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Abstract

The problem of consistent estimation in measurement error models in a linear relation with not necessarily normally distributed
measurement errors is considered. Three possible estimators which are constructed as different combinations of the estimators arising
from direct and inverse regression are considered. The efficiency properties of these three estimators are derived and the effect of
non-normally distributed measurement errors is analyzed. A Monte-Carlo experiment is conducted to study the performance of these
estimators in finite samples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a linear measurement error model, the parameters can be estimated consistently only when some additional
information besides the data set is available. There are various ways in which such additional information can be
employed; (see, e.g., Cheng and Van Ness, 1999; Fuller, 1987). Among them, application of the knowledge of all or
one of the measurement error variances is the most prominent approach.

We consider three different combinations of the direct and inverse adjusted least squares (LS) estimators. They
are modelled after analogous combinations found in the literature, where, however, they have been constructed from
non-adjusted direct and inverse LS estimators. Sokal and Rohalf (1981) considered the geometric mean of these two
estimators (which they call the technique of reduced major axis) and Aaronsom et al. (1986) work with the arithmetic
mean. In addition, the slope parameter may be estimated by the slope of the line that bisects the angle between the
direct and inverse regression lines; see, e.g., Pierce and Tully (1988). While all these estimators are not consistent
(although they possibly reduce the bias inherent in their constituent direct and inverse LS estimators), the present paper
constructs consistent estimators by using error adjusted direct and inverse LS rather than non-adjusted direct and inverse
LS estimators. A simple question then arises: which out of these suggested estimators is better under what conditions.
This question has been partly dealt with in Dorff and Gurland (1961), but for a model with replicated observations and
unknown error variances.
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The efficiency properties of all the estimators under consideration are expressed as functions of the reliability ratios
associated with study and explanatory variables, (see, Gleser, 1992, 1993). The asymptotic properties of the estimators
are derived when the measurement errors are not necessarily normally distributed.

The plan of our presentation is as follows. In Section 2, we describe a linear model with measurement errors and
present the estimators of the slope parameter when the error variances are known. Section 3 analyzes the asymptotic
properties of the estimators when the underlying error distributions are not necessarily normal. The finite sample
properties of the proposed estimators under different types of distributions of measurement errors are studied through
a Monte-Carlo experiment in Section 4. Some concluding remarks are offered in Section 5.

2. Model specification and the estimators

Consider a linear measurement error model in which the variables are related by the linear relation

Yj = � + �Xj (j = 1, 2, . . . , n), (1)

where Yj and Xj denote the true but unobserved values of the study and explanatory variables. The observed values
yj and xj are expressible as yj = Yj + uj and xj = Xj + vj , respectively, where uj and vj denote the associated
measurement errors.

We assume that X1, X2, . . . , Xn are independent (not necessarily identically distributed) random variables such
that plimn→∞X̄ and plimn→∞(1/n)

∑
(Xj − X̄)2 > 0 exist, which are denoted by �X and �2

X, respectively. The
measurement errors u1, u2, . . . , un are assumed to be independent and identically distributed with mean 0, variance �2

u,
third moment �1u�

3
u and fourth moment (�2u +3)�4

u. Similarly, the errors v1, v2, . . . , vn are assumed to be independent
and identically distributed with mean 0, variance �2

v , third moment �1v�
3
v and fourth moment (�2v + 3)�4

v . Further, the
random variables (Xj , uj , vj ) are assumed to be jointly independent.

It may be noted that this model comprises the ultrastructural model, see Dolby (1976), which in turn contains the
structural and the functional model as special cases.

Consistent estimation of the parameters � and � in the relationship (1) with the help of given data (xj , yj ), j=1, . . . , n,
is possible only when some additional information is available. This additional information, let us suppose, specifies
the error variances �2

u and �2
v . We can then estimate the slope parameter � consistently by using the knowledge of either

of the two error variances. This provides the following well-known estimators of �:

bd = sxy

sxx − �2
v

and bi = syy − �2
u

sxy

,

where sxx = (1/n)
∑

(xj − x̄)2, syy = (1/n)
∑

(yj − ȳ)2, sxy = (1/n)
∑

(xj − x̄)(yj − ȳ), x̄ = (1/n)
∑

xj , and
ȳ = (1/n)

∑
yj . An estimator using the knowledge of both the error variances is given by

bp = tp +
(

t2
p + �2

u

�2
v

)1/2

tp = 1

2sxy

(
syy − �2

u

�2
v

sxx

)
. (2)

We can combine the two basic estimators bd and bi in various ways. One possibility is to estimate the slope parameter
� by the geometric mean of the estimators bd and bi :

bg = sign(sxy)|bdbi |1/2. (3)

Similarly, we may estimate � by the arithmetic mean of bd and bi :

bm = 1
2 (bd + bi). (4)

Another interesting estimator of � is

bb = tb + (t2
b + 1)1/2 tb = bdbi − 1

bd + bi

, (5)

which is the slope of the line that bisects the angle between the two regression lines specified by bd and bi .
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3. Asymptotic properties

The asymptotic variances of the basic estimator bd , bi and bp under an ultrastructural model and when errors are not
necessarily normally distributed have been studied by Shalabh et al. (2004), (see also Srivastava and Shalabh, 1997;
Schneeweiss, 1976; Fuller, 1987). For later reference, we restate these results. In addition, we give an expression for
the asymptotic covariance of bd and bi , which will be used in the derivation of the asymptotic variances of bg , bm

and bb.

Proposition 1. The estimators bd and bi are asymptotically jointly normally distributed as

√
n

(
bd − �
bi − �

)
→ N(0, �b) where �b =

(
�dd �di

�di �ii

)

with

�dd = �2

(
1 − �x

�2
x

)
[�x + q + (1 − �x)(2 + �2v)], (6)

�ii = �2

(
1 − �x

�2
x

)
[�x + q + q2(1 − �x)(2 + �2u)] (7)

and

�di = �2

(
1 − �x

�2
x

)
[�x + q(2�x − 1)], (8)

where �x = �2
X/(�2

X + �2
v), �y = �2�2

X/(�2�2
X + �2

u) and q = �2
u/(�

2�2
v) = �x(1 − �y)/�y(1 − �x).

Proof. For �dd and �ii , see Shalabh et al. (2004). The covariance �di can be derived in a similar way (see also
Schneeweiss and Shalabh, 2006).

Notice that �x and �y are the reliability ratios of the explanatory and study variables in the model. Obviously,
0 < �x �1, 0��y �1, and q �0.

Similarly,
√

n(bp − �) → N(0, �pp), where the asymptotic variance is given by

�pp = �2

(
1 − �x

�2
x

)[
�x + q + q2(1 − �x)

(q + 1)2 (�2u + �2v)

]
. � (9)

We need the following general result to derive the asymptotic variance of the remaining estimators.

Proposition 2. Let �̂1 and �̂2 be two consistent, asymptotically jointly normal estimators of �. Any estimator �̂ of
� which is a differentiable and symmetric function g(�̂1, �̂2) of �̂1 and �̂2 such that � = g(�, �) is consistent and
asymptotically normally distributed with an asymptotic variance given by

�2
�̂

= 1
4 (�11 + 2�12 + �22),

where � = (�ij ), i, j = 1, 2, is the asymptotic covariance matrix of (�̂1, �̂2).

Proof. Denote the partial derivatives of g with respect to the first and second argument of g by g1 and g2, respectively.
Then by the symmetry of g, the equation � = g(�, �) implies

1 = g1(�, �) + g2(�, �) = 2g1(�, �) = 2g2(�, �),
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i.e., g1(�, �) = g2(�, �) = 1
2 . We then can evaluate �2

�̂
by the delta-method as

�2
�̂

= 1
4 (1, 1)�(1, 1)�

which is the statement of Proposition 2. �

As a consequence of Propositions 1 and 2, the estimators bg , bm, and bb are all consistent and asymptotically normal
with the same asymptotic variance given by

�2 (1 − �x)	

4�2
x

, (10)

where

	 = 2[q2(1 − �x) + 1 + �x + 2q�x] + (1 − �x)(�2v + q2�2u). (11)

It is interesting to observe from (10) and (11) that only the kurtosis of the distributions of measurement errors shows
its influence on the asymptotic variances of these estimators.

Comparing the asymptotic variances, we find that the estimator bp is more efficient than the equally efficient
estimators bg , bm or bb if, and only if,

2(q2 − 1)2 �(q − 1)[(1 + 3q)�2v − q2(q + 3)�2u]. (12)

Condition (12) is clearly satisfied when both measurement errors have mesokurtic (e.g., normal) distributions. The
condition also holds true when q > 1 and �2u �0 and �2v < 0. However in other cases, the estimator bp may be less
efficient under non-normal measurement errors.

Next, we compare the asymptotic variances of bg , bm or bb to bd and bi . We find that bg , bm or bb are better than bd

if, and only if,

3�2v − q2�2u > 2(q − 3)(q + 1). (13)

Condition (13) is always satisfied for mesokurtic (e.g., normal) distributions of u and v when q < 3.
Similarly, bg , bm or bb are better than bi if, and only if,

�2v − 3q2�2u < 2(3q − 1)(q + 1). (14)

Condition (14) is always satisfied for mesokurtic (e.g., normal) distributions of u and v when q > 1
3 .

Although the estimators bg , bm and bb use both type of additional information on measurement error variances, they
are sometimes less efficient than bd and bi , which use information only on one measurement error variance.

4. Monte-Carlo simulation

We conducted a Monte-Carlo simulation to study the behavior of the estimators in finite samples. The following
probability distributions of measurement errors are considered to give an idea of the effect of departure from the normal
distribution on the efficiency properties of the estimators: normal distribution (having no skewness and no kurtosis)
and t-distribution with six degrees of freedom (having no skewness but non-zero kurtosis).

Two data sets of sample sizes n = 40 (treated as small sample) and n = 400 (treated as large sample) are considered.
The model parameters are � = 1, � = 2, �X = 10, and �2

X = 0.08. The empirical bias (EB) and empirical mean squared
error (EMSE) of the estimators bd , bi , bp, bg , bm, and bb were computed based on 10 000 replications for both the
sample sizes and for different combinations of �x and �y under different distributions of measurement errors. Some
selected values of EB and EMSE of these estimators for n= 40 and n= 400 are presented in Tables 1 and 2 for normal
and t-distributed measurement errors. We also plotted the EB and EMSE of all the estimators against �x and �y in
three-dimensional surface plots. In order to shorten the discussion and save space, we are not presenting them here.
They can be found in an extended version of this section in Schneeweiss and Shalabh (2006) where further discussions
including an analysis of the beta distribution Beta(4, 2) and the Weibull distribution W(1, 2) can also be found.
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Table 1
Empirical bias and empirical mean squared error of estimators under normal distribution with n = 40 and 400

�x �y EB(bd ) EB(bi ) EB(bp) EB(bg) EB(bm) EB(bb) EM(bd ) EM(bi ) EM(bp) EM(bg) EM(bm) EM(bb)

When n = 40
0.3 0.3 1.2964 0.1434 0.1897 0.1782 0.7199 0.1098 551.5361 18.9549 4.5883 1.5134 141.6754 0.3282
0.3 0.5 1.2066 0.0757 0.1019 0.2178 0.6412 0.1270 193.5423 7.6577 4.4940 1.1156 49.3896 0.2566
0.3 0.7 1.7229 0.0462 0.0541 0.2679 0.8846 0.1423 539.3231 0.3843 0.2092 1.6768 132.9626 0.2586
0.5 0.3 0.1369 0.0160 0.0648 0.0146 0.0765 0.0199 0.2907 9.8367 0.7767 0.1461 2.5301 0.1241
0.5 0.5 0.2153 −0.0013 0.0337 0.0501 0.1070 0.0410 10.2123 0.1400 0.0868 0.1738 2.5832 0.0995
0.5 0.7 1.0319 0.0385 0.0557 0.1801 0.5352 0.1161 495.7989 0.3371 0.2566 1.0050 123.4030 0.1862
0.7 0.3 0.0872 0.1391 0.1757 0.0130 0.1132 0.0234 0.1468 41.0841 34.1450 0.1577 10.2917 0.1304
0.7 0.5 0.0516 −0.0271 0.0187 −0.0108 0.0123 −0.0077 0.0841 0.1464 0.0598 0.0744 0.0692 0.0688
0.7 0.7 0.0401 −0.0081 0.0094 0.0106 0.0160 0.0104 0.0481 0.0384 0.0290 0.0310 0.0303 0.0306

When n = 400
0.3 0.3 0.0648 0.0081 0.0151 0.0168 0.0365 0.0158 0.1098 0.0713 0.0335 0.0382 0.0847 0.0357
0.3 0.5 0.0566 0.0071 0.0100 0.0221 0.0319 0.0211 0.0788 0.0226 0.0166 0.0236 0.0274 0.0223
0.3 0.7 0.0575 0.0064 0.0082 0.0254 0.0320 0.0246 0.0659 0.0107 0.0100 0.0198 0.0225 0.0189
0.5 0.3 0.0115 −0.0033 0.0033 −0.0042 0.0041 −0.0039 0.0216 0.0489 0.0156 0.0190 0.0189 0.0186
0.5 0.5 0.0125 −0.0001 0.0031 0.0030 0.0062 0.0030 0.0158 0.0155 0.0089 0.0090 0.0092 0.0090
0.5 0.7 0.0160 0.0015 0.0036 0.0071 0.0088 0.0071 0.0125 0.0061 0.0052 0.0060 0.0061 0.0060
0.7 0.3 0.0030 −0.0095 0.0007 −0.0086 −0.0033 −0.0083 0.0103 0.0410 0.0095 0.0158 0.0153 0.0154
0.7 0.5 0.0028 −0.0038 0.0005 −0.0016 −0.0005 −0.0016 0.0049 0.0088 0.0042 0.0047 0.0047 0.0047
0.7 0.7 0.0043 −0.0009 0.0013 0.0013 0.0017 0.0013 0.0031 0.0030 0.0023 0.0023 0.0023 0.0023

Table 2
Empirical bias and empirical mean squared error of estimators under t-distribution with n = 40 and 400

�x �y EB(bd ) EB(bi ) EB(bp) EB(bg) EB(bm) EB(bb) EM(bd ) EM(bi ) EM(bp) EM(bg) EM(bm) EM(bb)

When n = 40
0.3 0.3 1.6511 0.0865 0.2307 0.1731 0.8688 0.1116 4896.7476 978.6324 15.8123 1.3589 1466.8572 0.3056
0.3 0.5 1.8224 0.2355 0.3630 0.1655 1.0290 0.0788 521.2361 602.0913 69.3003 1.8048 278.6083 0.3780
0.3 0.7 1.4976 0.0403 0.0488 0.2539 0.7690 0.1465 625.3957 0.1906 0.1417 1.5268 154.9934 0.2502
0.5 0.3 0.1755 0.0857 0.0857 0.0250 0.1306 0.0290 0.5406 2.9772 1.2748 0.1888 0.8544 0.1528
0.5 0.5 0.3019 0.0049 0.0422 0.0572 0.1534 0.0448 42.2078 0.2295 0.1146 0.2814 10.5862 0.1255
0.5 0.7 0.3194 0.0192 0.0404 0.1040 0.1693 0.0837 5.2565 0.0884 0.0728 0.2352 1.3152 0.1202
0.7 0.3 0.0783 0.0425 0.0855 −0.0064 0.0604 0.0037 0.1262 1.2832 6.1390 0.1402 0.3532 0.1185
0.7 0.5 0.0467 −0.0340 0.0141 −0.0119 0.0064 −0.0099 0.0720 0.1214 0.0521 0.0637 0.0598 0.0602
0.7 0.7 0.0375 −0.0062 0.0108 0.0117 0.0157 0.0116 0.0375 0.0308 0.0239 0.0253 0.0246 0.0250

When n = 400
0.3 0.3 0.0515 0.0072 0.0116 0.0123 0.0294 0.0118 0.0814 0.0630 0.0292 0.0318 0.0350 0.0304
0.3 0.5 0.0622 0.0092 0.0131 0.0260 0.0357 0.0250 0.0775 0.0232 0.0172 0.0243 0.0275 0.0232
0.3 0.7 0.0512 0.0081 0.0098 0.0241 0.0297 0.0235 0.0533 0.0102 0.0094 0.0171 0.0189 0.0165
0.5 0.3 0.0155 −0.0010 0.0067 −0.0003 0.0073 −0.0001 0.0210 0.0438 0.0147 0.0175 0.0173 0.0171
0.5 0.5 0.0126 0.0009 0.0042 0.0043 0.0068 0.0043 0.0128 0.0117 0.0072 0.0073 0.0074 0.0073
0.5 0.7 0.0127 0.0012 0.0031 0.0058 0.0070 0.0058 0.0098 0.0052 0.0045 0.0050 0.0051 0.0050
0.7 0.3 0.0047 −0.0079 0.0022 −0.0058 −0.0016 −0.0056 0.0090 0.0316 0.0082 0.0125 0.0122 0.0123
0.7 0.5 0.0028 −0.0026 0.0007 −0.0012 0.0001 −0.0011 0.0053 0.0097 0.0045 0.0050 0.0050 0.0050
0.7 0.7 0.0035 −0.0004 0.0011 0.0011 0.0016 0.0011 0.0036 0.0035 0.0026 0.0026 0.0026 0.0026

For large samples (n = 400), most of the estimators show a behavior that corresponds to the asymptotic theory, at
least for higher values of reliability ratios (��0.5). In particular, the MSEs of bg , bm, and bb are more or less the
same and the MSE of bp is smallest, not only for the normal but also for the t-distribution of the measurement errors.
There are slight differences in the variances of the estimators when one goes from the normal error distribution to
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the t-distribution. These differences are due to the peakedness of the t-distribution. In most cases, the estimates have a
negligible bias. Only for small �(� < 0.5), the bias sometimes becomes noticeable, but even then it is rather small.

For small samples (n=40), results can differ considerably from those of asymptotic theory, in particular if �x and/or
�y are small. We then find high values for the bias and in some cases huge MSE values. Also the uniform superiority
of bp is questionable when the �’s are small.

5. Conclusion

We considered six consistent and asymptotically normally distributed estimators for the slope parameter � when the
error variances are known in a linear ultrastructural model.

When the distributions of errors depart from normality, we observe that the asymptotic variances of the estimators
are influenced by the peakedness, and not the asymmetry, of the error distributions. Further it is seen that the superiority
of an estimator over another under the popular specification of normality may not necessarily carry over when the
distributions depart from normality.

These theoretical results are born out by a Monte-Carlo simulation study, although for small samples, the results
may deviate from the asymptotic ones, both with regard to the bias and to the MSE.
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