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Thi~ paper has considered the problem of predicting both the actual

and average values of study variable in a linear regression model subject

to a set of exact linear restrictions on regression coefficients. Three

types of predictions arising from restricted regression and Stein-rule

methods are presented for the values of study variable within the sample

and outside the. sample, and their performance properties are analyzed.

(JEL: C29)

l. INTRODUCfION

When the coefficients in a linear regression model are subject to a set of exact
linear restrictions, it is well documented that the restricted regression estimator
of coefficient vector not only obeys the given prior restrictions but also possesses

the property of minimum variance in the class of linear and unbiased e~timators.
Such an estimator, however, does not perform well when the aim is to predict the
average values of study variable within the sample, see, e.g., Mittelhammer and
Conway (1984) and Tracy.and Srivastava (1995). These authors have employed
the philosophy of Stein-rule estimation and have presented biased and nonlinear
estimators possessing superior predictive perfonnance than the linear and unbi-
ased restricted regression estimator.

As Tracy and Srivastava (1995) have confined their attention to the prediction
of average values of study variable within the sample, a natural question arises
about their performance when the aim is to predict the actual values of study
variable within the sample. Further, we may be interested to know about!their
perfonnance when the aim is to predict the values outside the sample, for instance,
for the purpose of forecasting and preparing policy prescriptions. This article is
an attempt to answer these questions.

Generally, predictions of study variable in linear models are obtained either
for actual values or for average-values but not for both simultaneously. Situations
may arise in practice where it is desirable to predict both the actual and average
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230 PREDIcrION IN RESTRIcrED REGRESSION MODELS

values of the study variable at the same time; see. e.g., Zellner (1994) and Shalabh
(1995) for some illustrative examples. For this purpose, Shalabh (1995) has
presented an interesting framework that possesses sufficient flexibility and
permits assignment of possibly unequai weight to predictions for actual and
average values of study variable. The present investigations have been carried out
under such a framework.

The organization of this paper is as follows. Section 2 describes the linear
regression model along with a set of exact linear restrictions binding the
coefficients. The restricted regression estimator and two families of esrimators
emerging from Stein-rule philosophy are presented. Based on these, vecrol'Sof
predictions for the values of study variable are formulated. Section 3 deals with
the performance properties of predictions within the sample while Section 4
reports similar investigations for predictions outside the sample. Section 5 places
some concluding remarks. Finally. the derivation of main results is outlined in the
Appendix.

2. RESTRIcrED REGRESSION MODEL AND THE PREDIcrORS

Consider the following linear regression model:

y =XP+ au (I)

where Y is a n x t vector of n observations on the study variable, X is an n x p

full column rank matrix of n observations on p explanatory variables, P is a
p x I vector of regression coefficients. a is an unknown scalar and u is an n x I

vector of distUrbances assumed to be identically and independently distributed.

each following a normal probability law with mean zero and variance unity.

Further, the regression coefficients are subject to the following set of exact
linear restrictions:

r=Rp (2)

where r is aj x 1vector and R is aj x p full row rank matrix with known elements.

The restricted re~ession estimator of Pis given by. 1\

Pr= b - (X,X)-IR'[R(X'X)-IRT1(Rb- r) . (3)

where b = (X,X)-IX'Y is the unrestricted estimator in the sense that it does not

utilize the restrictions (2).

The estimator (3) obeys the restrictions (2) and is the best linear unbiased
estimator of 13-

Employing the philosophy of Stein-rule estimation, Mittelhammer and Con-
way (1984) have presented a class of nonlinear and biased estimators. An
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equivalent but more useful form of it has been obtained by Tracy and Srivastava
(1995).

~ =~ - (Y-Xb)'(Y-Xb)(X'X)-IGb (4)PMC pr llMC b'Gb

where G = (X'X) - R'[R(X,X)-IRT1 Rand aMCis any positive and non-stochastic

scalar characterizing the estimator.

Tracy and Srivastava (1995) have presented another class of nonlinear and
biased estimators for A:P "1\

a - ~ - (Y - X~r)'(Y - XPr) (X
'
X)

-I G ~PTS- I-'r llTS ,,1\ Pr
P; GPr

(5)

where QTSis any positive and non-stochastic scalar characterizing the estimator.

It is easy to see that the three estimators (3), (4) and (5) satisfy the restrictions
(2). Using these, we can formulate the following three vectors of predictions for
the values of study variable within the sample:

A A A

Pr=Xf3" PMC=X~MC' PTS=XPTS (6)

Similarly, for the prediction of values outside the sample, let us assume that

we are given a set of nf values of the explanatory variables and

Yf= Xf~ + aUf (7)

where Yf is annfx 1 vector of nf unobserved values of study variable, Xf is

nf x P a matrix of nj pre-specified values of explanatory variables and uf is
nfx I vector of disturbances which have the same distributional properties as
those of U in (I).

Thus the predictions are
A A A

Pfr =Xf~r' PfMC = XfPMC, PfTS= Xf~TS (8)

which can be used for predicting the actual and average values of the study

variable outside the sample.

3. PERFORMANCE PROPERTIES OF PREDICTIONS WITHIN THE SAMPLE

When the aim is to predict the average values (XP) of the study variable within

the sample, Tracy and Srivastava (1995) have demonstrated that the predictions
PMCand PTSare superior to the predictions Pr with respect to the criterion of total
mean squared error when

(
P-j-2

)o< aMC< 2 n - P + 2
(9)
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(
p-j-2

)o< aTS< 2 . 2n-p+j+

providedthat (p - j) exceeds2. Similarly,if we comparePMCandPTSassuming
aMC =aTS =a, it is seen that PTS is superior to PMCwhen

(10)

(

p-j-2

]

O<a< .

n-p+~+1

provided that (p - j) exceeds 2.

Now a natural question arises related to performance of predictions when they
are used for actual values of study variable rather than for average values. Also
one may sometimes use these for predicting the actual and average values
together; see, e.g., Zellner (1994) and Shalabh (1995) for few examples. We
therefore define the following target function:

(II)

T= t...Y+ (I - t...)E(y) (12)

where t...is a scalar between 0 and I, the choice of which depends upon the weight

to be given to the predictions of actual values in comparison to average values;

see Shalabh (19.95).

It is easy to see that Pr is weakly unbiased for T in the sense that

E(Pr- 1) =0 (13)

while PMCand PTS are not.

Next, we observe that the total mean squared error of Pr is given by

M(Pr) = E(Pr-1)'(Pr-1)

= ~[(I - 2t...)(p - j) + t...2n] (14)

For PMCand PT;, we present small disturbance asy~ptotic approximations.

THEOREM1. When disturbances are small. the differences in total mean

. squared errors up to order 0 (0'4)are given by

DMc = M (Pr) - M (PMd

4 aMC(n- p) . .

=0' p'G~ [2(1-t...)(p-j-2)-(n-p+2)aMd

DTs = M (Pr) - M (PTs)

(15)

aTS(n - P + j)
=0'4 M _n [2(1 - t...)(p- j - 2)- (n- P+j + 2)an] (16)
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These results are derived in the Appendix.

It is obvious from the above results that both PMCand prs fail to beat P, so long

as they are used for predicting the actual values of the study variable within the

sample (A= I). Such is, however, not the case when the aim is to predict either

the average values (A=0) or both the actual and average values together

(0 < A< I). In all such cases, PMCis superior to P, when

(
P-j-2

)o< aMC< 2( I - A) 2n-p+

provided that (p - j) exceeds 2. Similarly, PTS is superior to P, when

(17)

(
p-j-2

)o< aTS < 2(1 - A) . 2n-p+J+

provided that (p - j) exceeds 2.

If we set A=0 in (17) and (18), we get the conditions derived by Tracy and

Srivastava (1995) on the basis of exact expressions for the total mean squared

error. Further, it is interesting to note that the ranges of characterizing scalarS for

P, to be dominatc:dby PMCand PSTare decreasing functions of A.In other words,
ranges have a shrinking tendency when we increase the weight assigned to

prediction of actual values in relation to the prediction of average values.

If we assumeaMC=°TS =0 (say) followingTracyand Srivastava(1995),it is
seen from (15) and (16) that

(18)

(19)

which is positive when

a < (I - A)

(

P - j ~ 2

)
n-p+-+I2

providedthat (p - j) is greater than 2. Thus PTS yields better predictionsin
comparisonto PMCso long as the condition (26) is satisfied, ignoring the
uninteresting case of A= I as then both PMCand PTSare inferior to p,. When the

inequality(20)holdswith a reversedsign.the oppositeis true. i.e..PMCis better
than PTS'

If the same choice 0 of the characterizingscalar is taken for both PMCand

(20)
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PTS and 0 5 A. < I, it is thus observed that PTSis superior to both Pr and PMCso

long as the condition (20) is satisfied. If the choice of the characterizing scalar
violates the condition (20) but its value is smalIer than the upper bound in (17),

PMCis better than Prand PTS.

4. PERFORMANCE PROPERTIES OF PREDICfIONS OUTSIDE THE SAMPLE

When the aim is to predict the values of a study variable outside the sample,

we may take the target function, in the spirit of (12), as follows

1'.,=A.lf+ (I - A.)E(Yf)

where Yf is specified by (7).

Let us consider the three vectors PI"PjMCand PjTSof predictions defined in (8).

It is easy to see that

(2])

E(Pfr-1f) = 0 (22)

so that Pfris weakly unbiased for 1f. Such is not the case with PfMCand PfTSwhich

are biased. Further, the total mean squared error of Pfr is

where

M(Pfr) = E(Pfr -1f)'(Pfr -1f)

= <i(A.2n + g)

g = tr(X,X)-IG(X,X)-txlxf

(23)

(24)

THEOREM2. When disturbances are small. the differences in the total mean

squared errors up to order 0 (cr4)are given by

where

DfMC =M (Pfr) -:M (PfMd

4 (n - p)aMC

=cr WG/3 [2(g - 2k) - aMck(n- P + 2)]

DfTS =M (Pfr) - M (PfTS)

4 (n - P +J)aTS
=cr WG/3 [2(g-2k)-aTSk(n-p+j+2)]

WG(X,X)-t XlXf(X' X)-t G/3
k = WGp

(25)

(26)

(27)

These results are derived in the Appendix.

The above results reveal some interesting observations. Firstly, both the

differences (25) and (26) do not involve A.. This implies that the efficiency gain
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or loss, at least to the order of our approximation, remains same whether the

predictions are used for actual values or average values or a weighted combination

of them. Secondly, PfMCis preferable over Pfrwhen

o < aMC< 2
( f- 2'2)n-p+

while PfTS is preferable over Ptr when

[

q

)

k""72
o < aTS< 2 . 2n-p+J+

provided that the ratio (g/k) exceeds 2.

Thirdly, comparing PMC and PITS for the special case aMC=aTS =a (say), it

follows from (25) and (26) that PITS is preferable over PIMCwhen

(28)

(29)

[

2.-2

]

k
a<2 .

n-p+~+l

(30)

provided that (8/K) is greater than 2. Just the reverse is true, i.e., PIMCis better
than PITSwhen the inequality (30) holds with a reversed sign.

As the quantity k involves unknown regression coefficients, the conditions

(28)-(30) for preference of one over the other hardly serve any useful purpose in
any practical situation. To overcome this limitation, we observe that

(31)

where Cminand Cmaxdenote the minimum and maximum characteristic roots of

the matrix ({X,X)-IG(X,X)-IX;XI; see, e.g., Rao (1973).

Thus the conditions (28) and (29) will be satisfied as long as

(
C-I 2

)
O<a <2 g max-

MC n-p+2

(
gC;~x - 2

)o< aTS< 2 . 2n-p+J+

provided that gC~x is larger than 2.

Similarly, from (30), PITSis better than PjMCat least as long as

(32)

(33)
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a < 2

(
gC;;;~x;2

J
n-p+"2+1

provided that gC~x is larger than 2.

On the other hand, PfMCis better than PITSat least so long as

(

gC;;;ln- 2

J

a>2 .
J

n-p+"2+1

provided that gC;;;lnexceeds 2 which surely holds true if gC;;;~xis greaterthan2.

(34)

(35)

5. CONCLUDING REMARKS

We have considered the problem of prediction of actual and average values of
study variable in a linear regression model subject to a set of exact linear

restrictions. The predictions arising from restricted regression estimation and

Stein-rule estimation procedures are then considered and three. varieties of

predictions are described. Analyzing their performance properties, it is observed

that restricted regression method yields unbiased predictions while Stein-rule

method does not. We have then compared the predictions with respect to the
criterion of total mean squared error.

When the aim is to predict the actual values of study variable within the

sample, our investigations have revealed that predictions based on restricted

regression method are invariably superior to the predictions based on Stein-rule

method. This is however not true when the aim is to predict the average values

alone or both the actual and average values simultaneously provided the number

of regression coefficients less the number of restrictions on them is greater than
two. In such cases, we have obtained the conditions under which one method

yields superior predictions in comparison to the other. These conditions, it may
be remarked, are simple and easy to check.

When the aim is to predict the values of study variable outside the sample, the
relative performance of one method with respect to some other method remains

unaltered whether one is interested in actual valu~s only or average values or both
together. We have also deduced conditions for the superiority of one method over

the other in providing efficient predictions. These conditions can be easily verified

in any given application and shed light on the choice of scalar characterizing the
estimator.
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ApPENDIX

In order to derive the results in Theorem I, we observe from (I), (2), (3) and
(12) that

(Pr -1) = a[X(X,X)-IG(X,X)-IX'- Aln]u
Next, we observe that

(Pr -1)'(Pr - 1) - (PMC- T)'(PMC - 1)

= 2 (Y- Xb)'(Y- Xb) b'G(X,X)-1X' (p - 1)aMC b'Gb .r

_[aMC<Y-:~~(Y-Xb)r b'G(X,X)-IGb
Y'MY- aMC [2Y'X (X,X)-IG(X,X)-IX' ( - 1) - a Y'My]

- Y'X(X,X)-IG(X,X)-IX'Y Pr MC

where M = In- X(X,X)-IX'.

Substituting (I) and (AI) on the right hand side and retaining terms up to order

o (a4) only, we find

(AI)

aMC -"3 4

DMc = WGf3(uJ/->,- a'f4)

where j, = 2(1 -''A.)E[u'Mu. WG(X,X)-IX'u]

=0

14= E[u'Mu . u'{aMcM - 2(1 - 'A.)X(X,X)-IG(X,X)-IX'

+ 40. =~'A.)X(X,X)-IGf3WG(X,X)-IX'}u] .

= (n - p)[(n - P + 2)aMC- 2(1 - 'A.)(p- j - 2)]

This leads to the result (15) of Theorem I. The other result (16) can be similarly
derived.

For the results in Theorem 2, we notice that

(A2)

Further, we have

(Pfr- Tf)'(Plr- Tf) - (PfMC- ~)'(PfMC- Tf)

(Y - Xb)'(Y - Xb) b'G(X,X)-1XI(P/r- Tf)= 2aMC b'Gb
.

[

aMC<Y - Xb)'(Y - Xb)

]
2 b'G(X,X)-1 XIX/X,X)-IGb- . b'Gb
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Y'MY- aMC [2Y'X (X' X)-IC (X'X)-IX~ ( - T)
- Y'X(X,X)-IC(X,X)-IX'Y 1 Pir f

Y'X (X,X)-l C(X'X)-lX'X (X,X)-IC(X,X)-I X'Y
-a YMY ff

MC Y'X(X,X)-IC(X'X)-IX'Y

Using (A.2) and retaining terms up to order 0(0-4) only, we can express

where

e3= E[2u'Mu{ WC(X,X)-IXIXf(X,X)-IC(X'X)-' X'u - 2AP'C(X,X)-1Xluf}]

e4 = E[ U'MU{2u'X (X'X)-l C(X,X)-IXIXf(X,X)-1

x(c- P'~~ C~WC}X,X)-IX'U-2AU'X(X,X)-1 (c- W~~ G~WG)

x (X,X)-IXluf- aMcku'MU}]

with k defined by (27).

Employing the distributional properties of Uand uf, it is easy to verify that

e3=O

e4 = (n - p)[2(g - 2k) - aMck(n - P + 2)]

whence we find the result (25) stated in Theorem 2.

The result (26) of Theorem 2 can be similarly derived.
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