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Summary

This paper considers a Stein-rule mixed regression estimator for estimating a normal linear regression
model in the presence of stochastic linear constraints. We derive the small disturbance asymptotic bias
and risk of the proposed estimator, and analytically compare its risk with other related estimators. A
Monte-Carlo experiment investigates the empirical risk performance of the proposed estimator.
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1. Introduction

In regression analysis, we often encounter situations in which incomplete prior
information is available in the form of a set of stochastic linear constraints binding
the coefficients. In the literature, a range of methods, both frequentist and Baye-
sian in nature, have been proposed for incorporating such information. A method
that has received widespread textbook treatment is the mixed regression estimator
(MRE) due to THEIL and GOLDBERGER (1961). The MRE is essentially an opera-
tional variant of the best linear unbiased estimator of the regression coefficients.
Early studies by NAGAR and KAKWANI (1964) and KAKWANI (1968) examined the
bias and moment matrix of the estimator, and SRIVASTAVA (1980) provided an
annotated bibliography of much of the subsequent developments. More recent con-
tributions emphasized the exact finite sample properties of the MRE, and extended
the method of mixed regression to problems of restricted estimation and predic-
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tion, and such models as the random coefficient and seemingly unrelated regres-
sion equations models. See, for example, SRIVASTAVA, RaJ, and Kumar (1984),
OnTtANI and HONDA (19844, b), SRIVASTAVA and GILES (1987), SRIVASTAVA and
OHTANI (1995), TOUTENBURG and SHALABH (1996), among others. SRIVASTAVA
and SRIVASTAVA (1983) crafted the idea of Stein-rule estimation [STEIN (1956);
JAMES and STEIN (1961)] in the method of mixed regression, and introduced two
families of estimators of the regression coefficients. The authors further analyzed
the biases and risks of the estimators under a general quadratic loss function using
small disturbance asymptotic theory. They found that one family of estimators has
no merit, at least to the given order of approximation, while the other provides
estimators that have smaller risk in comparison to the mixed regression estimator
under some mild constraints. More recently, through the work of TOUTENBURG and
SHALABH (2000), the methods of estimation introduced by SRIVASTAVA and SrI-
VASTAVA (1983) have been extended to the simultaneous prediction of actual and
average values of the dependent variable in a regression model.

A problem concerning the estimators specified by SRIVASTAVA and SRIVASTAVA
(1983) and used in TOUTENBURG and SHALABH (2000) is that they are formulated
either by substituting the mixed regression estimates for the ordinary least squares
estimates in the Stein-rule estimator’s formula, or by replacing the ordinary least
squares by the Stein-rule estimates in the MRE’s expression. They should not,
therefore, be considered as Stein-rule estimators in the true sense. In this paper, an
alternative formulation is considered, and we argue that this formulation brings
together the idea of Stein-rule estimation and the mixed regression method more
sensibly than do the estimators considered by SRIVASTAVA and SRIVASTAVA
(1983). In Section 2, we describe the mixed regression framework and introduce a
Stein-rule mixed regression estimator (SRMRE). Section 3 analyzes the approxi-
mate bias, mean squared error matrix and risk under quadratic loss of the
SRMRE, along with the conditions for the dominance of the SRMRE over other
estimators based on the risk criterion. A Monte-Carlo experiment designed to ex-
plore the empirical risk performance of the proposed estimator is described in
Section 4. It is found that the SRMRE provides much greater risk reduction, com-
pared to the MRE and the estimators of SRIVASTAVA and SRIVASTAVA (1983), over
a wide range of parametric values. An appendix containing the derivation of the
main results concludes the paper.

2. Model Specification and Estimators

Consider the following linear regression model,
y=Xp+ou; u~ N(0,I) (2.1)

where y is a n X 1 vector of observations on the dependent variable, X is an X p
full column rank matrix of n observations on p explanatory variables, f is a p x 1
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parameter vector, u is a n X 1 vector of disturbances and o is a scalar. The extra-
neous information is available in the form of a set of G stochastic linear con-
straints binding the regression coefficients given by

r=RB+v; v~ N(0,¥) (22)

where R is non-stochastic, G x p and of rank G (< p), ris G x 1, W is assumed
to be known and positive definite, and E(uv') =0 .

The ordinary least squares (OLS) or minimum variance unbiased estimator of [3
is,

b= (XX)"Xy, (2.3)

which is dominated, under a squared error loss measure, by the Stein-rule estima-
tor,

_ k(v —=Xb) (y—Xb)
by = (1 P— o b, (2.4)

when p > 2 and 0 < k <2(p —2), where a is any scalar such that n —p + o is
positive. A feature of b and b, is that both estimators ignore the extraneous infor-
mation given in (2.2). Now, writing (2.1) and (2.2) compactly, we obtain

)i

That is, y* =ZB +w, where w has a variance-covariance matrix given by
V(w) = o? (é 11,302) = 0?Q . If V(w) is known, then  can be estimated using

the generalized least squares estimator,
B=(XX+0RW'R)™ (Xy+*R¥ ). (2.6)

The estimator B is non-operational. The mixed regression estimator of THEIL and
GOLDBERGER (1961) is just the feasible counterpart to 3, namely,

by = (XX +SRW'R) ™ (X'y+ SRWr), (2.7)
—Xb)'(y — Xb
where s = b ) (i}_ " ) is an estimator of o°. Crafting the idea of Stein-rule
n—p

in mixed regression, SRIVASTAVA and SRIVASTAVA (1983) introduced the estima-
tors,

k (y — Xbm)/ (y - Xbm)

bj:ﬂ‘ =|1-
‘ n—p+a b, X'Xb,,

b (2.8)
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and

— Xb,)' (v — Xb, -
B (X,X L = Xb) (v = X)) gy R)
n—p-+ao

—Xb) (y— X
x (X’y + b — Xb,) (i 5 by) R’W1r> (2.9)
n—p

The authors showed that b%, is asymptotically equivalent to the MRE in the sense
that the asymptotic approximations for the bias vectors and MSE matrix of b}, to
order 0(04) are the same as those of the MRE; while b, performs better in terms
of risk than the MRE if

0<k*<2(p—2)/(n—p+2), (2.10)

provided that p > 2, where k* = k/(n — p + ). Notwithstanding these develop-
ments, both b%, and b}, are somewhat arbitrary in nature as these estimators are
obtained either by substituting b,, for b in (2.4), or by replacing b by the Stein-
rule estimator by in (2.7). Indeed, given (2.5) and the intimate connection between
b and b, , a remedy is to consider, instead, the formulation,

k *—7b,) Q7' ("~ Zb
bus = [ 1— b )& l(y DA (2.11)
n—p+a b\7'Q" " Zb,,
which we refer to as the Stein-rule mixed regression estimator hereafter, where
Q= (I) lp(;sz . The close analogy between b; and b, is obvious. Being

based on model (2.5), the SRMRE provides a more formal framework for incor-
porating the idea of Stein-rule in mixed regression than do the estimators b}, and
bE.. Now, it is easily verified that b,,; can be equivalently expressed as,

- [1 ko
n—p-+ao
(y — Xb,,)' (y — Xb,,) + s*(r — Rb,) W~ '(r — Rb,,) )
b X'Xb,, + s*b, R"W~'Rb,, "
(2.12)

Comparing the expressions of b and by, it is interesting that b,,; looks like an
extended version of b%,. In the next section, we compare the performance of b,,,
bl and b,,, using small disturbance asymptotic theory. The properties of b%, re-
quire no further discussion given the results of SRIVASTAVA and SRIVASTAVA
(1983).
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3. Properties of Estimators

In view of the results of SRIVASTAVA and SRIVASTAVA (1983), we select o = 2 in
comparing the properties of b, - and b,,,. Now, KAKWANI (1968) showed that the
MRE is unbiased, and it can be shown (see, for example, TOUTENBURG and SHA-
LABH (1996)) that the variance-covariance matrix of the MRE is,

V(by) = 2(X'X)"' - o* (%) XxX)'RERXX)T (3.)

to order O(0*). For the estimator b, SRIVASTAVA and SRIVASTAVA (1983)
showed that the bias vector, to order 0(02), is given by,

B(bys) = E(bys — B)

_ n—p k 5 (3.2)
N n—p+2) \P'XXB
and the difference in MSE matrix between b,, and b}, is
D(bmab;km) = E[(bm - [3) (bm - B)/] - E[(b:l:ls - B) (bﬂr:ls - [3)/] (33)

=20 (225) (ss) |07 5505 P
to order O(c%).

Now, it is shown in the Appendix that the bias vector of b, to order O(0?) is
given by

B(bmS) = E(bms - B)

_ o (la=p)(n—p+2+G) k

and the difference in MSE matrix between b,, and b, , to order O(0%), is

ms?

(bm7 bm;) (bm - B) (bm - ﬁ)/_ E<me - B) (bm? - ﬁ)/
a4 [(n=p)(n—p+2+G) k
=20 ( (n—p+2)° ) <[3/X’XB>

|00 S B8] (3.5)

where

G 2
h=4+k|l 1 . 3.6
* { +n—p+2< +n—p+2+G>] (36)
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It is thus seen from (3.2) and (3.4) that the estimator b}, is less biased in magni-
tude than b,,. It is also observed the elements of the bias vector of both estima-
tors have signs which are opposite to those of corresponding elements in 3. Now,
to analyze (3.3) and (3.5) further, we employ the following two lemmas for any
p X p positive definite matrix G and a column vector g:

Lemma 1: The matrix (G — gg’) is non-negative definite if and only if
g G! g <1 [see, for instance, YANCEY, JUDGE and Bock (1974)].

Lemma 2: The matrix (gg¢’ — G) cannot be non-negative definite for p > 1 [see,
for example, GUILKEY and PRrICE (1981)].

Using Lemma 1, we observe that the matrix expression given in (3.3) is posi-
tive definite implying the superiority of by, over b, if and only if

44k
<;> B'X'XP < 1, which cannot hold true. Similarly, for (3.5), the matrix

2B’ X'XP h

expression is positive definite if and only if (m B'X'XB < 1, which also
cannot be true. In other words, neither b7 nor b,,, dominates the mixed regres-
sion estimator b,. Now, using Lemma 2, we find that the negative of (3.3) and
(3.5) cannot be positive definite for p greater than one. That is, b, cannot be
superior to b, or b, for any regression model with more than one coefficient.
Thus, under the mean square error matrix criterion, b, neither dominates nor is
dominated by b* _or b,,. Such is, however, not the case if we consider the risk

. ms
function,

C(B) =E[(B—B) 2B —PB)] (3.7)
under a weighted squared error loss structure with weight matrix O, where B is
any estimator of 3, and evaluate the estimators with respect to this risk to order
O(0*). Now, for Q = X’X, it can be shown, in a manner parallel to that of SRIVAS-
TAVA and SRIVASTAVA (1983), that the risks of b,, and b, are, respectively,

Cby) = o*p —o* (L) or(x'x)  RW'R 3.8
(bu) = =t (L) e , (38
and
Cb:‘:m — 2. 4 n—p
(bms) =0p—o0 <7n_p+2
xAtr(X'X) "RY'R— —— [k—2(p—2)] ;. 3.9
{irexx) o -20-21h 69)
Hence the estimator b7 has smaller risk than b,, whenever,
0<k<2p-2), (3.10)

provided that p exceeds 2, and the largest amount of risk reduction is achieved
when k = p — 2. SRIVASTAVA and SRIVASTAVA (1983) used a = 0 in deriving the
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risks of b,, and b}, and this accounts for the minor differences between the risk
expressions given there and equations (3.8) and (3.9).
Now, the risk of b,,; can be written as,

a%MZO%—O4C£:£—>{mxmlﬁwlR_<_ﬁ_>

n—p+2 B'X'XB

y n—-p+2+G
n—p+2

(el (i teg)) e -2)])

(3.11)
Hence the estimator b, . dominates b,, whenever
G 2 B

O<k<2p-2) |1+ ———— (| + ————— 3.12
(b )[+n—p+2< +n—p+2+G>] (3.12)

provided that p > 2, and the largest reduction in risk arises when

G 2 -

k=p-2)| 1+ ——— (1 + ———— . 3.13
@ )[+n—p+2< +n—p+G+2ﬂ G-13)

Using (3.9) and (3.11), we find that the estimates b, ; has smaller risk than bis
whenever

(3.14)

2 -1
0<k<2@—2)P+ s ]

n—p+2

provided that p > 2. It can be easily seen that the largest amount of reduction in
risk of b, . over b is achieved when

G+2]1

k:(p—2) |:2+m

(3.15)

provided that p exceeds 2.

4. Monte-Carlo Results

The investigation of the small sample properties of the various estimators is based
on the following Monte Carlo experiment using the SHAZAM econometric pack-
age version 8. The data for X are generated such that X'X =1 We set
02 =1 or 10, and consider n = 20, 60 and p = 4, 10. The prior information of
interest is a single linear stochastic constraint $; +v = r, where f; is the first
element of (3. Therefore, the variance matrix W is a scalar and we consider ¥ = 1, 10.
We let T= (B, — r)2 and the risks are evaluated as functions of t. Further, we
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Table 1

Relative risks of estimators as percentages of p, the risk of the OLS estimator scaled by o?

T by, b* b

ms ms

n =20, 0.00 0.9004 0.3388 0.2855
p = 10, 0.10 0.9005 0.3383 0.2620
W=1, 0.25 0.9007 0.3380 0.2542
o’ =10 0.70 0.9011 0.3373 0.2546
1.60 0.9020 0.3364 0.2794

2.20 0.9026 0.3360 0.2993

5.50 0.9058 0.3336 0.3975

259.7 11.5847 2.9615 10.9031

n = 20, 0.00 0.9018 0.3373 0.3053
p = 10, 0.10 0.9019 0.3369 0.3013
W =10, 0.25 0.9020 0.3366 0.2985
0’ =10 0.70 0.9024 0.3361 0.2926
1.60 0.9032 0.3353 0.2846

2.20 0.9037 0.3349 0.2806

5.50 0.9064 0.3331 0.2677

259.7 11.1471 3.0027 6.7969

n =20, 0.00 0.7466 0.6941 0.4676
p =4, 0.10 0.7467 0.6975 0.4404
WY =10, 0.25 0.7471 0.6983 0.4308
o> =10 0.70 0.7479 0.6880 0.4437
1.60 0.7497 0.6488 0.3739

2.20 0.7508 0.6267 0.3636

5.50 0.7574 0.5598 0.3581

259.7 5.1103 2.1079 4.4058

n = 60, 0.00 0.8988 0.2662 0.2262
p = 10, 0.10 0.8989 0.2659 0.1939
¥=1, 0.25 0.8990 0.2657 0.1802
o’ =10 0.70 0.8995 0.2651 0.1708
1.60 0.9004 0.2641 0.1876

2.20 0.9010 0.2634 0.2058

5.50 0.9042 0.2603 0.3091

259.7 11.437 2.0690 10.7904

n = 20, 0.00 0.9832 0.4762 0.4761
p = 10, 0.10 0.9835 0.4761 0.4755
W =10, 0.25 0.9838 0.4760 0.4751
or=1 0.70 0.9844 0.4757 0.4744
1.60 0.9855 0.4751 0.4735

2.20 0.9862 0.4747 0.4731

5.50 0.9898 0.4729 0.4712

259.7 12.3872 4.7878 11.2128
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choose the optimal value of k given in (3.13) for b,,; and k = p — 2 for the esti-
mator bj,,. Each part of the experiment is based on 2500 replications.

A selection of results being representative of the general pattern is given in
Table 1. For ease of comparison, the risks are scaled by o? and are expressed as
percentages of p, the OLS estimator’s risk. At least for the experimental settings
that we have considered, the MRE is uniformly dominated by b,,; and b}, but
neither b,,, nor b}, dominates each other in all parts of the parameter space. It is
found that for small to moderate values of t, b, is invariably better than b on
the basis of risk. In particular, if W is small, the risk reduction from using b,
over b, or the MRE can be substantial. On the other hand, b7 can have smaller
risk than b,,; when T is large, though over this region the OLS estimator domi-
nates both estimators. Other things being equal, increasing W increases the region
such that b,,; has the smallest risk, though the risk magnitude of b,,,; also increases
as W increases. It is also found that increasing T results in increasing risk values
of the MRE, while for b, and b, the risks decline with T if T is of small or
moderate values, and then increase monotonically for large values of t. Further-
more, increasing n reduces the risks of the MRE, b,,; and b, ceteris paribus. In
general, risk results involving 0> = 1 and ¢® = 10 yield the same qualitative com-
parisons. For the case of 0?> = 1, the agreement between the Monte-Carlo and
analytical results is sufficiently close to offer some assurance about the validity of
the asymptotic results derived in the previous section.
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Appendix: Derivation of results

In this section, we provide details of the derivation of equations (3.4) and (3.5).
From (2.12) and using a = 2 as in the rest of the paper, we can write,

k
bys = b, ———— , Al
S m n_p+2fbm ( )
where

(y — Xb,,)' (y — Xb,,) + s*(r — Rb,) W' (r — Rby,)

= b, X'Xb,, + s2b, R~ 'Rb,,

(A.2)
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From TOUTENBURG and SHALABH (1996), we have,

_ 'M _
by =B+ 0(X'X) Xu+ 0 (%) X'X)" RW v 4 0,(c%)
=B+ oe; + 0% + 0,(0°) (A.3)
'Mu(X'X) RW!
where M =1 — X(X'X)" X, e1 = (XX)"' X'u and e, = “MUXX) : 4
Therefore, n—p+
0? u'Mu .
= —p+2+V Wy —20vVPIR(X'X) X
7= () () [r -+ 2+ v - 2w
‘X' 2(WMu) (BRY 'R 'X'u)?
BX'XB (n—p+2)(PXXP) (BX'XP)
As a result, we obtain,
ﬂ’m :f[(bm - [3) + B]
s u'Mu
— _ 2 /III_I
(B’X’XB) (n—p+2) {(” P+24+VETV)
+o(n—p4+2+vVE V) (X'X)" X'u
20(n —p+2+VWlv) B'Xup
B'X'XP
— 20V IR(X'X) ' X'up] + 0,(0"). (A.5)
Making use of this result in (A.1), we observe that, to order O(0?),
bus = by + ° + 'L, (A.6)
where
k n—p+2+v¥lv) (uMu
h=—o— (n=p 2( )P (A7)
BX'XP (1—p+2)
and

L= {2\/‘1’_1R(X/X)_1 XuB - (n—p+2+vV¥ly)

% / —1_ BB/ /u k”/M”
[(xm 2B,X,XB]X }ﬁ,x,xﬁ(n_p+2)2 (A8)

Hence, up to order O(0?), the bias vector of b,,, can be written as,
e KE(u'Mu) [n — p 42 + EVW )]
(n—p+2)° BX'XP

by virtue of stochastic independence of u and v. Now, it is readily shown that
E(u/'Mu) = n — p and EV'W~'v) = G. Furthermore, E(b,, — ) = 0, as b,, — P is

B<bmS) = E(bm - 6)

B, (A9)
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an odd function of disturbances [see KAKWANI (1968)]. Hence,

B (n=p)(n—p+2+G) k
Blbws) =~ ( (n—p+2)° ) <[5’Xfxf5> b (A10)

which is equation (3.4).
Next, consider the MSE matrix of b, to order O(c*). Using (A.1), it is readily
shown that the MSE matrix of b, up to order 0(04 ), can be written as,

E[(bms - B)(bms - B)/] = E[(bm - B) (bm - B)/] + OSE(ellll + lle/l)
+0'E(exl) + el +héy + L1 + he)) . (A11)

Note that,
E(e)ly) = E(Le)) =0, (A.12)
E(el)) = (Liey) =0, (A.13)
el) = — kin—p+2+G) U Mu(X'X) " Xl
E( 112) B'X’Xﬁ(n—p+2)2 E[ Mu(X'X)” X'uu'X
o1 28R
(0 o)
=P (1 —p+24G) (et 2BB
T BXXB(n—p+2)° ( ) B’X’XB) (A9
E(be}) = E((e1)) = E(erl) (A15)
and
E(Ll}) = in = p)

(B'X'XB)*(n —p+2)°
XE|[(n—p+2)7+ (VW V) +2(n—p+2) (V’W’lv)}

k*(n—p)
(BX'XB)* (n—p+2)

x B’ = 5[(n—p+2+G)* +2G]Bp'.

(A.16)
Substituting (A.12) — (A.16) in (A.11), we obtain, up to order O(c*),

D(by; bms) = E(by —B) (b — B),_ E(bns — B) (bums — 6),

_ (n—p)(n—p+2+G) k Iy —1 h /
_204< (1—p+2) )(B’X’XB> [(XX) ~ 2pxxp P

(A.17)

which is equation (3.5).
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Finally, the expressions for the risk functions of b, and b}, can be straightfor-
wardly obtained by multiplying their respective MSE matrices by the weight ma-
trix of the loss function and then taking the traces of the resulting matrices.
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