ( ')

(1 2 ) ' ( ' ) ' '

(1 2 ) ( ' ) '

(1 2 ) .

n

Var p E p p

E b X X b

E X X X X X X X X b X X b

E X X X X

tr X X X X trI

k n

 

   

         

     

   

  







  

      
       
    

    
    

 

The estimates of predictive variance can be obtained by replacing 2  by 2ˆ MSE   as  

  2 2ˆ( ) (1 2 ) .Var p k n        

 
Simultaneous prediction is outside sample prediction: 

Consider the model described earlier under outside sample prediction as 
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The target function, in this case, is defined as 
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The predictor based on OLSE of   is 
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So 
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Thus fp  provides an unbiased prediction for f . 

The variance of fp  is 
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assuming that the elements in   and f  are mutually independent. 

 

The estimates of predictive variance can be obtained by replacing 2  by 2ˆ MSE   as  

   2 1 ' 1 2ˆ( ) ( ' ) ( ' ) 'f f f fVar p tr X X X X X X X X n      . 


