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Chapter 6 

Regression Analysis Under Linear Restrictions and Preliminary Test Estimation 

 

One of the basic objectives in any statistical modeling is to find good estimators of the parameters. In the 

context of the multiple linear regression model y X    , the ordinary least squares estimator 

  1
' 'b X X X y

  is the best linear unbiased estimator of  . Several approaches have been attempted in the 

literature to improve further the OLSE. One approach to improve the estimators is the use of extraneous 

information or prior information. In applied work, such prior information may be available about the 

regression coefficients. For example, in economics, the constant returns to scale imply that the exponents in a 

Cobb-Douglas production function should sum to unity. In another example, the absence of money illusion 

on the part of consumers implies that the sum of money income and price elasticities in a demand function 

should be zero. These types of constraints or the prior information may be available from  

(i) some theoretical considerations. 

(ii) past experience of the experimenter. 

(iii) empirical investigations. 

(iv) some extraneous sources etc. 

 

To utilize such information in improving the estimation of regression coefficients, it can be expressed in the 

form of 

(i) exact linear restrictions 

(ii) stochastic linear restrictions 

(iii) inequality restrictions. 

 

We consider the use of prior information in the form of exact and stochastic linear restrictions in the model 

y X     where y  is a ( 1)n  vector of observations on study variable, X  is a ( )n k  matrix of 

observations on explanatory variables 1 2, ,..., , ( 1)kX X X is a k   vector of regression coefficients and   is 

a ( 1)n  vector of disturbance terms. 
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Exact linear restrictions: 

Suppose the prior information binding the regression coefficients is available from some extraneous sources 

which can be expressed in the form of exact linear restrictions as 

 r R  

where  r  is a ( 1)q  vector and R  is a ( )q k  matrix with ( )   ( ).rank R q q k   The elements in 

and are known.r R  

 

Some examples of exact linear restriction r R  are as follows: 

(i) If there are two restrictions with 6k   like 

  2 4

3 4 52 1

 
  


  

 

 then  

   

0 0 1 0 1 0 0 0
,

1 0 0 1 2 1 0 0
r R

   
    
   

. 

 

(ii) If 3k   and suppose 2 3,  then 

     3 , 0 1 0r R   

(iii) If 3k   and suppose 1 2 3: : :: : :1ab b    

 then 

0 1 0

0 , 0 1 .

0 1 0

a

r R b

ab

   
        
      

 

The ordinary least squares estimator 1( ' ) 'b X X X y  does not use the prior information. It does not obey 

the restrictions in the sense that .r Rb  So the issue is how to use the sample information and prior 

information together in finding an improved estimator of  . 
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Restricted least squares estimation 

The restricted least squares estimation method enables the use of sample information and prior information 

simultaneously. In this method, choose   such that the error sum of squares is minimized subject to linear 

restrictions r R . This can be achieved using the Lagrangian multiplier technique. Define the Lagrangian 

function 

 ( , ) ( ) '( ) 2 '( )S y X y X R r           

where   is a ( 1)k   vector of the Lagrangian multiplier. 

 

Using the result that if a  and b  are vectors and A  is a suitably defined matrix, then  

 
' ( ')

' ,

a Aa A A a
a

a b b
a


 







 

we have 

 

( , )
2 ' 2 ' 2 ' 0 (*)

( , )
0.

S
X X X y R

S
R r

   

  



   




  


 

Pre-multiplying equation (*) by 1( ' ) ,R X X  we have 

 1 12 2 ( ' ) ' 2 ( ' ) ' ' 0R R X X X y R X X R      

1or         ( ' ) ' ' 0R Rb R X X R     

 
11' ( ' ) ' ( )R X X R Rb r
       

using 1( ' ) ' 0.R X X R   

Substituting   in equation (*), we get 

112 ' 2 ' 2 ' ( ' ) ' ( ) 0X X X y R R X X R Rb r
       

or   11' ' ' ( ' ) ' ( )X X X y R R X X R Rb r
   . 

Pre-multiplying by   1
'X X


 yields 

 
     

     

11 1 1

11 1

ˆ ' ' ' ' ( ' ) '

' ' ' ' .

R X X X y X X R R X X R r Rb

b X X R R X X R Rb r


  

 

    

    

 

This estimation is termed as restricted regression estimator of  .  
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Properties of restricted regression estimator 

1. The restricted regression estimator ˆ
R  obeys the exact restrictions, i.e., ˆ .Rr R  To verify this, consider  

  

     11 1ˆ ' ' ( ' )

.

RR R b X X R R X X r Rb

Rb r Rb

r


      

  


 

 

2. Unbiasedness 

The estimation error of ˆ
R  is 

 

     

     

 

111

11 1

ˆ ( ' ) ' ' '

' ' ( ' ) '

R b X X R R X X R R Rb

I X X R R X X R R b

D b

   







 

      
     

 

 

where 

  
111( ' ) ' ' .D I X X R R X X R R
       

Thus 

 
   ˆ

0

RE DE b    


 

implying that ˆ
R  is an unbiased estimator of  . 

 

3. Covariance matrix 

The covariance matrix of ˆ
R  is 

 

    
  

 

       

12

11 1 1 12 2

ˆ ˆ ˆ '

' '

( ) '

' '

' ' ' ' ' '

R R RV E

DE b b D

DV b D

D X X D

X X X X R R X X R R X X

    

 



 



   

  

  





    

 

which can be obtained as follows: 
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Consider 

         

               
             

   

11 1 1 1 1

'1 11 1 1 1 1 1 1

11 1 1 1 1 1 1

11 1

' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

    ' ' ' '

D X X X X X X R R X X R R X X

D X X D X X X X R R X X R R X X I X X R R X X R R

X X X X R R X X R R X X X X R R X X R R X X

X X R R X X R R X

    

       

      

 

    

           

        

         

       

11 1 1

11 1 1 1

' ' ' ' '

' ' ' ' ' ' .

X R R X X R R X X

X X X X R R X X R R X X

  

   

 
 

    

 

 

Maximum likelihood estimation under exact restrictions: 

Assuming 2~ (0, )N I  , the maximum likelihood estimator of   and 2  can also be derived such that it 

follows r R . The Lagrangian function as per the maximum likelihood procedure can be written as 

    
2

2
2 2

1 1 ( ) '( )
, , exp '

2 2

n

y X y X
L R r

     
 

                 
 

where   is a  1q  vector of Lagrangian multipliers. The normal equations are obtained by partially 

differentiating the log-likelihood function with respect to 2,   and   and equated to zero as 

 

   

   

     

2

2

2

2

2 2 4

ln , , 1
' ' 2 ' 0 (1)

ln , ,
2 0 (2)

ln , , 2 '2
0. (3)

L
X X X y R

L
R r

L y X y Xn

  
 

 

  



    
  


    




  


  

   


 

Let 2, andR R     denote the maximum likelihood estimators of 2, and    respectively which are 

obtained by solving equations (1), (2) and (3) as follows: 

 

From equation (1), we get optimal   as 

 
   

11

2

' '
.

R X X R r R
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Substituting   in equation (1) gives 

      
11 1

' ' ' 'R X X R R X X R r R  
     

    

where   1
' 'X X X y   is the maximum likelihood estimator of   without restrictions. From equation (3), 

we get 

 
   2

'
.R

y X y X

n

 


 


 
  

The Hessian matrix of second-order partial derivatives of 2and   is positive definite at 

2 2and .R R       

The restricted least squares and restricted maximum likelihood estimators of   are the same whereas they 

are different for 2 . 

 

Test of hypothesis 

It is important to test the hypothesis 

 0

1

:

:

H r R

H r R







 

before using it in the estimation procedure. 

 

The construction of the test statistic for this hypothesis is detailed in the module on a multiple linear 

regression model. The resulting test statistic is  

 

11( ) ' ( ' ) ' ( )

( ) '(

r Rb R X X R r Rb

q
F

y Xb y Xb
n k

     
 
 

  
  

 

which follows a F -distribution with q  and ( )n k  degrees of freedom under 0.H  The decision rule is to 

reject 0 atH   level of significance whenever 

 1 ( , ).F F q n k   
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Stochastic linear restrictions: 

The exact linear restrictions assume that there is no randomness involved in the auxiliary or prior 

information. This assumption may not hold true in many practical situations, and some randomness may be 

present. The prior information in such cases can be formulated as 

 r R V   

where r  is a  1q  vector, R  is a  q k  matrix and V  is a  1q  vector of random errors. The elements 

in r  and R  are known. The term V  reflects the randomness involved in the prior information r R . 

Assume 

 

 

( ) 0

( ')

' 0.

E V

E VV

E V









 

where   is a known  q q  positive definite matrix and   is the disturbance term is a multiple regression 

model .y X     

Note that ( )E r R . 

 

The possible reasons for such stochastic linear restriction are as follows: 

(i) Stochastic linear restrictions exhibit the instability of estimates. An unbiased estimate with the 

standard error may exhibit stability. For example, in repetitive studies, the surveys are conducted 

every year. Suppose the regression coefficient 1  remains stable for several years. Suppose its 

estimate is provided along with its standard error. Suppose its value remains stable around the 

value 0.5 with standard error 2. This information can be expressed as 

1 1,r V   

      where 2 2
1 10.5, ( ) 0, ( ) 2 .r E V E V    

Now   can be formulated with this data. It is not necessary that we should have information for 

all regression coefficients, but we can have information on some of the regression coefficients 

only. 

 

(ii) Sometimes the restrictions are in the form of inequality. Such restrictions may arise from 

theoretical considerations. For example, the value of a regression coefficient may lie between 3 

and 5, i.e., 13 5,   say. In another example, consider a simple linear regression model 

  0 1y x        
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 where y  denotes the consumption expenditure on food and x  denotes the income. Then the 

marginal propensity (tendency) to consume is 

   1,
dy

dx
  

 i.e., if salary increase by rupee one, then one is expected to spend 1 , amount of rupee one on 

food or save 1(1 )  amount. We may put a bound on   that either one can not spend all of 

rupee one or nothing out of rupee one. So 10 1.   This is a natural restriction arising from 

theoretical considerations. 

 

 These bounds can be treated as p  sigma limits, say 2-sigma limits or confidence limits. Thus  

   

2 0

2 1

1 1
, .

2 4

 
 

 

 
 

  

 

 These values can be interpreted as 

  
1 1

2
1

1

2
1

( ) .
16

V

E V

  


 

(iii) Sometimes the truthfulness of exact linear restriction r R  can be suspected and accordingly, 

an element of uncertainty can be introduced. For example, one may say that 95% of the 

restrictions hold. So some element of uncertainty prevails. 

 

Pure and mixed regression estimation: 

Consider the multiple regression model 

y X    

with n  observations and k  explanatory variables 1 2, ,..., kX X X . The ordinary least squares estimator of   is 

   1
' 'b X X X y

  

which is termed as pure estimator. The pure estimator b  does not satisfy the restriction .r R V   So the 

objective is to obtain an estimate of   by utilizing the stochastic restrictions such that the resulting estimator 

satisfies the stochastic restrictions also. In order to avoid the conflict between prior information and sample 

information, we can combine them as follows: 
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Write 

 
2( ) 0, ( ')

( ) 0, ( ') , ( ') 0
ny X E E I

r R V E V E VV E V

    
  

   
    

 

jointly as 

 
y X

r R V




     
      

     
 

or a A w   

where    ', ( ) ', '.a y r A X R w V    

 

Note that 

 
( ) 0

( )
( ) 0

E
E w

E V

   
    
   

 

 

2

( ')

' '

' '

0
.

0
n

E ww

V
E

V VV

I

 





 

 
  

 
 

  
 

 

 

This shows that the disturbances w  are non-spherical or heteroskedastic. So the application of generalized 

least squares estimation will yield more efficient estimator than ordinary least squares estimation. So 

applying generalized least squares to the model 

 ( ) 0, ( ) ,a AB w E w V w      

the generalized least square estimator of   is given by 

   11 1ˆ ' ' .M A A A a
     

 

The explicit form of this estimator is obtained as follows: 

 
 

2

1 2

1

11

1
0

' ' '

0

' '

nI y
A a X R

r

X y k r
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2

1 2

1

11

1
0

' ' '

0

' ' .

nI X
A A X R

R

X X R R








 
          

  

 

Thus 

 
1

1 1
2 2

1 1ˆ ' ' ' 'M X X R R X y R r 
 


          

   
 

 

assuming 2  to be unknown. This is termed as mixed regression estimator. 

If 2  is unknown, then 2  can be replaced by its estimator    2 2 1
ˆ 's y Xb y Xb

n k
    


 and feasible 

mixed regression estimator of   is obtained as 

 
1

1 1
2 2

1 1ˆ ' ' ' ' .f X X R R X y R r
s s




           
   

 

This is also termed as estimated or operationalized generalized least squares estimator. 

 

Properties of mixed regression estimator: 

(i) Unbiasedness: 

The estimation error of ˆ
m  is 

 

 

   

 
   

1 1

11 1

11 1

11 1

ˆ ' '

' '

' ' .

ˆ ' ' ( )

0.

M

M

A A A a

A A A AB w

A A A w

E A A A E w

  



 

 

 

 

 

    

    

  

   



 

So mixed regression estimator provides an unbiased estimator of  . Note that the pure regression 

  1
' 'b X X X y

  estimator is also an unbiased estimator of  . 
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(ii) Covariance matrix 

The covariance matrix of ˆ
M  is 

    
     
 

1 11 1 1 1

11

1
1

2

ˆ ˆ ˆ '

' ' ' '

'

1
' ' .

M M MV E

A A A E VV A A A

A A

X X R R

    



    






  

    

 

    
 

 

 

(iii) The estimator ˆ
M  satisfies the stochastic linear restrictions in the sense that  

  
ˆ

ˆ( ) ( )

0

.

M

M

r R V

E r RE E V

R

R








 

 

 


 

 

(iv) Comparison with OLSE 

We first state a result that is used further to establish the dominance of ˆ
M  over b . 

 

Result: The difference of matrices  1 1
1 2A A   is positive definite if  2 1A A  is positive definite. 

 

Let 

2 1
1

1
1

2 2

( ) ( ' )

1ˆ( ) ' 'M

A V b X X

A V X X R R











 

     
 

 

1 1 1
1 2 2 2

1

1 1
then ' ' '

'

A A X X R R X X

R R

 
  



    

 
 

which is a positive definite matrix. This implies that 

 1 2
ˆ( ) ( )MA A V b V     

is a positive definite matrix. Thus ˆ
M  is more efficient than b  under the criterion of covariance matrices or 

Loewner ordering provided 2  is known. 
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Testing of hypothesis: 

In the prior information specified by stochastic restriction ,r R V   we want to test whether there is a 

close relation between the sample information and the prior information. The test for the compatibility of 

sample and prior information is tested by 2  test statistic given by 

      
112

2

1
' ' 'r Rb R X X R r Rb



       

assuming 2  is known and   1
' 'b X X X y

 . This follows a 2 -distribution with q  degrees of freedom. 

 

If 0  , then the distribution is degenerated and hence r  becomes a fixed quantity. For the feasible version 

of mixed regression estimator 

1
1 1

2 2

1 1ˆ ' ' ' ' ,f X X R R X y R r
s s




           
   

 

the optimal properties of mixed regression estimator like linearity unbiasedness and/or minimum variance do 

not remain valid. So there can be situations when the incorporation of prior information may lead to a loss in 

efficiency. This is not a favourable situation. Under such situations, pure regression estimator is better to use. 

In order to know whether the use of prior information will lead to better estimator or not, the null hypothesis 

0 : ( )H E r R  can be tested. 

 

For testing the null hypothesis  

 0 : ( )H E r R  

when 2  is unknown, we use the F  statistic given by 

 
      

11

2

' ' 'r Rb R X X R r Rb q
F

s

       

   2 1
where ' ands y Xb y Xb F

n k
  


 follows a F distribution with q  and ( )n k  degrees of freedom 

under 0.H  
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Inequality Restrictions 

Sometimes the restriction on the regression parameters or equivalently the prior information about the 

regression parameters is available in the form of inequalities. For example, 

1 3 1 21 2,5 6,2 2 5          ,  etc. Suppose such information is expressible in the form of R r  . 

We want to estimate the regression coefficient   in the model y X     subject to constraints  R r  .  

 

One can minimize ( ) '( )y X y X    subject to R r   to obtain an estimator of   . This can be 

formulated as a quadratic programming problem and can be solved using an appropriate algorithm, e.g. 

Simplex algorithm and a numerical solution is obtained. The advantage of this procedure is that a solution  

̂  is found that fulfils the condition. The disadvantage is that the statistical properties of the estimates are 

not easily determined, and no general conclusions about superiority can be made. 

 

Another option to obtain an estimator of   is subject to inequality constraints is to convert the inequality 

constraints in the form of stochastic linear restrictions e.g.,  p-sigma limits, and use the framework of mixed 

regression estimation. 

 

The minimax estimation can also be used to obtain the estimator of   under inequality constraints. The 

minimax estimation is based on the idea that the quadratic risk function for the estimate ̂  is not minimized 

over the entire parameter space but only over an area that is restricted by the prior knowledge or restrictions 

in relation to the estimate. 

 

If all the restriction define a convex area, this area can be enclosed in an ellipsoid of the following form  

   ( ) : 'B T k      

with the origin as center point or in  

  
 0 0 0( , ) : ( ) ' ( )B T k         

 
with the center point vector 0  where k > 0  is a given constant and T is a known p p  matrix which is 

assumed to be positive definite. Here B defines a concentration ellipsoid. 
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First, we consider an example to understand how the inequality constraints are framed. Suppose it is known a 

priori that  

  ( 1, 2,..., n)i i ia b i    

when ai and bi (i = 1,2,…,n) are known and may include ia     and ib    These restrictions can be 

written as  

  

2
1,    1, 2,..., .

1
2( )

i i
i

i i

a b

i n

b a

 


 



 

Now we want to construct a concentration ellipsoid 0 0( ) ( ) 1T       which encloses the cuboid and 

fulfils the following conditions: 

(i) The ellipsoid and the cuboid have the same center point, 0 1 1

1
( , , ).

2 p pa b a b      

(ii) The axes of the ellipsoid are parallel to the coordinate axes, that is , 1( , , ).pT diag t t   

(iii)The corner points of the cuboid are on the surface of the ellipsoid, which means we have  

 

2

1

1.
2

p
i i

i
i

a b
t



   
 


 

(iv) The ellipsoid has minimal volume: 

 

1

2

1

,
p

K i
i

V c t




 
 

with pc  being a constant dependent on the dimension . 

 

We now include the linear restriction (iii) for the  by means of Lagrangian multipliers  and solve (with  

2 2 1

1

p

p p i
i

c V t 



 ) 

  
 

2
1

11

min min 1 .
2i i

p p
i i

i it t
ii

a b
V t t



         
     

  

The normal equations are then obtained as  

  
2

2 1 0
2

j j
i i

i ji

a bV
t t

t
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and  
2

1 0.
2

j j
i

a bV
t


 

     



 

 

From 0,
i

V

t







 we get 

  

2

2 1

2

1 1

1

2
 (for all 1, 2, , )

2
   ,

i i
i j j j

p

i i
i j j

t t j p
a b

t t
a b

  



 



 
     

 
     







    

and for any two ,i j  we obtain 

  

2 2

,
2 2

j j j j
i j

a b a b
t t

    
   

   
 

and hence after summation according to 0
V








 gives 

  
2 2

1

1.
2 2

p
j j j j

j j
i

a b a b
t pt



    
    

   
  

This leads to the required diagonal elements of  

     24
1,2, , .j j jt a b j p

p


     

Hence, the optimal ellipsoid 0 0( ) ( ) 1T      , which contains the cuboid, has the center point vector 

   0 1 1

1
, ,

2 p pa b a b      

and the following matrix, which is positive definite for finite limits , ( )i i i ia b a b ,  

      22

1 1

4
, , .p pT diag b a b a

p

     

 

Interpretation: The ellipsoid has a larger volume than the cuboid. Hence, the transition to an ellipsoid as a 

priori information represents a weakening but comes with easier mathematical handling. 
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Example: (Two real regressors) The center-point equation of the ellipsoid is (see Figure ) 

 

 
2 2

2 2
1,

x y

a b
   

or  
2

2

1
0

,   1
1

0

xax y
y

b

 
  

  
   
 

 

with  1 22 2

1 1
, ,T diag diag t t

a b
   
 

 

and the area 
1 1

2 2
1 2F ab t t 
 

   . 

 
The Minimax Principle:  

Consider the quadratic risk   ˆ ˆ ˆ( , , )R A tr AE     
    
 

 and a class ˆ{ }  of estimators. Let 

( ) pB     be a convex region of a priori restrictions for . The criterion of the minimax estimator leads to 

the following. 

Definition: An estimator * ˆ{ }b    is called a minimax estimator of   if  

An explicit solution can be achieved if the weight matrix is of the form 'A aa  of rank 1. 

Using the abbreviation,  1 2
*D S k T  where  'S X X , we have the following result: 

Result: In the model 2, (0, )y X N I      , with the restriction 'T k     with 0T  , and the risk 

function  ˆ, , a ,R    the linear minimax estimator is of the following form: 

  
1 2 1

*

1
*

( ' ) '

'

b X X k T X y

D X y

 



 


 

with the bias vector and covariance matrix as 

  
 
 

1 2 1
* *

2 1 1
* * *

, ,Bias b k D T

V b D SD

  



 

 

 


 

and the minimax risk is 
    2 1

* *sup , , .
T k

R b a a D a
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Result: If the restrictions are 0 0( ) ( ) kT       with center point 0 0,   the linear minimax estimator 

is of the following form: 

   1
* 0 0 * 0( )b D X y X       

with bias vector and covariance matrix as  

  
    

    

1 2 1
* 0 * 0

* 0 *

, ,

,

Bias b k D T

V b V b

    



   


 

and the minimax risk is  

  
   

  
0 0

2 1
* 0 *sup , , .

T k

R b a a D a
   

   

  

  

 
Interpretation: A change of the center point of the a priori ellipsoid has an influence only on the estimator 

itself and its bias. The minimax estimator is not operational because 2  is unknown. The smaller the value 

of k, the stricter is the a priori restriction for fixed T. Analogously, the larger the value of k, the smaller is the 

influence of  'T k    on the minimax estimator. For the borderline case, we have 

   :  as  KB T k k        

and    1

*lim .
k

b b X X X y



    

 

Comparison of b* and b : 

Minimax Risk: Since the OLS estimator is unbiased, its minimax risk is  

  2 1sup , , .
T k

R b a a S a
 

 

 

   

The linear minimax estimator *b  has a smaller minimax risk than the OLS estimator, and  

  
   

 

*

12 1 1 2

, , sup , ,

( ) 0,

T k

R b a R b a

a S k T S a

 


 

 

 

 

   
 

since   11 1 2 0S k T S
     

Considering the superiority with MSE matrices, we get 

  
       

 
* * * *

2 1 2 2 1
* *

, , ,M b V b Bias b Bias b

D S k T T D
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Hence, *b  superior to  under the criterion of Loewner ordering when 

       2 1 1 2 2 1
* * * * * *, , [ ] 0,xb b V b M b D D S D S k T T D               

which is possible if and only if 

   
1 2 2

* *

2 4 1 2 1 2
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Preliminary Test Estimation: 

The statistical modeling of the data is usually done assuming that the model is correctly specified and the 

correct estimators are used for the purpose of estimation and drawing statistical inferences from a sample of 

data. Sometimes the prior information or constraints are available from outside the sample as non-sample 

information. The incorporation and use of such prior information along with the sample information lead to 

more efficient estimators provided it is correct. So the suitability of the estimator lies on the correctness of 

prior information. One possible statistical approach to check the correctness of prior information is through 

the framework of the test of hypothesis. For example, if prior information is available in the form of exact 

linear restrictions r R , there are two possibilities- either it is correct or incorrect. If the information is 

correct, then r R  holds true in the model y X    , then the restricted regression estimator (RRE) 

     
11 1ˆ ' ' ' 'R b X X R R X X R r Rb
       of   is used, which is more efficient than OLSE 

  1
' 'b X X X y

  of  . Moreover, RRE satisfies the restrictions, i.e. ˆ
RR r  . On the other hand, when the 

information is incorrect, i.e., r R , then OLSE is better than RRE. The truthfulness of prior information in 

terms of r R  or r R  is tested by the null hypothesis 0 :H R r   using the F-statistics.  
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 If 0H  is accepted at  level of significance, then we conclude that R r   and in such a situation, RRE 

is better than OLSE.  

 On the other hand, if 0H  is rejected at  level of significance, then we conclude that R r   and OLSE 

is better than RRE under such situations.  

 

So when the exact content of the true sampling model is unknown, then the statistical model to be used is 

determined by a preliminary test of hypothesis using the available sample data. Such procedures are 

completed in two stages and are based on a test of hypothesis which provides a rule for choosing between the 

estimator based on the sample data, and the estimator is consistent with the hypothesis. This requires to make 

a test of the compatibility of OLSE (or maximum likelihood estimator) based on sample information only 

and RRE based on the linear hypothesis. The one can make a choice of estimator depending upon the 

outcome. Consequently, one can choose OLSE or RRE. Note that under the normality of random errors, the 

equivalent choice is made between the maximum likelihood estimator of  and the restricted maximum 

likelihood estimator of  , which has the same form as OLSE and RRE, respectively. So essentially a pre-

test of hypothesis is done for 0 :H R r   and based on that, a suitable estimator is chosen. This is called the 

pre-test procedure, which generates the pre-test estimator that, in turn, provides a rule to choose between 

restricted or unrestricted estimators. 

 

One can also understand the philosophy behind the preliminary test estimation as follows. Consider the 

problem of an investigator who has a single data set and wants to estimate the parameters of a linear model 

that are known to lie in a high dimensional parametric space  1 . However, the prior information about the 

parameter is available, and it suggests that the relationship may be characterized by a lower-dimensional 

parametric space 2 1   . Under such uncertainty, if the parametric space 1  is estimated by OLSE, the 

result from the over specified model will be unbiased but will have larger variance. Alternatively, the 

parametric space 2  may incorrectly specify the statistical model and if estimated by OLSE will be biased. 

The bias may or may not overweigh the reduction in variance. If such uncertainty is represented in the form 

of the general linear hypothesis, this leads to pre-test estimators.  
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Let us consider the conventional pre-test estimator under the model y X     with usual assumptions and 

the general linear hypothesis 0 :H R r  which can be tested by using F statistics. The null hypothesis 0H  is 

rejected at   level of significance when 

, ,calculated p n pu F F c     

where the critical value  is determined for the given level of the test   by 

, ,p n p p n p

c

dF P F c 


       . 

 If 0H
 

is true, meaning thereby that the prior information is correct, then use RRE 

     
11 1ˆ ' ' ' 'R b X X R R X X R r Rb
       to estimate  . 

 If 0H  is false, meaning thereby that the prior information is incorrect, then use OLSE 

  1
' 'b X X X y

 to estimate  .  

Thus the estimator to be used depends on the preliminary test of significance and is of the form 

   
    if     

       if   

ˆ
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This estimator ˆ
PT  called a preliminary test or pre-test estimator of  . Alternatively, 
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where the indicator functions are defined as  

   

   

0,

,
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0    otherwise                 

1    when      

0    otherwise.      
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 If 0  , then        0,
ˆ ˆ ˆ. .PT R RI u b I u      . 

 If 1  then        0 0,
ˆ ˆ . .PT R I u b I u b     . 

Note that 0   and 1  indicate that the probability of type 1 error (i.e., rejecting 0H  when it is true) is 0 

and 1 respectively. So the entire area under the sampling distribution is the area of acceptance or the area of 
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rejection of null hypothesis. Thus the choice of   has a crucial role to play in determining the sampling 

performance of the pre-test estimators. Therefore in a repeated sampling context, the data, the linear 

hypothesis, and the level of significance all determine the combination of the two estimators that are chosen 

on the average. The level of significance has an impact on the outcome of pretest estimator in the sense of 

determining the proportion of the time each estimator is used and in determining the sampling performance 

of pretest estimator. 

 

We use the following result to derive the bias and risk of pretest estimator: 

 
Result 1: If the 1K   random vector, /Z  , is distributed as a multivariate normal random vector with mean 

/   and covariance matrix kI  and is independent of 2
( )n k   then 
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where 2' / 2     and * / ( ).c cK n K  . 

 

Result 2: If the 1K   random vector, /Z   is distributed as a multivariate normal random vector with mean 

/   and covariance kI  and is independent of 2
( )n k   then 
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where * / ( ).c cK n K   

 

Using these results, we can find the bias and risk of ˆ
PT  follows: 

Bias: 
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where 2

2

( 2, ' /2 )
,

p
r R

  
  


   denotes the non-central 2 distribution with noncentrality parameter 

2

2

( 2, , ' /2 )
' / 2 ,

p n p
F

  
  

 
 denotes the non-central distribution with noncentrality parameter 2' / 2   . 

 
Thus, if 0  , the pretest estimator is unbiased. Note that the size of bias is affected by the probability of a 

random variable with a non-central F- distribution being less than a constant that is determined by the level 

of the test, the number of hypothesis and the degree of hypothesis error . Since the probability is always 

less than or equal to one, so ˆ( ) ( )PTbias bias b  . 

Risk: 

The risk of pretest estimator is obtained as  
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or compactly, 

       2 2, ˆ 2 2 4PT p p l l              

where 
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The risk function implies the following results: 

1. If the restrictions are correct and 0  , the risk of the pretest estimator 2 [1 (2)]K l   where 

0 [1 (2)] 1l  
 
for 0 c   . Therefore, the pretest estimator has risk less than that of the least-

squares estimator at the origin 0  , and the decrease in risk depends on the level of significance   

and, correspondingly, on the critical value of the test c.  

2. As the hypothesis error r   , and thus 2' / 2   , increases and approaches infinity, ( )l   and 

' ( )l   approach zero. The risk of the pretest estimator, therefore, approaches 2 p , the risk of 

the unrestricted least squares estimator. 
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3. As the hypothesis error grows, the risk of the pretest estimator increases obtains a maximum after 

crossing the risk of the least-squares estimator, and then monotonically decreases to approach 2 p  

the risk of the OLSE. 

4. The pretest estimator risk function defined on the 2' / 2    parameter spaces crosses the risk 

function of the least-squares estimator within the bounds 2/ 4 ' / 2 / 2p p    . 

 
The sampling characteristic of the preliminary test estimator are summarized in Figure 1. 

From these results, we see that the pretest estimator does well relative to OLSE if the hypothesis is correctly 

specified. However, in the 2' / 2    space representing the range of hypothesis are correctly specified. 

However, in the 2' / 2    space representing the range of hypothesis errors, the pretest estimator is inferior 

to the least-squares estimator over an infinite range of the parameter space. In figures 1 and 2, there is a 

range of the parameter space which the pretest estimator has the risk that is inferior to (greater than) that of 

both the unrestricted and restricted least squares estimators. No one estimator depicted in Figure 1 dominates 

the other competitors. In addition, in applied problems, the hypothesis errors, and thus the correct  in the 

specification error parameter space, are seldom known. Consequently, the choice of estimator is unresolved. 

 
The Optimal Level of Significance 

The form of the pretest estimator involves, for evaluation purposes, the probabilities of ratios of random 

variables (2)l  and (4)l  being less than a constant that depends on the critical value of the test  or on the 

level of statistical significance  . Thus as  0   the probabilities ( ) 1l   , and the risk of the pretest 

estimator approaches that of the restricted regression estimator ˆ
R . In contrast, as 1, ( )l     approaches 

zero and the risk of the pretest estimator approaches that of the least-squares estimator b. The choice of 

, which has a crucial impact on the performance of the pretest estimator, is portrayed in Figure 3. 
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Since the investigator is usually unsure of the degree of hypothesis specification error, and thus is unsure of 

the appropriate point in the   space for evaluating the risk, the best of worlds would be to have a rule that 

mixes the unrestricted and restricted estimators so as to minimize risk regardless of the relevant specification 

error 
2' / 2   . Thus the risk function traced out by the cross-hatched area in Figure 2 is relevant. 

Unfortunately, the risk of the pretest estimator, regardless of the choice of  , is always equal to or greater 

than the minimum risk function for some range of the parameter space. Given this result, one criterion that 

has been proposed for choosing the   level might be to select the critical value c that would minimize the 

maximum regret of not being on the minimum risk function, reflected by the boundary of the shaded area. 

Another criterion that has been proposed for choosing   is to minimize the average regret over the whole 

2' / 2    space. Each of these criteria leads to different conclusions or rules for choice, and the question 

concerning the optimal level of the test is still open. One obvious thing is that conventional choices of 0.05 

and 0.01 may have rather severe statistical consequences.  

 

 

 

 

 


