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Chapter 11 

Autocorrelation 

One of the basic assumptions in the linear regression model is that the random error components or 

disturbances are identically and independently distributed. So in the model ,y X u    it is assumed that 

 
2 if 0

( , )
0  if 0

u
t t s

s
E u u

s




 
 


 

i.e., the correlation between the successive disturbances is zero. 

 
In this assumption, when  2( , ) , 0t t s uE u u s    is violated, i.e., the variance of disturbance term does not 

remain constant, then the problem of heteroskedasticity arises.  When ( , ) 0, 0t t sE u u s    is violated, i.e., 

the variance of disturbance term remains constant though the successive disturbance terms are correlated, 

then such problem is termed as the problem of autocorrelation. 

 
When autocorrelation is present, some or all off-diagonal elements in ( ')E uu  are nonzero. 

 
Sometimes the study and explanatory variables have a natural sequence order over time, i.e., the data is 

collected with respect to time. Such data is termed as time-series data.  The disturbance terms in time series 

data are serially correlated.  

 
The autocovariance at lag s  is defined as 

 ( , ); 0, 1, 2,... .s t t sE u u s      

At zero lag, we have constant variance, i.e.,  

 2 2
0 ( )tE u   . 

 
The autocorrelation coefficient at lag s  is defined as 
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Assume s  and s  are symmetrical in s , i.e., these coefficients are constant over time and depend only on 

the length of lag s . The autocorrelation between the successive terms 2 1( and )u u , 3 2( and ),....u u  

1( and )n nu u  gives the autocorrelation of order one, i.e., 1 .  Similarly, the autocorrelation between the 

successive terms 3 1 4 2 2( and ), ( and )...( and )n nu u u u u u   provides the autocorrelation with of order two, i.e.,  

2 . 
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Source of autocorrelation 

Some of the possible reasons for the introduction of autocorrelation in the data are as follows: 

1. Carryover of effect, at least in part, is an important source of autocorrelation. For example, the 

monthly data on expenditure on the household is influenced by the expenditure of the preceding 

month.  The autocorrelation is present in cross-section data as well as time-series data. In the cross-

section data, the neighbouring units tend to be similar with respect to the characteristic under study. 

In time-series data, time is the factor that produces autocorrelation. Whenever some ordering of 

sampling units is present, the autocorrelation may arise. 

 

2. Another source of autocorrelation is the effect of deletion of some variables.  In regression modeling, 

it is not possible to include all the variables in the model. There can be various reasons for this, e.g., 

some variable may be qualitative, sometimes direct observations may not be available on the variable 

etc. The joint effect of such deleted variables gives rise to autocorrelation in the data. 

 

3. The misspecification of the form of relationship can also introduce autocorrelation in the data. It is 

assumed that the form of relationship between study and explanatory variables is linear. If there are 

log or exponential terms present in the model so that the linearity of the model is questionable, then 

this also gives rise to autocorrelation in the data. 

 

4. The difference between the observed and true values of the variable is called measurement error or 

errors–in-variable.  The presence of measurement errors on the dependent variable may also 

introduce the autocorrelation in the data. 
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Structure of disturbance term: 

Consider the situation where the disturbances are autocorrelated, 
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Observe that now there are ( )n k  parameters- 2
1 2 1 2 1, ,..., , , , ,..., .k u n          These ( )n k  parameters are 

to be estimated on the basis of available n  observations.  Since the number of parameters are more than the 

number of observations, so the situation is not good from the statistical point of view.  In order to handle the 

situation,  some special form and the structure of the disturbance term is needed to be  assumed so that the 

number of parameters in the covariance matrix of disturbance term can be reduced. 

 

The following structures are popular in autocorrelation: 

1. Autoregressive (AR) process. 

2. Moving average (MA) process. 

3. Joint autoregression moving average (ARMA) process. 

 

Estimation under the first order autoregressive process: 

Consider a simple linear regression model 

 0 1 , 1, 2,..., .t t ty X u t n      

Assume 'iu s  follow a first-order autoregressive scheme defined as  

 1t t tu u    

where     1, ( ) 0,tE    
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for all 1, 2,...,t n  where   is the first-order autocorrelation between tu  and  1, 1, 2,..., .tu t n    Now 
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Similarly,  

 2 2
2( ) .t t uE u u     

In general, 
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. 

 

Note that the distribution terms are no more independent and 2( ') .E uu I   The disturbance are 

nonspherical. 
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Consequences of autocorrelated disturbances: 

Consider the model with first-order autoregressive disturbances 
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with assumptions 
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where   is a positive definite matrix. 

 

The ordinary least squares estimator of    is 
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So OLSE remains unbiased under autocorrelated disturbances.  

 

The covariance matrix of  b  is 
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The residual vector is 
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so  2s  is a biased estimator of  2 .  In fact,  2s   has a downward bias. 
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Application of OLS fails  in case of autocorrelation in the data and leads to serious consequences as 

 an overly optimistic view from  2.R  

 narrow confidence interval. 

 usual t -ratio and F  ratio tests provide misleading results. 

 the prediction may have large variances. 

 

Since disturbances are nonspherical, so generalized  least squares estimate of    yields more efficient 

estimates than OLSE. 

The GLSE of    is 
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The GLSE is best linear unbiased estimator of   . 

 

Durbin Watson test: 

The Durbin-Watson (D-W) test is used for testing the hypothesis of lack of the first-order autocorrelation in 

the disturbance term. The null hypothesis is  

 0 : 0H    

 

Use OLS to estimate   in  y X u   and obtain the residual vector 

 e y Xb Hy    

where   1 1( ' ) ' , ( ' ) '.b X X X y H I X X X X     

 

The D-W test statistic is 
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For large ,n  

 
1 1 2

2(1 )

d r

d r

  
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where r  is the sample autocorrelation coefficient from residuals based on OLSE and can be regarded as the 

regression coefficient of  te on 1te  .  Here 

positive autocorrelation of  te ’s 2d   

negative  autocorrelation of  te ’s 2d   

zero autocorrelation of  te ’s 2d   

As  1 1,r     so 

if   1 0, then 2 4 andr d      

if  0 1, then 0 2.r d     

So  d  lies between 0 and 4. 

 

Since e  depends on  ,X  so for different data sets, different values of  d  are obtained.  So the sampling 

distribution of  d  depends on  X . Consequently, exact critical values of  d  cannot be tabulated owing to 

their dependence on  .X   Durbin and Watson, therefore, obtained two statistics d  and  d  such that 

 d d d   

and their sampling distributions do not depend upon .X   

 

Considering the distribution of  d  and d , they tabulated the critical values as Ld  and Ud  respectively.  

They prepared the tables of critical values for 15 100 and 5.n k     Now tables  are available for 

6 200n   and  10.k     

The test procedure is as follows: 

0 : 0H    

Nature of  1H  Reject 0H  when Retain  0H  when The test is inconclusive 
when 

1 : 0H    Ld d  Ud d  L Ud d d   

1 : 0H    (4 )Ld d   (4 )Ud d   ( 4 ) (4 )U Ld d d     

1 : 0H    or
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d d d

 
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Values of  Ld  and Ud  are obtained from tables. 
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Limitations of  D-W test 

1. If d  falls in the inconclusive zone, then no conclusive inference can be drawn. This zone becomes 

fairly larger for low degrees of freedom. One solution is to reject 0H  if the test is inconclusive. A 

better solution is to modify the test as 

 Reject 0H  when Ud d . 

 Accept 0H  when Ud d . 

This test gives a satisfactory solution when values of ix ’s change slowly, e.g., price, expenditure 

etc. 

 

2. The D-W test is not applicable when the intercept term is absent in the model. In such a case, one can 

use another critical value, say Md  in place of  Ld .  The tables for critical values Md  are available. 

 

3. The test is not valid when lagged dependent variables appear as explanatory variables. For example, 

1 1 2 2 1 1 ,.... ...t t t r t r r t k t k r ty y y y x x u                , 

1t t tu u   . 

In such case,  Durbin’s  h test is used, which is given as follows. 

 

Durbin’s h-test 

Apply OLS to  

1 1 2 2 1 1 ,.... ...t t t r t r r t k t k r ty y y y x x u                , 

1t t tu u    

and  find OLSE 1b  of  1.   Let its variance  be 1( )Var b  and its estimator is   1( ).Var b   Then the Dubin’s h -

statistic is 
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which is asymptotically distributed as (0,1)N  and 
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This test is applicable when n  is large. When 
11 ( ) 0,nVar b     then test breaks down.  In such cases, the 

following test procedure can be adopted. 

Introduce a new variable  1 1tot t t tu u     .  Then 

 1t t te y   . 

 

Now apply OLS to this model and test 0 : 0AH    versus 1 0AH    using t -test .  It  0 AH  is accepted then 

accept 0 : 0.H    

If 0 : 0AH    is rejected, then reject 0 : 0.H    

 

4.  If  0 : 0H    is rejected by D-W test, it does not necessarily mean the presence of first-order 

autocorrelation in the disturbances. It could happen because of other reasons also, e.g.,  

 distribution may follow higher-order  AR  process. 

 some important variables are omitted. 

 dynamics of the model is misspecified. 

 functional term of the model is incorrect. 

 

Estimation procedures with autocorrelated errors when autocorrelation coefficient is 

known 

Consider the estimation of regression coefficient under first-order autoregressive disturbances and the 

autocorrelation coefficient is known. The model is 
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and  assume that 2) 2( ) 0, ( ') , ( ) 0, ( ') .E u E uu I E E I          

The OLSE of    is unbiased but not,  in general, efficient and an estimate of  2  is biased.  So  we use 

generalized least squares estimation procedure and GLSE of    is 

 1 1 1ˆ ( ' ) 'X X X y      

where 
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To employ this, we proceed as follows: 

      1. Find a matrix P  such that 1' .P P     In this case 
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2. Transform the variables as 

        * , * , *y Py X PX P    . 

Such transformation yields 

2 2 2 2
1 12 1

2 1 22 12 2 1

3 2 32 22 3 2

1 2 1,2 1

1 1 1 1

1
* , * 1

1 ,

k

k k

k k

n n n n n n

y x x
y y x x x x

y y y X x x x x

y y x x x x

   
   
   

     

         
     

           
   
          





    


. 

 

Note that the first observation is treated differently than other observations. For the first observation, 

     2 2 ' 2
1 1 11 1 1y x u         

whereas for other observations 

  1 1 1) ' ( ; 2,3,...,t t t t t ty y x x u u t n            

where '
tx  is a row vector of X . Also, 2

1 1 01 and ( )u u u     have the same properties. So we 

expect these two errors to be uncorrelated and homoscedastic. 
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If the first column of  X  is a  vector of ones, then the first column of  *X  is not constant. Its first element is 
21 .  

Now employ OLSE with observations *y  and *X , then  the OLSE of    is 

 1* ( *' *) *' *,X X X y   

its covariance matrix is 
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2 1 1

ˆ( ) ( * ' *)

( ' )

Var X X

X X

 
 



 




 

and its estimator is 

 2 1 1ˆ ˆ( ) ( ' )V X X      

where 

 
1

2
ˆ ˆ( ) ' ( )

ˆ .
y X y X

n k

  
 




 

 
Estimation procedures with autocorrelated errors when autocorrelation coefficient is 

unknown 

Several procedures have been suggested to estimate the regression coefficients when the autocorrelation 

coefficient is unknown. The feasible GLSE of    is 

 1 1 1ˆ ˆ ˆ( ' ) 'F X X X y       

where  1ˆ   is the 1  matrix with   replaced by its estimator  ̂ . 

 
1. Use of sample correlation coefficient 

The most common method is to use the sample correlation coefficient r  as the natural estimator of  . The 

sample correlation  can be estimated using the residuals  in place of disturbances as 

 
1

2

2

2

n

t t
t

n

t
t

e e
r

e










 

where ' , 1, 2,..., andt t te y x b t n b    is OLSE of  . 

Two modifications are suggested for  r  which can be used in place of  r . 

1. *
1

n k
r r

n

    
 is the Theil’s estimator. 

2. ** 1
2

d
r    for large n  where d  is the Durbin Watson statistic for  0 : 0H   . 
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2. Durbin procedure: 

In Durbin procedure, the model 

 1 0 1(1 ) ( ) , 2,3,...,t t t t ty y x x t n              

is expressed as 

 
0 1 1 1

* *
0 1 1

(1 )

, 2,3,..., (*)

t t t t

t t t t

y y x x

y x x t n

     

    
 

 

     

     
 

where * *
0 0 (1 ),        . 

Now run a regression using OLS to model (*) and estimate *r  as the estimated coefficient of  1.ty   

Another possibility is that since ( 1,1)   , so search for a suitable   which has smaller error sum of 

squares. 
 

3. Cochran Orcutt procedure: 

This procedure utilizes P  matrix defined while estimating   when   is known.  It has the following steps: 

(i) Apply OLS to 0 1t t ty x u     and obtain the residual vector e . 

(ii) Estimate   by 
1

2

2
1

2

.

n

t t
t

n

t
t

e e
r

e











 

 Note that r  is a consistent estimator of   . 

(iii) Replace   by r  is 

 1 0 1(1 ) ( )t t t t ty y x x             

 and apply OLS to the transformed model 

 *
1 0 1( ) disturbance termt t t ty ry x rx        

 and obtain estimators of *
0  and   as *

0
ˆ ˆand   respectively. 

 

This is Cochran  Orcutt procedure. Since two successive applications of OLS are involved, so it is also called 

a two-step procedure. 

This application can be repeated in the procedure as follows: 

(I) Put *
0

ˆ ˆand    in the original model. 

(II) Calculate the residual sum of squares. 
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(III) Calculate   by  
1

2

2
1

2

n

t t
t

n

t
t

e e
r

e











 and substitute it is the model 

 1 0 1(1 ) ( )t t t t ty y x x             

 and again obtain the transformed model.   

(IV) Apply OLS to this model and calculate the regression coefficients. 

 

This procedure is repeated until convergence is achieved, i.e., iterate the process till the two successive 

estimates are nearly same so that stability of estimator is achieved. 

This is an iterative procedure and is a numerically convergent procedure. Such estimates are asymptotically 

efficient, and there is a loss of one observation. 

 

4. Hildreth-Lu procedure or Grid-search procedure: 

The Hilreth-Lu procedure has the following steps: 

(i) Apply OLS to 

 1 0 1( ) (1 ) ( ) , 2,3,...,t t t t ty y x x t n              

 using different values of ( 1 1)     such as  0.1, 0.2,...     . 

(ii) Calculate the residual sum of squares in each case. 

(iii) Select that value of    for which residual sum of squares is smallest. 

 

Suppose we get 0.4.    Now choose a finer grid. For example, choose   such that 0.3 0.5   and 

consider  0.31,0.32,...,0.49   and pick up that   with the smallest residual sum of squares. Such iteration 

can be repeated until a suitable value of   corresponding to the minimum residual sum of squares is 

obtained. The selected final value of   can be used and for transforming the model as in the case of 

Cocharan-Orcutt procedure.  The estimators obtained with this procedure are as efficient as obtained by 

Cochran-Orcutt procedure, and there is a loss of one observation. 
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5. Prais-Winston procedure 

This is also an iterative procedure based on two-step transformation. 

(i) Estimate   by  
1

2

2
1

3

ˆ

n

t t
t

n

t
t

e e

e












 where te ’s  are residuals based on OLSE. 

(ii) Replace   by ̂  is the model as in Cochran-Orcutt procedure 

        2 2 2 2
1 0

1 0 1 1

ˆ ˆ ˆ ˆ1 1 1 1

ˆ ˆ ˆ ˆ(1 ) ( ) ( ), 2,3,..., .

t t

t t t t t t

y x u

y y x x u u t n

     

       

      

       
 

 

(iii) Use OLS for estimating the parameters. 

The estimators obtained with this procedure are asymptotically as efficient as the best linear unbiased 

estimators.  There is no loss of any observation. 

 

(6) Maximum likelihood procedure 

Assuming that 2~ ( , ),y N X     the likelihood function for  2, and     is 

 

 
1

2
2 2 2

1 1
exp ( ) ' ( )

2
2

n n
L y X y X



  
 

 
    

 
. 

Ignoring the constant and using 
2

1
,

1






 the log-likelihood is 

 2 2 2 1
2

1 1
ln ln ( , , ) ln ln(1 ) ( ) ' ( )

2 2 2

n
L L y X y X 



       


        . 

The maximum likelihood estimators of  ,   and 2
  can be obtained by solving the normal equations 

 
2

ln ln ln
0, 0, 0.

L L L

  
  

  
  

 

These normal equations turn out to be nonlinear in parameters and can not be easily solved. 

One solution is to 

-  first derive the maximum likelihood estimator of  2
 . 

-  Substitute it back into the likelihood function and obtain the likelihood function as the function of    

  and   . 

-  Maximize this likelihood function with respect to   and   . 
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Thus 

 

1
2 2 2

2 1

ln 1
0 ( ) ' ( ) 0

2 2

1
ˆ ( ) ' ( )

L n
y X y X

y X y X
n

  



  
  

   






      



   
 

is the estimator of 2.  

Substituting 2ˆ  in place of  2
  in the log-likelihood function yields 

 

1 2

1 2

1

1
2

1 1
ln * ln *( , ) ln ( ) ' ( ) ln(1 )

2 2 2

1
ln ( ) ' ( ) ln(1 )

2

( ) ' ( )
ln

2
(1 )n

n n
L L y X y X

n

n
y X y X k

n

n y X y X
k

     

   

  









          
         

 
     

  

 

where ln .
2 2

n n
k n   

 

Maximization of  ln *L  is equivalent to minimizing the function 

 
1

1
2

( ) ' ( )
.

(1 )n

y X y X  



 


 

 

Using the optimization techniques of non-linear regression,  this function can be  minimized and estimates of 

  and   can be obtained. 

 

If  n  is large  and   is not too close to one, then the term 2 1/(1 ) n   is negligible and the estimates  of    

will be same as obtained by nonlinear least-squares estimation. 

 

 

 

 

 

 


