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Chapter 6 

Regression Analysis Under Linear Restrictions and Preliminary Test Estimation 
 

One of the basic objectives in any statistical modeling is to find good estimators of the parameters.  In the 

context of multiple linear  regression model y X β ε= + , the ordinary least squares estimator 

( ) 1' 'b X X X y−=  is the best linear unbiased estimator of  β . Several approaches have been attempted in the 

literature to improve further the OLSE. One  approach to improve the estimators is the  use of extraneous 

information or prior information.  In applied work, such prior  information  may be  available about the 

regression  coefficients. For example, in economics, the  constant returns to  scale imply that the exponents 

in a Cobb-Douglas production function should sum to unity.  In another example, absence of  money illusion 

on the part of consumers  implies that the sum of money income  and price elasticities in a demand function  

should be zero.  These types of constraints  or the prior information may be available from  

(i) some theoretical considerations. 

(ii) past experience of  the experimenter. 

(iii) empirical investigations. 

(iv) some extraneous sources etc. 

 

To utilize such information in improving the estimation of regression coefficients, it can be expressed in the 

form of 

(i) exact linear restrictions 

(ii) stochastic linear restrictions 

(iii) inequality restrictions. 

 

We consider the use of prior information in the form of exact and stochastic linear restrictions in the model 

y X β ε= +  where y  is a ( 1)n×  vector of observations on study variable, X  is a ( )n k×  matrix of 

observations on explanatory variables 1 2, ,..., , ( 1)kX X X is a kβ ×  vector of regression coefficients and ε  is 

a ( 1)n×  vector of disturbance terms. 
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Exact linear restrictions: 
Suppose the prior information binding the regression coefficients is available from some extraneous sources 

which can be expressed in the form of exact  linear restrictions as 

 r Rβ=  

where  r  is a ( 1)q×  vector and R  is a ( )q k×  matrix with ( )   ( ).rank R q q k= <   The elements in 

and are known.r R  

 

Some examples of exact linear restriction r Rβ=  are as follows: 

(i) If there are two restrictions  with 6k =  like 

  2 4

3 4 52 1
β β
β β β

=
+ + =

 

 then  

   

0 0 1 0 1 0 0 0
,

1 0 0 1 2 1 0 0
r R

−   
= =   
   

. 

 

(ii) If 3k =  and suppose 2 3,β = then 

  [ ] [ ]3 , 0 1 0r R= =  

(iii) If  3k =  and suppose 1 2 3: : :: : :1ab bβ β β  

 then 
0 1 0
0 , 0 1 .
0 1 0

a
r R b

ab

−   
   = = −   
   −   

 

The ordinary least squares estimator 1( ' ) 'b X X X y−=  does not uses the prior  information. It does not obey 

the  restrictions in the sense that .r Rb≠  So the issue is how to use the sample  information and prior 

information together in finding an improved estimator of β . 
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Restricted least squares estimation 
The restricted least squares estimation method enables the use of sample  information and prior information 

simultaneously. In this method, choose β  such  that the error sum of squares is minimized subject to linear 

restrictions r Rβ= . This can be achieved using the Lagrangian  multiplier technique. Define the Lagrangian  

function 

 ( , ) ( ) '( ) 2 '( )S y X y X R rβ λ β β λ β= − − − −  

where λ  is a ( 1)k ×  vector of Lagrangian multiplier. 

 

Using the result that if a  and b  are vectors and A  is a suitably defined matrix, then  

 
' ( ')

' ,

a Aa A A a
a

a b b
a

∂
= +

∂
∂

=
∂

 

we have 

 

( , ) 2 ' 2 ' 2 ' ' 0 (*)

( , ) 0.

S X X X y R

S R r

β λ β λ
β
β λ β
λ

∂
= − − =

∂
∂

= − =
∂

 

Pre-multiplying equation (*) by 1( ' ) ,R X X − we  have 

 1 12 2 ( ' ) ' 2 ( ' ) ' ' 0R R X X X y R X X Rβ λ− −− − =  
1or         ( ' ) ' ' 0R Rb R X X Rβ λ−− − =  

       
11' ( ' ) ' ( )R X X R Rb rλ
−− ⇒ = − −   

using  1( ' ) ' 0.R X X R− >  

Substituting λ  in equation (*), we get 
112 ' 2 ' 2 ' ( ' ) ' ( ) 0X X X y R R X X R Rb rβ
−− − + − =   

or       ( ) 11' ' ' ( ' ) ' ( )X X X y R R X X R Rb rβ
−−= − − . 

Pre-multiplying by ( ) 1'X X −  yields 

 
( ) ( ) ( )

( ) ( ) ( )

11 1 1

11 1

ˆ ' ' ' ' ( ' ) '

' ' ' ' .

R X X X y X X R R X X R r Rb

b X X R R X X R Rb r

β
−− − −

−− −

 = + − 

 = − − 

 

This estimation is termed as restricted regression estimator of β .  
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Properties of restricted regression estimator 

1.   The restricted regression estimator ˆ
Rβ  obeys the exact restrictions, i.e.,  ˆ .Rr Rβ=   To verify this, 

consider  

  

( ) { } ( )11 1ˆ ' ' ( ' )

.

RR R b X X R R X X r Rb

Rb r Rb
r

β
−− − = + −  

= + −
=

 

 

2. Unbiasedness 

The estimation error of  ˆ
Rβ  is 

 

( ) ( ) ( )

( ) { } ( )

( )

11

11 1

ˆ ( ' ) ' ' '

' ' ( ' ) '

R b X X R R X X R R Rb

I X X R R X X R R b

D b

β β β β

β

β

−−

−− −

 − = − + − 
 = − −  

= −

 

where 

 ( )
111( ' ) ' ' .D I X X R R X X R R
−−−  = −    

Thus 

 ( ) ( )ˆ

0
RE DE bβ β β− = −

=
 

implying that ˆ
Rβ  is an unbiased estimator  of  β . 

 

3.  Covariance matrix 

The covariance matrix of  ˆ
Rβ  is 

 

( ) ( )( )
( )( )

( )

( ) ( ) ( ) ( )

12

11 1 1 12 2

ˆ ˆ ˆ '

' '
( ) '

' '

' ' ' ' ' ' '

R R RV E

DE b b D
DV b D

D X X D

X X X X R R X X R R X X

β β β β β

β β

σ

σ σ

−

−− − − −

= − −

= − −

=

=

 = −  

 

which can be obtained as follows: 
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Consider 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

11 1 1 1 1

'1 11 1 1 1 1 1 1

11 1 1 1 1 1 1

11 1

' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' '

    ' ' ' '

D X X X X X X R R X X R R X X

D X X D X X X X R R X X R R X X I X X R R X X R R

X X X X R R X X R R X X X X R R X X R R X X

X X R R X X R R X

−− − − − −

− −− − − − − − −

−− − − − − − −

−− −

 = −  

   = − −      

   = − −   

 +   ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 1

11 1 1 1

' ' ' ' '

' ' ' ' ' ' .

X R R X X R R X X

X X X X R R X X R R X X

−− − −

−− − − −

 
 

 = −  

 

 

Maximum likelihood estimation under exact restrictions: 

Assuming 2~ (0, )N Iε σ , the maximum likelihood estimator of  β  and  2σ  can also be derived such that it 

follows r Rβ= .  The Lagrangian function as per the maximum likelihood procedure can be written  as 

 ( ) ( )
22

2 2

1 1 ( ) '( ), , exp '
2 2

n

y X y XL R rβ ββ σ λ λ β
πσ σ

 − −    = − − −        
 

where λ  is a ( )1q×  vector of Lagrangian multipliers.  The normal equations are obtained by partially 

differentiating the log – likelihood function with respect to 2,β σ  and λ  and equated to  zero as 

 

( ) ( )

( ) ( )

( ) ( ) ( )

2

2

2

2

2 2 4

ln , , 1 ' ' 2 ' 0 (1)

ln , ,
2 0 (2)

ln , , 2 '2 0. (3)

L
X X X y R

L
R r

L y X y Xn

β σ λ
β λ

β σ

β σ λ
β

λ
β σ λ β β
σ σ σ

∂
= − − + =

∂

∂
= − =

∂
∂ − −

= − + =
∂

 

Let  2, andR Rβ σ λ 

  denote the maximum likelihood estimators of  2, andβ σ λ  respectively which  are 

obtained by solving equations (1), (2) and (3) as follows: 

 

From equation (1), we get optimal λ  as 

 
( ) ( )

11

2

' '
.

R X X R r Rβ
λ

σ

−−  − =






 

Substituting λ  in equation (1) gives 

 ( ) ( ) ( )
11 1' ' ' 'R X X R R X X R r Rβ β β
−− − = + − 

    
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where  ( ) 1' 'X X X yβ −=  is the maximum likelihood estimator of β  without restrictions. From equation (3), 

we get 

 
( ) ( )2

'
.R

y X y X

n

β β
σ

− −
=

 

  

The Hessian matrix of second order partial derivatives of  2andβ σ  is positive definite at 

2 2and .R Rβ β σ σ= =

  

The restricted least squares and restricted maximum likelihood estimators of  β  are same whereas they are 

different for  2σ . 

 

Test of hypothesis 
It is important to test the hypothesis 

 0

1

:
:

H r R
H r R

β
β

=
≠

 

before using it in the estimation procedure. 

 

The construction of the test statistic for this hypothesis is detailed in the module on multiple linear regression 

model.  The resulting test statistic is  

 

11( ) ' ( ' ) ' ( )

( ) '(

r Rb R X X R r Rb
q

F
y Xb y Xb

n k

−−  − −  
 
 =

− − 
 − 

 

which  follows a F -distribution with  q  and ( )n k−  degrees of freedom under 0.H   The decision rule is to 

reject 0 atH α  level of significance whenever 

 1 ( , ).F F q n kα−≥ −  
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Stochastic linear restrictions: 
The exact linear restrictions assume that there is no randomness involved in the auxiliary or prior 

information. This  assumption may not hold true in many practical situations and some randomness  may be 

present. The prior information in such cases can be formulated as 

 r R Vβ= +  

where r  is a ( )1q×  vector,  R  is a ( )q k×  matrix and V  is a ( )1q×  vector  of random errors. The elements 

in r  and R  are known. The term V  reflects the randomness involved in the prior information r Rβ= .  

Assume 

 
( )

( ) 0
( ')

' 0.

E V
E VV
E V

ψ
ε

=
=

=

 

where ψ  is a known ( )q q×  positive  definite matrix and  ε  is the disturbance term is multiple regression 

model .y X β ε= +  

Note that   ( )E r Rβ= . 

 

The possible reasons for such stochastic linear restriction are as follows: 

(i) Stochastic linear restrictions exhibits  the unstability of estimates. An unbiased estimate with the 

standard  error may exhibit stability. For  example, in repetitive studies, the  surveys are 

conducted every year. Suppose the regression coefficient 1β   remains stable  for several years. 

Suppose  its estimate is provided along with  its standard error. Suppose its value remains stable 

around the value 0.5  with standard error 2. This information can be expressed as 

1 1,r Vβ= +  

                   where 2 2
1 10.5, ( ) 0, ( ) 2 .r E V E V= = =  

Now ψ  can be formulated with  this data. It is not necessary that we should have information 

for all regression coefficients but we can have information on some of the regression 

coefficients only. 

 

(ii) Sometimes the restrictions are in the  form of inequality. Such restrictions  may arise from 

theoretical considerations.  For example, the value of a regression coefficient may lie between 3 

and 5,  i.e., 13 5,β≤ ≤  say.  In another  example, consider a simple linear  regression model 

  0 1y xβ β ε= + +    
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 where  y  denotes the consumption expenditure  on food and x  denotes the income.  Then the 

marginal propensity (tendency) to consume is 

   1,
dy
dx

β=  

 i.e., if salary increase by rupee one,  then one is expected to spend 1β , amount of rupee one on 

food or save 1(1 )β−  amount. We may put a bound on β  that either one can not spend all of 

rupee one or nothing  out of rupee one. So 10 1.β< <   This is a natural restriction arising from  

theoretical considerations. 

 

 These bounds can be treated as p − sigma limits, say 2-sigma limits or confidence limits. Thus  

   
2 0
2 1
1 1, .
2 4

µ σ
µ σ

µ σ

− =
+ =

⇒ = =

 

          These values can be interpreted as 

  
1 1

2
1

1
2
1( ) .

16

V

E V

β + =

=
 

(iii) Sometimes the truthfulness of exact linear restriction r Rβ=  can be suspected and accordingly 

an  element of uncertainty can be introduced. For example, one may say that  95% of the 

restrictions  hold. So some element of uncertainty prevails. 

 

Pure and mixed regression estimation: 
Consider the multiple regression model 

y X β ε= +  

with  n  observations and  k  explanatory variables  1 2, ,..., kX X X .  The ordinary  least squares estimator of  

β  is 

 ( ) 1' 'b X X X y−=  

which is termed as pure estimator.  The pure estimator b  does not satisfy the restriction .r R Vβ= +   So the  

objective is to obtain an estimate of β  by utilizing the stochastic restrictions such that the resulting estimator  
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satisfies  the stochastic restrictions also.  In order to avoid the conflict between  prior information and sample 

information, we can combine them as follows: 

 

Write 

 
2( ) 0, ( ')

( ) 0, ( ') , ( ') 0
ny X E E I

r R V E V E VV E V
β ε ε εε σ
β ψ ε

= + = =
= + = = =

 

jointly as 

 
y X
r R V

ε
β

     
= +     

     
 

or  a A wβ= +  

where ( ) ( )', ( ) ', '.a y r A X R w Vε= = =  

 

Note that 

 
( ) 0

( )
( ) 0

E
E w

E V
ε   

= =   
   

 

 

2

( ')
' '
' '

0
.

0
n

E ww
V

E
V VV

I

εε ε
ε

σ
ψ

Ω =

 
=  

 
 

=  
 

 

 

This shows that the disturbances w  are non spherical or heteroskedastic.  So the application of generalized 

least  squares estimation will yield more efficient estimator than ordinary least squares estimation. So 

applying generalized least squares to the model 

 ( ) 0, ( ) ,a AB w E w V w= + = = Ω  

the generalized least square estimator of  β  is given by 

 ( ) 11 1ˆ ' ' .M A A A aβ
−− −= Ω Ω  

 

The explicit form of this estimator is obtained as follows: 
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[ ]

2

1 2

1

11

1 0
' ' '

0

' '

nI y
A a X R

r

X y k r
σ

σ−

−

−

 
  Ω =     Ψ  

= + Ψ

 

[ ]

2

1 2

1

11

1 0
' ' '

0

' ' .

nI X
A A X R

R

X X R R
σ

σ−

−

−

 
  Ω =     Ψ  

= + Ψ

 

Thus 

 
1

1 1
2 2

1 1ˆ ' ' ' 'M X X R R X y R rβ ψ
σ σ

−
− −   = + + Ψ   

   
 

 

assuming 2σ  to be unknown. This is termed as mixed regression estimator. 

If  2σ  is unknown, then 2σ  can be replaced by its estimator ( ) ( )2 2 1ˆ 's y Xb y Xb
n k

σ = = − −
−

 and feasible 

mixed regression estimator of β  is obtained as 

 
1

1 1
2 2

1 1ˆ ' ' ' ' .f X X R R X y R r
s s

β
−

− −   = + Ψ + Ψ   
   

 

This is also termed as estimated or  operationalized generalized least squares  estimator. 

 

Properties of mixed regression estimator: 
(i) Unbiasedness: 

The estimation error of ˆ
mβ  is 

 

( )

( ) ( )

( )
( ) ( )

1 1

11 1

11 1

11 1

ˆ ' '

' '

' ' .

ˆ ' ' ( )

0.

M

M

A A A a

A A A AB w

A A A w

E A A A E w

β β β

β

β β

− −

−− −

−− −

−− −

− = Ω Ω −

= Ω Ω + −

= Ω Ω

− = Ω Ω

=

 

So mixed regression estimator provides an unbiased estimator of  β . Note that the pure regression 

( ) 1' 'b X X X y−=   estimator is also an unbiased estimator of β . 
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(ii) Covariance matrix 

The covariance matrix of  ˆ
Mβ  is 

( ) ( )( )
( ) ( ) ( )
( )

1 11 1 1 1

11

1
1

2

ˆ ˆ ˆ '

' ' ' '

'

1 ' ' .

M M MV E

A A A E VV A A A

A A

X X R R

β β β β β

σ

− −− − − −

−−

−
−

= − −

= Ω Ω Ω Ω

= Ω

 = + Ω 
 

 

 

(iii) The estimator ˆ
Mβ  satisfies  the stochastic linear restrictions in the sense that  

 ( )
ˆ

ˆ( ) ( )

0
.

M

r R V

E r RE E V

R
R

µβ

β

β
β

= +

= +

= +
=

 

 

(iv)  Comparison with OLSE 

We first state a result that is used further to establish the dominance of  ˆ
Mβ  over b . 

 

Result:  The difference of matrices ( )1 1
1 2A A− −−  is positive definite if ( )2 1A A−  is positive definite. 

 

Let 
2 1

1
1

1
2 2

( ) ( ' )

1ˆ( ) ' 'M

A V b X X

A V X X R R

σ

β
σ

−

−
−

≡ =

 ≡ = + Ψ 
 

 

1 1 1
1 2 2 2

1

1 1then ' ' '

'

A A X X R R X X

R R
σ σ

− − −

−

− = + Ψ −

= Ψ
 

which is a positive definite matrix.  This implies that 

 1 2
ˆ( ) ( )MA A V b V β− = −  

is a positive definite matrix. Thus ˆ
Mβ  is more efficient than b  under the criterion of covariance matrices or 

Loewner ordering provided 2σ  is known. 
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Testing of hypothesis: 
In the prior information specified by stochastic restriction ,r R Vβ= +   we want to test whether there is close 

relation between the sample information and the prior information.  The test for the  compatibility of sample 

and prior information is tested by 2χ − test statistic given by 

 ( ) ( ) ( )
112

2

1 ' ' 'r Rb R X X R r Rbχ
σ

−− = − +Ψ −   

assuming 2σ  is known and  ( ) 1' 'b X X X y−= .  This follows  a 2χ -distribution with q  degrees of freedom. 

 

If 0Ψ = , then the distribution is  degenerated  and hence r  becomes a fixed quantity. For the feasible 

version of mixed regression estimator 
1

1 1
2 2

1 1ˆ ' ' ' ' ,f X X R R X y R r
s s

β
−

− −   = + Ψ + Ψ   
   

 

the optimal  properties of mixed regression estimator like linearity unbiasedness and/or  minimum variance 

do not remain  valid. So there can be situations when  the incorporation of prior information may lead to loss 

in efficiency. This is not a favourable situation.  Under such situations, the pure  regression estimator is 

better to use. In order to know whether the use  of prior information will lead to better  estimator or not, the 

null hypothesis  0 : ( )H E r Rβ=  can be tested. 

 

For testing the null hypothesis  

 0 : ( )H E r Rβ=  

when 2σ  is unknown, we use  the F − statistic given by 

 
( ) ( ){ } ( )

11

2

' ' 'r Rb R X X R r Rb q
F

s

−− − +Ψ −  =  

( ) ( )2 1where ' ands y Xb y Xb F
n k

= − −
−

 follows a F −distribution with q  and ( )n k−  degrees of freedom 

under  0.H  
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Inequality Restrictions 
Sometimes the restriction on the regression parameters or equivalently the prior information about the 

regression parameters is available in the form of inequalities. For Example, 

, etc. Suppose such information is expressible in the form of  

. We want to estimate the regression coefficient  in the model  subject to 

constraints .  

 

One can minimize  subject to  to obtain an estimator of . This can be formulated 

as a quadratic programming problem and can be solved using an appropriate algorithm, e.g. Simplex 

algorithm and a numerical solution is obtained.The advantage of this procedure is that a solution is found 

that fulfills the condition. The disadvantage is that the statistical properties of the estimates are not easily 

determined and no general conclusions about superiority can be made. 

 

Another option to obtain an estimator of  is subject to inequality constraints is to convert the inequality 

constraints in the form of stochastic linear restrictions e.g.,  limits. and use the framework of 

mixed regression estimation. 

 

The minimax estimation can also be used to obtain the estimator of  under inequality constrains. The 

minimax estimation is based on the idea that the quadratic risk function for the estimate  is not minimized 

over the entire parameter space but only over an area that is restricted by the prior knowledge or restrictions 

in relation to the estimate. 

 

If all the restriction define a convex area, this area can be enclosed in an ellipsoid of the following form  

  { }( ) : 'B T kβ β β β= ≤  

with the origin as center point or in  

  
{ }0 0 0( , ) : ( ) ' ( )B T kβ β β β β β β= − − ≤

 
with the center point vector  where  is a given constant and T is a known  matrix which is 

assumed to be positive definite. Here  defines a concentration ellipsoid. 

 

First we consider an example to understand how the inequality constraints are framed. Suppose it is known a 

priori that  

  ( 1, 2,..., n)i i ia b iβ≤ ≤ =  
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when  are known and may include  and . These restriction can be 

written as  

  
2 1,    1, 2,..., .1

2( )

i i
i

i i

a b

i n

b a

β +
−

≤ =

−

 

 

Now we want to construct a concentration ellipsoid 0 0( ) ( ) 1Tβ β β β′− − =  which encloses the cuboid and 

fulfills the following conditions: 

(i) The ellipsoid and the cuboid have the same center point, 0 1 1
1 ( , , ).
2 p pa b a bβ = + … +  

(ii) The axes of the ellipsoid are parallel to the coordinate axes, that is , 1( , , ).pT diag t t=   

(iii)The corner points of the cuboid are on the surface of the ellipsoid, which means we have  

 

2

1
1.

2

p
i i

i
i

a b t
=

−  = 
 

∑
 

(iv) The ellipsoid has minimal volume: 

 

1
2

1

,
p

K i
i

V c t
−

=

= ∏
 

with  being a constant dependent on the dimension . 

 

We now include the linear restriction (iii) for the  by means of Lagrangian multipliers  and solve (with 

) 

  
{ }

2
1

11

min min 1 .
2i i

p p
i i

i it t ii

a bV t tλ−

==

  −  = − −   
     

∑∏  

 

The normal equations are then obtained as  

  
2

2 1 0
2

j j
i i

i ji

a bV t t
t

λ− −

≠

− ∂
= − − = ∂  

∏


 

and  
2

1 0.
2

j j
i

a bV t
λ

− ∂
= − = ∂  
∑


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From 0,
i

V
t

∂
=

∂



 we get 

  

2

2 1

2

1 1

1

2  (for all 1, 2, , )

2   ,

i i
i j j j

p

i i
i j j

t t j p
a b

t t
a b

λ − −

≠

− −

=

 
= − =  − 

 
= −   − 

∏

∏



    

and for any two  we obtain 

  

2 2

 ,
2 2

j j j j
i j

a b a b
t t

− −   
=   

   
 

and hence after summation accrding to 0V
λ

∂
=

∂



 gives 

  
2 2

1
1.

2 2

p
j j j j

j j
i

a b a b
t pt

=

− −   
= =   

   
∑  

This leads to the required diagonal elements of  

  ( ) ( )24 1,2, , .j j jt a b j p
p

−
= − =   

Hence, the optimal ellipsoid 0 0( ) ( ) 1Tβ β β β′− − = , which contains the cuboid, has the center point vector 

  ( )0 1 1
1 , ,
2 p pa b a bβ ′ = + +  

and the following matrix, which is positive definite for finite limits  

  ( ) ( )( )22
1 1

4 , , .p pT diag b a b a
p

−−= − −   

 

Interpretation: The ellipsoid has a larger volume than the cuboid. Hence, the transition to an ellipsoid as a 

priori information represents a weakening, but comes with an easier mathematical handling. 
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Example: (Two real regressors) The center-point  equation of the ellipsoid  is (see Figure ) 

 

 
2 2

2 2 1,x y
a b

+ =  

or             ( )
2

2

1 0
,   1

10

xax y
y

b

 
  

=  
   
 

 

with ( )1 22 2

1 1, ,T diag diag t t
a b

 = = 
 

 

and the area . 

 

 

The Minimax Principle:  

Consider the quadratic risk ( )( )ˆ ˆ ˆ( , , )R A tr AEβ β β β β β
 ′= − − 
 

 and a class of estimators. Let 

 be a convex region of a priori restrictions for . The criterion of the minimax estimator leads to 

the following. 

Definition :An estimator  is called a minimax estimator of  

( ) ( )*
ˆ{ }

ˆmin sup , , sup , , .
B B

R A R b A
β β β

β β β
∈ ∈

=  

 

An explicit solution can be achieved if the weight matrix is of the form 'A aa=  of rank 1. 

 

Using the abbreviation ( )1 2
* ,D S k Tσ−= + we have following result: 

 

Result: In the model , with the restriction  with  , and the risk 

function ( )ˆ, , a ,R β β  the linear minimax estimator is of the following form: 

  
( )1 2 1

*

1
*

' ) '

'

b X X k T X y

D X y

σ− −

−

= +

=
 

with the bias vector and covariance matrix as 
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( )
( )

1 2 1
* *

2 1 1
* * *

, ,Bias b k D T

V b D SD

β σ β

σ

− −

− −

= −

=
 

and the minimax risk is 

  ( ) 2 1
* *sup , , .

T k
R b a a D a

β β
β σ −

′ ≤
′=  

 

Result: If the restrictions are 0 0( ) ( ) kTβ β β β′− − ≤  with center point 0 0,β ≠  the linear minimax estimator 

is of the following form: 

  ( )1
* 0 0 * 0( )b D X y Xβ β β− ′= + −  

with bias vector and covariance matrix as  

  
( )( ) ( )

( )( ) ( )

1 2 1
* 0 * 0

* 0 *

, ,

,

Bias b k D T

V b V b

β β σ β β

β

− −= − −

=
 

and the minimax risk is  

  
( ) ( )

( )( )
0 0

2 1
* 0 *sup , , .

T k

R b a a D a
β β β β

β β σ −

′− − ≤

′=  

 

Interpretation: A change of the center point of the a priori ellipsoid has an influence only on the estimator 

itself and its bias. The minimax estimator is not operational because 2σ  is unknown. The smaller the value 

of , the stricter is the a priori restriction for fixed . Analogously, the larger the value of , the smaller is 

the influence of  on the minimax estimator. For the borderline case we have 

( ) { }:  as  KB T k kβ β β β′= ≤ → →∞  

and  ( ) 1
*lim .

k
b b X X X y−

→∞
′ ′→ =  

 

Comparison of b* and b : 

Minimax Risk: Since the OLS estimator is unbiased, its minimax risk is  

( ) 2 1sup , , .
T k

R b a a S a
β β

σ −

′ ≤

′⋅ =  

The linear minimax estimator *b  has a smaller minimax risk than the OLS estimator, and  

  
( ) ( )

( )

*

12 1 1 2

, , sup , ,

( ) 0,

T k
R b a R b a

a S k T S a

β β
β

σ σ

′ ≤

−− −

⋅ −

′= − + ≥
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since ( ) 11 1 2 0S k T Sσ
−− −− + ≥  

Considering the superiority with MSE matrices, we get 

  
( ) ( ) ( ) ( )

( )
* * * *

2 1 2 2 1
* *

, , ,M b V b Bias b Bias b

D S k T T D

β β β

σ σ ββ− − −

′= +

′ ′= +
 

Hence,  is superior to  under the criterion of Loewner ordering when 

 ( ) ( ) ( ) 2 1 1 2 2 1
* * * * * *, , [ ] 0,xb b V b M b D D S D S k T T Dβ σ σ ββ− − − −′ ′∆ = − = − − ≥  

which is possible if and only if 

  { }
1 2 2

* *

2 4 1 2 1 2

1 1 1 1
2 4 22 2 2 2

2 0

0

B D S D S k T T

k T S k T T

k TC I C C C T

σ ββ

σ σ σ ββ

σ σ ββ

− −

− − − − −

− − −− −

′ ′= − −

 ′= + − ≥ 
 

′= − ≥ 
 

 

with 1 2 12 .C S k Tσ− − −= +  This is equivalent to 

  2 1 2 1( 2 ) 0.S k Tσ β σ− − − −′ + ≥  

Since ( ) ( )12 1 1 2 12 2 0,k T S k Tσ σ
−− − − − −− + ≥  

1 2 .k
β β

− ≤
′

 

 

Preliminary Test Estimation: 
The statistical modeling of the data is usually done assuming that the model is correctly specified and the 

correct estimators are used for the purpose of estimation and drawing statistical inferences form a sample of 

data. Sometimes the prior information or constraints are available from outside the sample as non-sample 

information. The incorporation and use of such prior information along with the sample information leads to 

more efficient estimators provided it is correct. So the suitability of the estimator lies on the correctness of 

prior information. One possible statistical approach to check the correctness of prior information is through 

the framework of test of hypothesis. For example, if prior information is available in the form of exact linear 

restrictions , there are two possibilities- either it is correct or incorrect. If the information is correct, 

then holds true in the model  and then the restricted regression estimator (RRE) 

of  is used which is more efficient than 

OLSE of . Moreover, RRE satisfies the restrictions, i.e. . On the other hand, when 
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the information is incorrect, i.e., , then  OLSE is better than RRE. The truthfulness of prior 

information in terms of  or  is tested by the null hypothesis  using the F-statistics.  

• If  is accepted at  level of significance, then we conclude that  and in such a situation, RRE is 

better than OLSE.  

• On the other hand, if  is rejected at  level of significance, then we conclude that  and OLSE 

is better than RRE under such situations.  

 

So when the exact content of the true sampling model is unknown, then the statistical model to be used is 

determined by a preliminary test of hypothesis using the available sample data. Such procedures are 

completed in two stages and are based on a test of hypothesis which provides a rule for choosing between the 

estimator based on the sample data and the estimator is consistent with the hypothesis. This requires to make 

a test of the compatibility of OLSE (or maximum likelihood estimator) based on sample information only 

and RRE based on the linear hypothesis. The one can make a choice of estimator depending upon the 

outcome. Consequently, one can choose OLSE or RRE. Note that under the normality of random errors, the 

equivalent choice is made between the maximum likelihood estimator of  and the restricted maximum 

likelihood estimator of , which has the same form as OLSE and RRE, respectively. So essentially a pre-test 

of hypothesis is done for  and based on that, a suitable estimator is chosen. This is called the pre-

test procedure which generates the pre-test estimator that in turn, provides a rule to choose between restricted 

or unrestricted estimators. 

 

One can also understand the philosophy behind the preliminary test estimation as follows. Consider the 

problem of an investigator who has a single data set and wants to estimate the parameters of a linear model 

that are known to lie in a high dimensional parametric space . However, the  prior information about the 

parameter is available and it suggests that the relationship may be characterized by a lower dimensional 

parametric space  . Under such uncertainty, if the parametric space  is estimated by OLSE, the 

result from the over specified model will be unbiased but will have larger variance. Alternatively, the 

parametric space   may incorrectly specify the statistical model and if estimated by  OLSEwill be biased. 

The bias may or may not overweigh the reduction in variance. If such   uncertainty is represented in the form 

of general linear hypothesis, this leads to pre-test estimators.  
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Let us consider the conventional pre-test estimator under the model  with usual assumptions and 

the general linear hypothesis  which can be tested by using  statistics. The null hypothesis  is 

rejected at  level of significance when 

, ,calculated p n pF F cαλ −= ≥ =  

where the critical value  is determined for given level of the test  by 

, ,p n p p n p
c

dF P F c α
∞

− − = ≥ = ∫  . 

• If is true, meaning thereby that the prior information is correct, then use RRE 

 to estimate . 

• If  is false, meaning thereby that the prior information is incorrect, then use  

OLSE to estimate .  

Thus the estimator to be used depends on the preliminary test of significance and is of the form 

       if     
       if   

ˆˆ
   .

R
PT

u c
b u c
ββ

 <= 
≥

 

This estimator  is called as preliminary test or pre-test estimator of . Alternatively, 

( ) ( ) [ ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

0, ,

0, 0,

0,

0,

. .

        . 1 .

        ( ).

   

ˆ ˆ

  

ˆ

 

ˆ

  .

PT R c c

R c c

R c

c

I u b I u

I u I u b

b b I u

b b r I u

β β

β

β

∞= +

 = + − 

= − −

= − −

 

where the indicator functions are defined as  

( ) ( )

[ ) ( )

0,

,

1    when          0
0    otherwise                 

1    when      
0    otherwise.      

c

c

u c
I u

u c
I u∞

< <
= 


≥
= 


 

• If , then [ ) ( ) ( ) ( )0,
ˆ ˆ ˆ. .PT R RI u b I uβ β β∞ ∞= + = . 

• If , then ( ) ( ) [ ) ( )0 0,
ˆ ˆ . .PT R I u b I u bβ β ∞= + = . 

Note that  and indicate that the probability of type 1 error (i.e., rejecting  when it is true) is  

and  respectively. So the entire area under the sampling distribution is the area of acceptance or the area of 

rejection of null hypothesis. Thus the choice of  has a crucial role to play in determining the sampling 
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performance of the pre-test estimators. Therefore in a repeated sampling context, the data, the linear 

hypothesis, and the level of significance all determine the combination of the two estimators that are chosen 

on the average. The level of significance has an impact on the outcome of pretest estimator in the sense of 

determining the proportion  of the time each estimator is used and in determining the sampling performance 

of pretest estimator. 

We use the following result to derive the bias and risk of pretest estimator: 

 
Result 1: If the   random vector, , is distributed as a multivariate normal random vector with 

mean  and covariance matrix  and is independent of then 

( )
( )

( )

( )

2
2. *

0, 2 2   2  

  ,K
c

n K n K

Z Z n K zE I P c
K

λχδ
σ χ σ σ χ

+

− −

    −     = ≤            

′
 

where  and . 

 

Result 2: If the  random vector, , is distributed as a multivariate normal random vector with mean 

 and covariance  and is independent of  then 

( )
( )

( )
( )

( )
( )

( )

( )

( )

2 2

2

2 2'
2, /2 4, /2

0, * 0, * 0, *2 2   2   2 2  

2, /2

 '  

                                                 

K K

c c c
n K n K n K

K

Z Z Z ZE I KE I E I

KP

δ δ σ δ δ σ

δ δ σ

χ χδ δ
σ χ σ σ χ σ χ

χ

′ ′

′

+ +

− − −

+

                 = +                     

′



=
( )

( )

( )

2
2 2

4, /2

2   2 2  

 
,

K

n K n K

cK cKP
T K n K

δ δ σ
χδ δ

χ σ χ
+

− −

′
   
   ≤ + ≤
   − −
   

′

 

where . 

 

Using these results, we can find the bias and risk of   as follows: 

Bias: 

( ) ( ) ( ) ( ) ( )

( )

( )

( )

2

2

2

0,

2
2, /2

2
, /2

2,   , /2

.

             

         

ˆ

    

PT c

p

n p

p n p

E E b E I u b r

pP c
n p

P F c

δ δ σ

δ δ σ

δ δ σ

β

χ
β δ

χ

β δ

+

−

+

′

′−

′

 = − − 
 
 = − ≤
 −
 
 = − ≤  
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where  denotes the non-central distribution with noncentrality parameter 

 denotes the non-central distribution with noncentrality parameter  . 

 
Thus, if , the pretest estimator is unbiased. Note that the size of bias is affected by the probability of a 

random variable with a non-central - distribution being less than a constant that is determined by the level 

of the test, the number of hypothesis and the degree of hypothesis error . Since the probability is always 

less than or equal to one, so . 

Risk: 

The risk of pretest estimator is obtained as  

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

2

0, 0,

0, 0,

2
2, /22 2
2  

,

                

                     

              

ˆ ˆ

2

ˆ

  

PT PT PT

c c

c c

p

n p

E

E b I u b r b I u b r

E b b E I u b b E I u

cpp p P
n

δ δ σ

ρ β β β β β β

β β

β β β β δ δ

χ
σ δ δ σ

χ
+

−

′

 ′= − − 
 
 ′= − − − − − − 
 
   ′ ′  = − − − − − +        

= + ≤

′

′ − ( )

( )

2
2

4, /2

2   
p

n p

cpP
p n p

δ δ σ
χ

δ δ
χ

′+

−

   
   − ≤
   − −

  

′



 

or compactly, 

( ) ( ) ( ) ( )2 2, ˆ 2 2 4PT p p l lρ β β σ δ δ σ δ δ′ ′= + − −  
where 

( )

( )

( )

( )

2 2
2 2

2, /2 4, /2

2   2  

1(2) ,    (4) ,   0 (4) (2) 1.
2

p p

n p n p

l l l l
δ δ σ δ δ σ

χ χ

χ χ
+ +

−

′

−

′
= = < < <  

 

The risk function implies the following results: 

1. If the restrictions are correct and , the risk of the pretest estimator  

where . Therefore, the pretest estimator has risk less than that of the 

least squares estimator at the origin  and the decrease in risk depends on the level of 

significance  and, correspondingly, on the critical value of the test .  

2. As the hypothesis error , and thus , increases and approaches infinity,  and 

 approach zero. The risk of the pretest estimator therefore approaches , the risk of the 

unrestricted least squares estimator. 
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3. As the hypothesis error grows, the risk of the pretest estimator increases obtains a maximum after 

crossing the risk of the least squares estimator, and then monotonically decreases to approach  

the risk of the OLSE. 

4. The pretest estimator risk function defined on the  parameter spaces crosses the risk function 

of the least squares estimator within the bounds . 

 
The sampling characteristic of the preliminary test estimator are summarized in Figure 1. 

  

 

From these results we see that the pretest estimator does well relative to OLSE if the hypothesis is correctly 

specified. However, in the  space representing the range of hypothesis are correctly specified. 

However, in the  space representing the range of hypothesis errors, the pretest estimator is inferior to 

the least squares estimator over an infinite range of the parameter space. In figures 1 and 2, there is a range 

of the parameter spacewhich the pretest estimator has risk that is inferior to (greater than) that of both the 

unrestricted and restricted least squares estimators. No one estimator depicted in Figure 1 dominates the 

other competitors. In addition, in applied problems the hypothesis errors, and thus the correct  in the 

specification error parameter space, are seldom known. Consequently, the choice of the estimator is 

unresolved. 

 

The Optimal Level of Significance 

The form of the pretest estimator involves, for evaluation purposes, the probabilities of ratios of random 

variables and being less than a constant that depends on the critical value of the test  or on the level 

of statistical significance . Thus as , the probabilities , and the risk of the pretest estimator 

approaches that of the restricted regression estimator . In contrast, as  approaches zero and the 
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risk of the pretest estimator approaches that of the least squares estimator b.The choice of , which has a 

crucial impact on the performance of the pretest estimator, is portrayed in Figure 3. 

 
 

Since the investigator is usually unsure of the degree of hypothesis specification error, and thus is unsure of 

the appropriate point in the  space for evaluating the risk, the best of worlds would be to have a rule that 

mixes the unrestricted and restricted estimators so as to minimize risk regardless of the relevant specification 

error . Thus the risk function traced out by the cross-hatched area in Figure 2 is relevant. 

Unfortunately, the risk of the pretest estimator, regardless of the choice of , is always equal to or greater 

than the minimum risk function for some range of the parameter space. Given this result, one criterion that 

has been proposed for choosing the  level might be to choose the critical value  that would minimize the 

maximum regret of not being on the minimum risk function, reflected by the boundary of the shaded area. 

Another criterion that has been proposed for choosing  is to minimize the average regret over the whole 

 space. Each of these criteria lead to different conclusions or rules for choice, and the question 

concerning the optimal level of the test is still open. One thing that is apparent is that conventional choices of 

0.05 and 0.01 may have rather severe statistical consequences.   

 

 

 

 

 


