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Chapter 6 

Diagnostic for Leverage and Influence 

 
The location of observations in x -space can play an important role in determining the regression 

coefficients. Consider a situation  like in the following  

                           Xi

yi

A

 
The point A in this figure is remote in spacex   from the rest of the sample but it lies almost on the 

regression line passing through the rest of the sample points. This is a leverage point. 

 
It is an unusual x -value and may control certain model properties. 

- This point does not affect the estimates of the regression coefficients. 

- It affects the model summary statistics e.g., 2R , standard errors of regression coefficients etc. 

Now consider the point B following figure: 

                                            

This point has a moderately unusual x -coordinate and the y -value is also  unusual.  This is an influence 

point 

-   It has a noticeable impact on the model coefficients. 

-   It pulls the regression model in its direction. 

Xi

y i

B
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Sometimes a small subset of data exerts a disproportionate influence on the model coefficients and 

properties. In an extreme case,  the parameter estimates may depend more on the influential subset of points 

than on the majority of the data.  This is an undesirable situation.  A regression model has to be a 

representative of all the sample observations and not only of a few. So we would like to find these influential 

points and asses their impact on the model. 

- If these influential points are “bad” values, they should be eliminated from the sample. 

- If nothing is wrong with these points, but if they control the model properties, then it is to be 

found that how do they affect the regression model in use. 

 

Leverage 

The location of points in x -space affects the model properties like parameter estimates, standard errors, 

predicted values, summary statistics etc.  The hat matrix  1( ' ) 'H X X X X  plays an important role in 

identifying influential observations. Since 
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ˆ(y  is fitted value and  e  is residual) the elements iih  of  H  may be interpreted as the amount of leverage 

excreted by the thi  observation iy  on the  thi  fitted value ˆiy . 

 

The thi  diagonal element of  H  is 

 ' 1( ' )ii i ih x X X x  

where '
ix  is the thi  row of  X -matrix.  The hat matrix diagonal is a standardized measure of the distance of  

thi  an observation from the centre (or centroid) of the  x  space. Thus large hat diagonals reveal 

observations that are potentially influential because they are remote in x -space from the rest of the sample. 

Average size of hat diagonal ( )h is 
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 If  
2

2ii

k
h h

n
    the point is remote enough from rest of the data to  be considered as a leverage 

point. 

 Care is needed in using cutoff value 
2k

n
 and magnitudes of k and n are to be assessed. There can be 

situations where 
2

1
k

n
  and then this cut off does not apply. 

All leverage points are not influential on the regression coefficients. In the  following figure  

                            Xi

yi

A

 
 the point A  

- will have a large hat diagonal and is surely a leverage point. 

- have no effect of the regression coefficients as it lies on the same line passing through the 

remaining observations. 

Hat diagonal examine only the location of observations in x -space, so we can look at the studentized 

residual or  R -student in conjunction with the  iih . 

Observation with 

- large hat diagonal and 

- large residuals 

are likely to be influential. 

 

Measures of influence 

(1)  Cook’s  D-statistics: 

If data set is small, then the deletion of values greatly affects the fit and statistical conclusions. 

In measuring influence, it is desirable to consider both 

- the location of point is x -space and 

- the response variable. 
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The Cook’s distance statistics denoted as, Cook’s D-statistic is a  measure of the distance between the least-

squares estimate based on all  n  observations in  b  and the estimate obtained by deleting the thi  point, say  

( )ib . It is given by 

 ( ) ( )( ) ' ( )
( , ) ; 1, 2,..., .i i

i

b b M b b
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The usual choice of  M  and C  are 
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Points with large iD   the points have considerable influence of OLSE  b . 

Since 
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looks like a statistic having a ( , )F k n k  distribution. Note that this statistics is not having a ( , )F k n k  

distribution. 

So the magnitude of  iD  is assessed by comparing it with ( , )F k n k  . If  0.5 ( , ),iD F k n k   then deleting 

point i  would move ( )
ˆ

i  to the boundary of an approximate 50% confidence region for    based on the 

complete data set. 

This displacement is large and indicates that the  OLSE is sensitive to the thi  data point. 

 Since 0.5 ( , ) 1,F k n k    we usually consider that points for which 1iD   to be influential. 

 Ideally, each  ( )ib  is expected to stay within the boundary of a  10-20% confidence region. 

 iD  is not an  F -statistic but cut off of 1 work very well in practice. 
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Since  

( ) ( )
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 , 

so iD can be interpreted as a squared Euclidian distance (apart from er skMS ) that the vector of fitted values 

moves when the thi  observation is deleted. 

 

Since    
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the iD can be written as 
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where  ir  is studentized residual. 

 

iD :  product of squared thi  studentized residual and /(1 ).ii iih h  

     :  Reflects how well the model fits the thi  observation iy  and a component that measures how far that  

        point is from the rest of the data. 

    :   Either component or both may contribute to a large value of  .iD  

    :  Thus  iD  combines residual magnitude for thi  observation and location of points in x - space to assess 

influence.  
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(2)  DFFITS and  DFBETAS: 

Cook’s distance measure is a deletion diagnostic, i.e., it measures the  influence of thi observation if it is   

removed from the sample. 

 

There are two more statistics: 

(i) DFBETAS which indicates how much the regression coefficient changes if the thi  observation  were 

deleted. Such change is measured in terms of standard deviation units.  This statistic is  

   ( )
, 2

( )

j j i
j i

i jj

b b
DFBETAS

S C


  

where jjC  is the thj  diagonal element of  1( ' )X X   and ( )j ib  regression coefficient computed without 

the use of thi  observation. 

 

Large (in magnitude) value of ,j iDFBETAS ,  indicates that  thi  observation has considerable influence on the 

thj  regression coefficient. 

(i) The values of ,j iDFBETAS  can be expressed in a n k  matrix that conveys similar information to 

the composite influence information in Cook’s distance measure. 

(ii) The n  elements in the thj  row of R  produce the leverage that the n  observations in the sample  

            have on  ˆ
j .  ,j iDFBETAS  is the thj  element of  ( )( )ib b divided by a standardization factor 
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The jth element of ( )( )i ib b  can be expressed as   
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Let , (( ))j ir R  denotes the elements of  R , so 
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Since 

 '
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where it  is the thi  R -student residual. Now if ,

2
j iDFBETAS

n
 ,  then thi  observation warrants 

examination. 

 

2.  DFFITS: 

The deletion influence of  thi  observation on the predicted or fitted value can be investigated by using 

diagnostic by Belsley, Kuh and Welsch as  

 ( )

2
( )

ˆ ˆ
, 1, 2,...,i i

i

i ii

y y
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S h


   

where ( )ˆ iy  is the fitted value of  iy  obtained without the use of the thi  observation. The denominator is  just a 

standardization, since  2ˆ( ) .i iiVar y h  

 

This iDFFITS  is the number of standard deviations that the fitted value ˆiy  changes of  thi  observation is 

removed. 
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Computationally, 
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where it  is R -student. 

 If the data point is an outlier, then R -student will be large is magnitude. 

 If the data point has high leverage, then iih  will be close to unity. 

 In either of these cases, iDFFITS  can be large. 

 If 0,iih   then the effect of  R -student will be moderated. 

 If R -student is near to zero, then combined with high leverage point,  then iDFFITS  can be a small 

value. 

 Thus iDFFITS  is affected by both leverage and prediction error. Belsley, Kuh and Welsch suggest 

that any observation for which  

i  2
k

DFFITS
n

  

 warrants attention. 

 
Note: The cutoff values of  ,j iDFFITS  and iDFFITS  are only guidelines.  It is very difficult to provide 

cutoffs that are correct for all cases.  So analyst is recommended to utilize information about both what is 

diagnostic means and the application environment in selecting a cutoff. 

 
For example, if 1iDFFITS  , say, we could translate this into actual response units to determine just how 

much ˆiy  is affected by removing the thi  observation. 

 
Then use ,j iDFFITS  to see whether this observation is responsible for the significance (or perhaps 

nonsignificance) of particular coefficients or for changes is sign in a regression coefficient. 

 

,j iDFFITS  can be used to determine how much change in actual problem-specific units a data point has on 

the regression coefficient. Sometimes these changes will be of importance in a problem-specific context even 

though the diagnostic statistic do not exceed the formal cutoff. 
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The recommended cutoffs are a function of sample size n . Indeed, any formal cutoff should be a function of 

sample size. However, in practice, these cutoffs often identify more data points than an analyst may wish to 

analyze. This is particularly true in small samples. The cutoff values provided by Belsley, Kuh and Welsch 

make more sense for large samples. When  n  is small, then diagnostic views are preferred. 

 
A measure of model performance generalized variance: 

The diagnostics ,,  i j iD DFFITS  and iDFFITS  provide insight about the effect of observations on the 

estimated coefficient ˆ
j  and fitted values ˆ .iy   They do not provide any information about the overall 

precision of estimation. 

 
The generalized variance is defined as the determinant of the covariance matrix and is a convenient scalar 

measure of precision. The generalized  variance of OLSE b  is 

 2 1( ) ( ) ( ' )GV b V b X X   . 

To express the role of  thi  observation on the precision of estimation, define 
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If 1iCOVRATIO   thi  observation improves the precision of estimation. 

If 1iCOVRATIO     the inclusion of  thi  observation degrades the precision computationally, 
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. 

 So a high leverage point will make iCOVRATIO  large. This is logical since a high-leverage point will 

improve the precision unless the point is an outlier in y -space. 

 If  thi  observation is an outlier, then 
 2
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k
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k
res

S

MS
 will be much less than unity. 

 Cutoff values for COVRATIO are not easy to obtain.  It is suggested that 
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then  thi  point should be considered influential. The lower bound is only appropriate when 3 .n k    

These cutoffs are only recommended for large samples. 


