Analysis of Variance and Design of Experiments

$2^{\mathbf{n}}$ Factorial Experiments

$\bullet \bullet-$
 Lecture 35
 ANOVA in $\mathbf{2}^{\mathbf{2}}$ Factorial Experiment

Shalabh
Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Factorial experiments:

If the number of levels for each factor is the same, we call it is a symmetrical factorial experiment.

If the number of levels of each factor is not the same, then we call it as asymmetrical or mixed factorial experiment.

We consider only symmetrical factorial experiments.

Factorial experiments:

Through the factorial experiments, we can study

- the individual effect of each factor and
- interaction effect.

An important point to remember is that the factorial experiments are conducted in the design of an experiment. For example, the factorial experiment is conducted as an RBD.

Factorial experiments:

General notation for representing the factors is to use capital letters, e.g., A, B, C etc. and levels of a factor are represented in small letters.

For example, if there are two levels of A, they are denoted as a_{0} and a_{1}.

Similarly, the two levels of B are represented as b_{0} and b_{1}.

Another alternative representation to indicate the two levels of A is $\mathbf{0}\left(\right.$ for $\left.a_{0}\right)$ and 1 (for a_{1}).

The factors of B are then 0 (for b_{0}) and 1 (for b_{1}).

$\mathbf{2}^{\mathbf{2}}$ Factorial Experiment:

Treating (ab) as (a) (b) symbolically (mathematically and conceptually, it is incorrect), we can now express all the main effects, interaction effect and general mean effect as follows:

$\mathbf{2}^{\mathbf{2}}$ Factorial Experiment:

Main effect of $A=\frac{(a)+(a b)}{2}-\frac{(1)+(b)}{2}=\frac{1}{2}[(a b)-(b)+(a)-(1)]=\frac{(a-1)(b+1)}{2}$

Main effect of $B=\frac{(b)+(a b)}{2}-\frac{(1)+(a)}{2}$

$$
=\frac{1}{2}[(a b)-(a)+(b)-(1)]=\frac{(a+1)(b-1)}{2}
$$

Interaction effect of A and $B=\frac{(a b)-(b)}{2}-\frac{(a)-(1)}{2}$

$$
=\frac{1}{2}[(a b)-(a)+(1)-(b)]=\frac{(a-1)(b-1)}{2}
$$

General mean effect $(M)=\frac{(1)+(a)+(b)+(a b)}{4}$

$$
=\frac{1}{4}[(1)+(a)+(b)+(a b)]=\frac{(a+1)(b+1)}{4}
$$

$\mathbf{2}^{\mathbf{2}}$ Factorial Experiment:

Notice the roles of + and - signs as well as the divisor.

- There are two effects related to A and B.
- To obtain the effect of a factor, write the corresponding factor with - sign and others with + sign. For example, in the main effect of A, a occurs with - sign as in (a-1) and boccurs with + sign as in (b+1).
- In $A B$, both the effects are present so a and b both occur with + signs as in $(a+1)(b+1)$.

2^{2} Factorial Experiment:

- Also note that the main and interaction effects are obtained by considering the typical differences of averages, so they have divisor $\mathbf{2}$ whereas the general mean effect is based on all the treatment combinations and so it has divisor 4.
- There is a well defined statistical theory behind this logic but this logic helps in writing the final treatment combination easily. This is demonstrated later with appropriate reasoning.

$\mathbf{2}^{2}$ Factorial Experiment:

These effects can be represented in the following table

Factorial effects	Treatment combinations				Divisor
	(1)	(a)		(ab)	
M	+	+	+	+	4
A	-	+	-	+	2
B	-	-	+	+	2
$A B$	+	-	-	+	2

The model corresponding to $\mathbf{2}^{\mathbf{2}}$ factorial experiment is

$$
y_{i j k}=\mu+A_{i}+B_{j}+(A B)_{i j}+\varepsilon_{i j k}, i=1,2, j=1,2, k=1,2, \ldots, n
$$

where n observations are obtained for each treatment combinations.

Factorial Experiment:

Example:

Two factors: Irrigation (I) and Nitrogen (N).
Levels:
Irrigation has 2 levels: I_{0} and I_{1}
Nitrogen has 3 levels: N_{0}, N_{1} and N_{2}

Factorial Experiment:

When the experiments are conducted factor by factor, then much more resources are required in comparison to the factorial experiment. For example, if we conduct RBD for three-levels of Nitrogen N_{0}, N_{1} and N_{2} and two levels of irrigation I_{0} and I_{1}, then to have 10 degrees of freedom for the error variance, we need

- 6 replications on nitrogen
- $\quad 11$ replications on irrigation.

So the total number of plots needed is 40.

$\mathbf{2}^{2}$ Factorial Experiment:

For the factorial experiment with $\mathbf{6}$ combinations of $\mathbf{2}$ factors, the total number of plots needed are $\mathbf{1 8}$ for the same precision. We have considered the situation up to now by assuming only one observation for each treatment combination, i.e., no replication.

If r replicated observations for each of the treatment combinations are obtained, then the expressions for the main and interaction effects can be expressed as

2^{2} Factorial Experiment:

$$
\begin{aligned}
& A=\frac{1}{2 r}[(a b)+(a)-(b)-(1)] \\
& B=\frac{1}{2 r}[(a b)+(b)-(a)-(1)] \\
& A B=\frac{1}{2 r}[(a b)+(1)-(a)-(b)] \\
& M=\frac{1}{4 r}[(a b)+(a)+(b)+(1)] .
\end{aligned}
$$

Now we detail the statistical theory and concepts related to these expressions.

$\mathbf{2}^{2}$ Factorial Experiment:

Let $\quad Y_{*}=((1), a, b, a b)^{\prime}$ be the vector of total response values. Then

$$
\begin{aligned}
& A=\frac{1}{2 r} \ell_{A}^{\prime} Y_{*}=\frac{1}{2 r}\left(\begin{array}{llll}
-1 & 1 & -1 & 1
\end{array}\right) Y_{*} \\
& B=\frac{1}{2 r} \ell_{B}^{\prime} Y_{*}=\frac{1}{2 r}\left(\begin{array}{llll}
-1 & -1 & 1 & 1
\end{array}\right) Y_{*} \\
& A B=\frac{1}{2 r} \ell_{A B}^{\prime} Y_{*}=\frac{1}{2 r}\left(\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right) Y_{*} .
\end{aligned}
$$

Note that A, B and $A B$ are the linear contrasts.
Recall that a linear parametric function is estimable only when it is in the form of linear contrast.

Moreover, A, B and $A B$ are the linear orthogonal contrasts in the total response values $(1), a, b, a b$ except for the factor $1 / 2 r$.

$\mathbf{2}^{\mathbf{2}}$ Factorial Experiment:

The sum of squares of a linear parametric function $l^{\prime} y$ is given by $\frac{\left(\ell^{\prime} y\right)^{2}}{\ell^{\prime} \ell}$.

If there are r replicates, then the sum of squares is $\frac{\left(\ell^{\prime} y\right)^{2}}{r \ell^{\prime} \ell}$.

It may also be recalled under the normality of y 's, this sum of squares has a Chi-square distribution with one degree of freedom $\left(\chi_{1}^{2}\right)$.

2^{2} Factorial Experiment:

Thus the various associated sum of squares due to A, B and $A B$ are given by the following:

$$
\begin{aligned}
& S S A=\frac{\left(\ell_{A}^{\prime} Y_{*}\right)^{2}}{r \ell_{A}^{\prime} \ell_{A}}=\frac{1}{4 r}(a b+a-b-(1))^{2} \\
& S S B=\frac{\left(\ell_{B}^{\prime} Y_{*}\right)^{2}}{r \ell_{B}^{\prime} \ell_{B}}=\frac{1}{4 r}(a b+b-a-(1))^{2} \\
& S S A B=\frac{\left(\ell_{A B}^{\prime} Y_{*}\right)^{2}}{r \ell_{A B}^{\prime} \ell_{A B}}=\frac{1}{4 r}(a b+(1)-a-b)^{2} .
\end{aligned}
$$

Each of SSA, SSB and SSAB has χ_{1}^{2} under normality of Y_{*}.
The sum of squares due to total is computed as usual

$$
T S S=\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{r} y_{i j k}^{2}-\frac{G^{2}}{4 r}
$$

where $G=\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{r} y_{i j k}$ is the grand total of all the observations.

$\mathbf{2}^{2}$ Factorial Experiment:

The TSS has χ^{2} distribution with $\left(2^{2} r-1\right)$ degrees of freedom.
The sum of squares due to error is also computed as usual as

$$
S S E=T S S-S S A-S S B-S S A B
$$

which has χ^{2} distribution with $(4 r-1)-1-1-1=4(r-1)$ degrees of freedom.

The mean squares are

$$
\begin{array}{ll}
M S A=\frac{S S A}{1}, & M S B=\frac{S S B}{1} \\
M S A B=\frac{S S A B}{1}, & M S E=\frac{S S A}{4(r-1)} .
\end{array}
$$

$\mathbf{2}^{\mathbf{2}}$ Factorial Experiment:

The F-statistic corresponding to A, B and $A B$ are

$$
\begin{aligned}
& F_{A}=\frac{M S A}{M S E} \sim F\left(1,4(r-1) \text { under } H_{0},\right. \\
& F_{B}=\frac{M S B}{M S E} \sim F\left(1,4(r-1) \text { under } H_{0},\right. \\
& F_{A B}=\frac{M S A B}{M S E} \sim F\left(1,4(r-1) \text { under } H_{0} .\right.
\end{aligned}
$$

The decision rule is to reject the concerned null hypothesis when the value of the concerned F statistic

$$
F_{\text {effect }}>F_{1-\alpha}(1,4(r-1)) .
$$

$\mathbf{2}^{2}$ Factorial Experiment:

The ANOVA table is case of $\mathbf{2}^{\mathbf{2}}$ factorial experiment is given as follows:

Source	Sum of squares	Degrees of freedom	Mean squares	\boldsymbol{F}
A	$S S A$	1	$M S A$	$F_{A}=\frac{M S A}{M S E}$
B	$S S B$	1	$M S B$	$F_{B}=\frac{M S B}{M S E}$
$A B$	$S S A B$	1	$M S A B$	
Error	$S S E$	$4(r-1)$	$M S E$	$F_{A B}=\frac{M S A B}{M S E}$
Total	$T S S$	$4 r-1$		

