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This paper has considered the problem of predicting both the actual
and average values of study variable in a linear regression model subject
to a set of exact linear restrictions on regression coefficients. Three
types of predictions arising from restricted regression and Stein-rule
methods are presented for the values of study variable within the sample
and outside the sample, and their performance properties are analyzed.
(JEL: C29)

I. INTRODUCTION

When the coefficients in a linear regression model are subject to a set of exact
linear restrictions, it is well documented that the restricted regression estimator
of coefficient vector not only obeys the given prior restrictions but also possesses
the property of minimum variance in the class of linear and unbiased estimators.
Such an estimator, however, does not perform well when the aim is to predict the
average values of study variable within the sample, see, e.g., Mittelhammer and
Conway (1984) and Tracy and Srivastava (1995). These authors have employed
the philosophy of Stein-rule estimation and have presented biased and nonlinear
estimators possessing superior predictive performance than the linear and unbi-
ased restricted regression estimator.

As Tracy and Srivastava (1995) have confined their attention to the prediction
of average values of study variable within the sample, a natural question arises
about their performance when the aim is to predict the actual values of study
variable within the sample. Further, we may be interested to know about their
performance when the aim is to predict the values outside the sample, for instance,
for the purpose of forecasting and preparing policy prescriptions. This article is
an attempt to answer these questions.

Generally, predictions of study variable in linear models are obtained either
for actual values or for average-values but not for both simultaneously. Situations
may arise in practice where it is desirable to predict both the actual and average
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values of the study variable at the same time; see, e.g., Zellner (1994) and Shalabh
(1995) for some illustrative examples. For this purpose, Shalabh (1995) has
presented an interesting framework that possesses sufficient flexibility and
permits assignment of possibly unequalr weight to predictions for actual and
average values of study variable. The present investigations have been carried out
under such a framework.

The organization of this paper is as follows. Section 2 describes the linear
regression model along with a set of exact linear restrictions binding the
coefficients. The resiricted regression estimator and two families of estimators
emerging from Stein-rule philosophy are presented. Based on these, vectors of
predictions for the values of study variable are formulated. Section 3 deals with
the performance properties of predictions within the sample while Section 4
reports similar investigations for predictions outside the sample. Section 5 places
some concluding remarks. Finally, the derivation of main results is outlined in the
Appendix.

2. RESTRICTED REGRESSION MODEL AND THE PREDICTORS

Consider the following linear regression model:
Y=XB+ ou (1)
where Y is a nx | vector of n observations on the study variable, X is an n X p
full column rank matrix of » observations on p explanatory variables, f3 is a
p % 1 vector of regression coefficients, ¢ is an unknown scalar and u is an nx |
vector of disturbances assumed to be identically and independently distributed,
each following a normal probability law with mean zerc and variance unity.
Further, the regression coefficients are subject to the following set of exact
linear restrictions:
r=Rp (2)
where risajx 1 vector and R is a j % p full row rank matrix with known elements.
The restricted reg;ession estimator of f is given by
Br=b-X"X)'RIRX'X)'RT'(Rb-1) 3)
where b= (X"X)"'X’Y is the unrestricted estimator in the sense that it does not
utilize the restrictions (2).

The estimator (3) obeys the restrictions (2) and is the best iinear unbiased

estimator of 3.
Employing the philosophy of Stein-rule estimation, Mittelhammer and Con-
way (1984) have presented a class of nonlinear and biased estimators. An
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equivalent but more useful form of it has been obtained by Tracy and Srivastava
(1995).

M M
Brrc = Br — amc ';&;“*(XWWGb (4)

where G = (X'X) - R’[R(X"X)"’R’]"’R and aye is any positive and non-stochastic
scalar characterizing the estimator.
Tracy and Srivastava (1995} have presented ancther class of nonlinear and

biased estimators for [3:

A Y-X[, Y XB, .
B s upe B” B o )

r r

where ayg is any positive and non-stochastic scalar characterizing the estimator.

It is easy to see that the three estimators (3), (4) and (5) satisfy the restrictions
(2). Using these, we can formulate the following three vectors of predictions for
the values of study variable within the sample:

Pr:XBn PMC:XBMO pPrs= Xlar.s (6)

Similarly, for the prediction of values outside the sample, let us assume that
we are given a set of ny values of the explanatory variables and

Y= X,p + ouy (7
where Yy is an nex 1 vector of ny unobserved values of study variable, X; is
X p a matrix of ny pre-specified values of explanatory variables and u; is
nyx | vector of disturbances which have the same distributional properties as
those of u in (1).

Thus the predictions are
A A A ;
Pr=XBr  Prmc=XBuc:  prrs=XBrs (8)

which can be used for predicting the actual and average values of the study
variable outside the sample.

3. PERFORMANCE PROPERTIES OF PREDICTIONS WITHIN THE SAMPLE

When the aim is to predict the average values (X 3) of the study variable within
the sample, Tracy and Srivastava (1995) have demonstrated that the predictions
puc and prg are superior to the predictions p, with respect to the criterion of total
mean squared error when '

p=j-2
O(GMC{Z[H—;J+2] (9)
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p-j-2

U<(£TS<2(n—p+j+2J (10)

provided that (p —j) exceeds 2. Similarly, if we compare pyc and prg assuming

ayc = ars = a, it is seen that prs is superior to pyc when

-
T bl (11)

J
i + —
n=p+s +1
provided that (p —j) exceeds 2.

Now a natural question arises related to performance of predictions when they
are used for actual values of study variable rather than for average values. Also
one may sometimes use these for predicting the actual and average values
together; see, e.g., Zellner (1994) and Shalabh (1995) for few examples. We
therefore define the following target function:

T=LAY +(1 = ME(Y) (12)

where A is a scalar between 0 and !, the choice of which depends upon the weight
to be given to the predictions of actual values in comparison to average values;
see Shalabh (1995).

It is easy to see that p, is weakly unbiased for T in the sense that
E(p,-T)=0 (13)
while pyc and prs are not.
Next, we observe that the total mean squared error of p, is given by
M(p,) = E(p,~ T (p,~T)
=0’((1 = 2A)(p —j) + A*n] (14)
For pyc and prs, we present small disturbance asymptotic approximations.

THEOREM 1. When disturbances are small, the differences in total mean
“squared errors up to order 0(c*) are given by

Dyc=M(p,) — M (pmc)

_ 4 9uc(n=p) 3 o i R
Drs=M(p) = M(prs)
-+
=t P 201 - N)p =D - - p i+ Dar) (16
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These results are derived in the Appendix.

It is obvious from the above results that both pysc and prg fail to beat p, so long
as they are used for predicting the actual values of the study variable within the
sample (A = 1). Such is, however, not the case when the aim is to predict either
the average values (A=0) or both the actual and average values together

(0 <X < 1). In all such cases, pyc is superior to p, when

p—j=2
G | =) | &———
O“CHML‘Cz( l)[ﬂwp—i-z] (17)
provided that (p — j) exceeds 2. Similarly, pys is superior to p, when
Pl =i
0(0.75‘(2(' :\.}(an+j+2) (18)

provided that (p — j) exceeds 2.

If we set A =0 in (17) and (18), we get the conditions derived by Tracy and
Srivastava (1995) on the basis of exact expressions for the total mean squared
error. Further, it is interesting to note that the ranlges of characterizing scalars for
p, to be dominated by pc and pgr are decreasing functions of A. In other words,
ranges have a shrinking tendency when we increase the weight assigned to
prediction of actual values in relation to the prediction of average values.

If we assume ayyc = ars = a (say) following Tracy and Srivastava (1995), it is
seen from (15) and (16} that

2 4 . iy
M(pumc) = M(prs) = B?Gg [(1 —l)(P-j-2)—(n-P+%+ 1].::] (19)

which is positive when
s
a<(l-n|-2=L==— 20)

J
n p+2+1

provided that (p —j) is greater than 2. Thus pys yields better predictions in
comparison to pyc so long as the condition (20) is satisfied, ignoring the
uninteresting case of A =1 as then both pyc and prs are inferior to p,. When the
inequality (20) holds with a reversed sign, the opposite is true, i.e., pyc is better
than pys.

If the same choice a of the characterizing scalar is taken for both py,c and

Vol. 27, Nos. 1-4 (2002)
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prs and 0 <A < 1, it is thus observed that pyg is superior to both p, and pyc so
long as the condition (20) is satisfied. If the choice of the characterizing scalar
violates the condition (20) but its value is smaller than the upper bound in (17),
Puc is better than p, and prg.

4, PERFORMANCE PROPERTIES OF PREDICTIONS OUTSIDE THE SAMPLE

When the aim is to predict the values of a study variable outside the sample,

we may take the target function, in the spirit of (12), as follows
Tr=AYp+ (1 - A) E(Y)) (21)

where Yy is specified by (7).

Let us consider the three vectors py,., ppsc and pyrg of predictions defined in (8).

It is easy to see that

E(pp-Tp=0 (22)

so that py, is weakly unbiased for 7. Such is not the case with pyyc and pyrs which
are biased. Further, the total mean squared error of py, is

M(ps) = E(pp— T (ppr — _7})
=c’Wn+g) (23)
where g=tr(X’X)'GX' X)X/ X, (24)

THEOREM 2. When disturbances are small, the differences in the total mean
squared errors up to order 0(0'4) are given by

Dypc = M(pg) = M(pruc)

_ 4 (n=Plauc
pGB
Dyrs=M(pg) — M(psrs)
— ot (n—p+jars
BFGp
: _BOX X)X XX 'X) 'GP
where = B'GB

These results are derived in the Appendix.

[2(g = 2k) = apsck(n — p + 2)] (25)

(2(g - 2k) —arsk(n —p+j+2)]  (26)

27

The above results reveal some interesting observations. Firstly, both the
differences (25) and (26) do not involve A. This implies that the efficiency gain
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or loss, at least to the order of our approximation, remains same whether the
predictions are used for actual vaiues or average values or a weighted combination
of them. Secondly, psc is preferable over p;, when

9 5
O<apyc<? e (28)
i n—p+2
while pyrs is preferable over p;, when
1=2
0{(17'542 —“p+j+2 (29)

provided that the ratio (g/k) exceeds 2.

Thirdly, comparing pyc and pyrg for the special case ayc = ars=a (say), it
follows from (25) and (26) that prrs s preferable over Prac When

1-2
e (30)
n~p+%+l

provided that (g/K) is greater than 2. Just the reverse is true, i.e., Pruc is better
than psr¢ when the inequality (30) holds with a reversed sign.

As the quantity k involves unknown regression coefficients, the conditions
(28)—(30) for preference of one over the other hardly serve any useful purpose in
any practical situation. To overcome this limitation, we observe that

Cmin <ks< Cmax (31}
where Cp, and Cyy,, denote the minimum and maximum characteristic roots of
the matrix ((X’X)_IG(X’X)_lX;Xf; see, e.g., Rao (1973).

Thus the conditions (28) and (29) will be satisfied as long as

8Comax 2

O<ayc<2 [n——p-f:—j—] (32)
8Chx =2

0<aTS<2(ﬂ—p+i+2 (33)

provided that gC,;éx is larger than 2.

Similarly, from (30), psrs is better than pp,c at least as long as
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a<y|-8Cm=2 (34)
n—p+%+l
provided that gC,]'h.'m is larger than 2.
On the other hand, pyc is better than pyrg at least so long as
g ECRRr2. (35)
n—p+%+l

provided that gC,;%n exceeds 2 which surely holds true if gC,;:,x is greater than 2.

5. CONCLUDING REMARKS

We have considered the problem of prediction of actual and average values of
study variable in a linear regression model subject to a set of exact linear
restrictions. The predictions arising from restricted regression estimation and
Stein-rule estimation procedures are then considered and three. varieties of
predictions are described. Analyzing their performance properties, it is observed
that restricted regression method yields unbiased predictions while Stein-rule
method does not. We have then compared the predictions with respect to the
criterion of total mean squared error.

When the aim is to predict the actual values of study variable within the
sample, our investigations have revealed that predictions based on restricted
regression method are invariably superior to the predictions based on Stein-rule
method. This is however not true when the aim is to predict the average values
alone or both the actual and average values simultaneously provided the number
of regression coefficients less the number of restrictions on them is greater than
two. In such cases, we have obtained the conditions under which one method
yields superior predictions in comparison to the other. These conditions, it may
be remarked, are simple and easy to check.

When the aim is to predict the values of study variable outside the sample, the
relative performance of one method with respect to some other method remains
unaltered whether one is interested in actual values only or average values or both
together. We have also deduced conditions for the superiority of one method over
the other in providing efficient predictions. These conditions can be easily verified
in any given application and shed light on the choice of scalar characterizing the
estimator.
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APPENDIX

In order to derive the results in Theorem 1, we observe from (1), (2), (3) and
(12) that

(7= )= S[XX'X)" GXX)' X’ = A, Ju (A1)
Next, we observe that
(pr— T)t(pr —T)= (Pmc— T)’(PMC s

(Y= XBY(Y = XB) ) vvrramctyprr
von . YCXX X' (p D)

ayc(Y - XbY (Y- Xb) |
_| Gud W G}b( ) ] b'G(X'X)"'Gb
~ aucY’ MY
T YXXDT'Ge X\ xy
where M=1,-X(X'X)"'X".

= ZGMC

RY’XX'X)'GX' X)X (p, = T) = apcY’MY)

Substituting (1) and (A. 1) on the right hand side and retaining terms up to order
0(c% only, we find

where fy=2(1 —=ME[uW'Mu - B'GX'X)™"'X"u]
=0
fa=E[u'Mu - u’{aMCM.- 2(1 - l)X(X'X)‘IG{X’X)‘IX’

4(1-2) | ¥
BGB L XX GRG0 X )
= (n=p)(n—p+ Dayc—2(1 - N(p—j-2)]

This leads to the result (15) of Theorem 1. The other result (16) can be similarly

oAb

derived.

For the results in Theorem 2, we notice that

(=T = SlX(X"X) "' GX"X) ™' X 'u - hay) (A2)

Further, we have

(P =T (P = Tp) = (Prmac = T (Prmc = Tp)

Y=Xby(Y- Xb)b,

b GX'X)"'X{(pp—T)

= 'ZaMC

: 2
aucl Y = XDY (¥ =B | ovasrctmmes sorina
-[ ey ] bGX X)X/ X (X' X) ' Gb
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VXXX GX X)X (- T,
YX(XX) G(XX)'XY[ X'X)"GX'X) j(Pjr f)

ey LA R OB &) 20 7) 9
e Y'X(X X)”G(X X XY

Using (A.2) and retaining terms up to order 0(c*) only, we can express

Depc= ﬁGB (0e3+0"ey)

where
= E[20' Mu{p'GX"X)” XX (XOX) T GXX) T X = 20 GXX) T X g} )

es=Elu Mu{Qi; XX G XX

[

x(@ BGBQBB(‘)(XX)hx;c-zqu(XX)-[ BGB )

a0, 'X)_IX ;-uf— aMCr"m'Mu}J
with k defined by (27).
Employing the distributional properties of 1 and uy, it is easy to verify that
£3= 0
es = (n— p)l2(g — 2k) - ayck(n — p +2)]

whence we find the result (25) stated in Theorem 2.

The result (26) of Theorem 2 can be similarly derived.
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