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Let yij(j = 1,2,…, ni) be a random sample from the ith normal

population with mean and variance , i.e.,

The random samples from different populations are assumed to

be independent of each other.

These observations follow the set up of linear model

The null hypothesis of interest is (say)

and where and are unknown.
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One‐way classification with fixed effect linear models of 
full rank:
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If then is rejected.

This means that at least one is different from others which is

responsible for the rejection.

So the objective is to investigate and find out such and

divide the population into groups such that the means of

populations within the groups are the same.

This can be done by pairwise testing of

Test against .
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Case of rejection of H0
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Student‐Newman‐Keuls test: 

2

, , .p p
sW q
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The Student‐Newman‐Keuls test compares  the range is 

compared with              points on critical Studentized range         

given by

pW100 %

The observed range  is now compared with        .       

Let the effects    are denoted as   

corresponding to   respectively  
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Student‐Newman‐Keuls test: 

i. divide the ranked means                         into two subgroups 

containing

ii. Compute the ranges                                                         . 

Then compare the ranges      and      with

Continue with this procedure until a group of imeans is found 

whose range does not exceed 
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• If               then stop the process of  comparison and conclude 

that 

• if                  then
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Student‐Newman‐Keuls test: 

By this method, the difference between any two means under

test is significant when the range of the observed means of

each and every subgroup containing the two means under test

is significant according to the Studentized critical range.
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Duncan’s multiple comparison test: 

The test procedure in Duncan’s multiple comparison test is the

same as in the Student‐Newman‐Keuls test except the

observed ranges are compared with Duncan’s critical

range

where denotes the upper points

of the Studentized range based on Duncan’s range.

Tables for Duncan’s range are available.
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Duncan’s multiple comparison test: 

Duncan felt that this test is better than the Student‐Newman‐

Keuls test for comparing the differences between any two

ranked means.

Duncan regarded that the Student‐Newman‐Keuls method is

too stringent in the sense that the true differences between

the means will tend to be missed too often.
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Duncan’s multiple comparison test: 

Duncan notes that in testing the equality of a subset

means through null hypothesis, we are in fact testing whether

(p ‐ 1) orthogonal contrasts between the differ from zero

or not.

, (2 ) k k p

' s
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Duncan’s multiple comparison test: 
If these contrasts were tested in separate independent

experiments, each at level , the probability of incorrectly

rejecting the null hypothesis would be . So Duncan

proposed to use in place of in the

Student‐Newman‐Keuls test.
[Reference: Contributions to order statistics, Wiley 1962, Chapter 9 (Multiple decision

and multiple comparisons, H.A. David, pages 147‐148)].

11 (1 ) p    
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Case of unequal sample sizes: 
When sample means are not based on the same number of

observations, the procedures based on Studentized range, Student‐

Newman‐Keuls test and Duncan’s test are not applicable.

Kramer proposed that in Duncan’s method, if a set of p means is to

be tested for equality, then replace

where nU and nL are the number of observations corresponding to

the largest and smallest means in the data.
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Case of unequal sample sizes: 
This procedure is only an approximate procedure but will tend

to be conservative since means based on a small number of

observations will tend to be overrepresented in the extreme

groups of means.

Another option is to replace n by the harmonic mean of

, i.e.,1 2, , ..., pn n n
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The “Least Significant Difference” (LSD):

In the usual testing of                   against                  the t‐statistic 0 :  i kH 1 : ,i kH  

( )
io ko

io ko

y yt
Var y y






is used which follows a t‐distribution, say with degrees of

freedom ‘df’. Thus is rejected whenever0H

, 1
2

df
t t 




and it is concluded that      and      are significantly different. i k
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The “Least Significant Difference” (LSD):

If every pair of sample for which 

exceeds 

then this will indicate that the difference between and

is significantly different. So according to this, the quantity

would be the least difference of and for which it will be

declared that the difference between and is significant.
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The “Least Significant Difference” (LSD):

Based on this idea, we use the pooled variance of the two

samples as s2 and the Least Significant Difference

(LSD) is defined as

If then

Now all pairs of and ,

are compared with LSD.
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The “Least Significant Difference” (LSD):

Use of LSD criterion may not lead to good results if it is used for

comparisons suggested by the data (largest/smallest sample

mean) or if all pairwise comparisons are done without

correction of the test level.

If LSD is used for all the pairwise comparisons then these tests

are not independent.

Such correction for test levels was incorporated in Duncan’s

test.
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Tukey’s “Honestly significant Difference”  (HSD)
In this procedure, the Studentized rank values are used

in place of t‐quantiles and the standard error of the difference

of pooled mean is used in place of standard error of mean in

common critical difference for testing against

Tukey’s Honestly Significant Difference is computed as

assuming all samples are of the same size n.

, ,nq 

0 : i kH   1 : .i kH  

1 , ,
2

error

p

MSHSD q
n 


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Tukey’s “Honestly significant Difference”  (HSD)

All   pairs                are compared with HSD. 

If then and are significantly different.

( 1)
2

p p 
io koy y

io koy y HSD  i k
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Multiple comparison based on confidence intervals:

We notice that all the multiple comparison test procedure

discussed up to now are based on the testing of hypothesis.

There is one‐to‐one relationship between the testing of

hypothesis and the confidence interval estimation. So the

confidence interval can also be used for such comparisons.
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Example
Before discussing these procedures, let us consider the

following example which illustrates the relationship between

the testing of hypothesis and confidence intervals.

Example: Consider the test of hypothesis for

The test statistic for is

0
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Example
where denotes the maximum likelihood (or least‐squares)

estimator of and t follows a t‐distribution with df degrees of

freedom.

This statistic, in fact, can be extended to any linear contrast,

say e.g.,

The decision rule is

reject against

if

̂



1 2 3 4 1 2 3 4
ˆ ˆ ˆ ˆˆ,          .       L L       

0 : 0H L  1 : 0H L 

ˆ ˆ( ).dfL t Var L
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Example
The 100 % confidence interval of L is obtained as

or

so that the % confidence interval of L is

and
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Example
If this interval includes L = 0 between lower and upper

confidence limits, then is accepted. Our objective is to

know if the confidence interval contains zero or not.

Suppose for some given data the confidence intervals for

and are obtained as and

0 : 0H L 

1 2  1 23 2     1 32 4.   1 3 
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Example
Thus we find that the interval of includes zero which implies

that is accepted. Thus .

On the other hand interval of does not include zero and so

is not accepted. Thus

If the interval of is then is accepted.

If both and , we can conclude that

1 2 

0 1 2: 0H    1 2 

1 3 

0 1 3: 0H    1 3 . 

1 3 
1 31 1     0 1 3:H  

0 1 2: H
0 1 3:H   1 2 3.   


