Analysis of Variance and Design of Experiments

General Linear Hypothesis and Analysis of Variance ...

Lecture 8
Analysis of Variance in One Way Fixed Effect Model

Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp.

Let $y_{ij}(j = 1,2,..., n_i)$ be a random sample from the i^{th} normal population with mean β_i and variance $\sigma^2, i = 1,2,...,p$, i.e.,

$$Y_{ij} \sim N(\beta_i, \sigma^2), j = 1, 2, ..., n_i; i = 1, 2, ..., p.$$

The random samples from different populations are assumed to be independent of each other.

These observations follow the set up of linear model

$$Y = X \beta + \varepsilon$$

These observations follow the set up of linear model

$$Y = X \beta + \varepsilon$$

where

$$Y = (Y_{11}, Y_{12}, ..., Y_{1n_1}, Y_{21}, ..., Y_{2n_2}, ..., Y_{p1}, Y_{p2}, ..., Y_{pn_p})'$$

$$y = (y_{11}, y_{12}, ..., y_{1n_1}, y_{21}, ..., y_{2n_2}, ..., y_{p1}, y_{p2}, ..., y_{pn_p})'$$

$$\beta = (\beta_1, \beta_2, ..., \beta_p)'$$

$$\boldsymbol{\varepsilon} = (\varepsilon_{11}, \varepsilon_{12}, ..., \varepsilon_{1n_1}, \varepsilon_{21}, ..., \varepsilon_{2n_2}, ..., \varepsilon_{p1}, \varepsilon_{p2}, ..., \varepsilon_{pn_p})'$$

where

$$x_{ij} = \begin{cases} 1 & \text{if } \beta_i \text{ occurs in the } j^{th} \text{ observation } x_j \\ & \text{or if effect } \beta_i \text{ is present in } x_j \\ 0 & \text{if effect } \beta_i \text{ is absent in } x_j \end{cases}$$

$$n = \sum_{i=1}^{p} n_i.$$

The null hypothesis of interest is $H_0: \beta_1 = \beta_2 = ... = \beta_p = \beta$ (say)

and H_1 : At least one $\beta_i \neq \beta_i (i \neq j)$

where β and σ^2 are unknown.

The whole parametric space Ω is a (p + 1) dimensional space

$$\Omega = \{ (\beta, \sigma^2) : -\infty < \beta_i < \infty, \sigma^2 > 0, i = 1, 2, ..., p \}$$

Note that there are (p + 1) parameters are $\beta_1, \beta_2, ..., \beta_p$ and σ^2 .

Under H_0 , Ω reduces to two dimensional space ω as

$$\omega = \{ (\beta, \sigma^2); -\infty < \beta < \infty, \sigma^2 > 0 \}.$$

The likelihood function under Ω is

$$L(y|\beta,\sigma^{2}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{p}\sum_{j=1}^{n_{i}}(y_{ij}-\beta_{i})^{2}\right]$$

$$L = \ln L(y|\beta,\sigma^2) = -\frac{n}{2} \ln (2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \beta_i)^2.$$

The normal equations and the estimators are obtained as follows:

$$\frac{\partial L}{\partial \beta_i} = 0 \qquad \Rightarrow \hat{\beta}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} = \overline{y}_{io}$$

$$\frac{\partial L}{\partial \sigma^2} = 0 \qquad \Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{io})^2.$$

The dot sign (o) in \overline{y}_{io} indicates that the average has been taken over the second subscript j.

The Hessian matrix of second-order partial derivation of $\ln L$ with respect to β_i and σ^2 is negative definite at $\beta=\overline{y}_{io}$ and $\sigma^2=\hat{\sigma}^2$ which ensures that the likelihood function is maximized at these values.

Thus the maximum value of $L(y|\beta,\sigma^2)$ over Ω is

$$\begin{aligned}
Max \ L(y|\beta,\sigma^{2}) &= \left(\frac{1}{2\pi\hat{\sigma}^{2}}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\hat{\sigma}^{2}} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \hat{\beta}_{i})^{2}\right] \\
&= \left[\frac{n}{2\pi\sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{io})^{2}}\right]^{n/2} \exp\left(-\frac{n}{2}\right).
\end{aligned}$$

The likelihood function under ω is

$$L(y|\beta,\sigma^{2}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{p}\sum_{j=1}^{n_{i}}(y_{ij}-\beta)^{2}\right]$$

$$\ln L(y|\beta,\sigma^2) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \beta)^2$$

The normal equations and the estimators are obtained as follows:

$$\frac{\partial \ln L(y|\beta,\sigma^2)}{\partial \beta} = 0 \qquad \Rightarrow \hat{\beta} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n_i} y_{ij} = \overline{y}_{oo}$$

$$\frac{\partial \ln L(y|\beta,\sigma^2)}{\partial \sigma^2} = 0 \qquad \Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{oo})^2.$$

The maximum value of the likelihood function over ω under H_0 is

$$\begin{aligned} \max_{\omega} L(y|\beta, \sigma^{2}) &= \left(\frac{1}{2\pi\hat{\sigma}^{2}}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2\hat{\sigma}^{2}} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \hat{\beta})^{2}\right] \\ &= \left[\frac{n}{2\pi \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{oo})^{2}}\right] \exp\left(-\frac{n}{2}\right). \end{aligned}$$

The likelihood ratio test statistic is
$$\lambda = \frac{Max L(y | \beta, \sigma^2)}{Max L(y | \beta, \sigma^2)}$$

$$= \left[\frac{\sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{io})^2}{\sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{oo})^2} \right]^{n/2}$$

We have that

$$\sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{oo})^2 = \sum_{i=1}^{p} \sum_{j=1}^{n_i} \left[(y_{ij} - \overline{y}_{io}) + (\overline{y}_{io} - \overline{y}_{oo}) \right]^2$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{io})^2 + \sum_{i=1}^{p} n_i (\overline{y}_{io} - \overline{y}_{oo})^2$$

Thus
$$\lambda = \left[\frac{\sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2 + \sum_{I=1}^{p} n_i (\overline{y}_{io} - \overline{y}_{oo})^2}{\sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{io})^2} \right]^{-\frac{1}{2}}$$

$$= \left[1 + \frac{q_1}{q_2}\right]^{-\frac{n}{2}}$$

where

$$q_1 = \sum_{i=1}^p n_i (\overline{y}_{io} - \overline{y}_{oo})^2$$
, and $q_2 = \sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{io})^2$

Note that if the least-squares principal is used, then q_1 : sum of squares due to deviations from H_0 or the between population sum of squares,

 q_2 : sum of squares due to error or the within-population sum of squares,

 $q_1 + q_2$: sum of squares due to H_0 or the total sum of squares.

Using theorems 6 and 7, let

$$Q_1 = \sum_{i=1}^{p} n_i (\overline{Y}_{io} - \overline{Y}_{oo})^2, \qquad Q_2 = \sum_{i=1}^{p} S_i^2$$

where

$$S_i^2 = \sum_{i=1}^{n_i} (Y_{ij} - \overline{Y}_{io})^2, \quad \overline{Y}_{oo} = \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^{n_i} Y_{ij}, \quad \overline{Y}_{io} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij},$$

then under H_0

$$\frac{Q_1}{\sigma^2} \sim \chi^2(p-1)$$

$$\frac{Q_2}{\sigma^2} \sim \chi^2(n-p)$$

and $\frac{Q_1}{\sigma^2}$ and $\frac{Q_2}{\sigma^2}$ are independently distributed.

Thus under
$$H_0$$

$$\frac{\left(\frac{Q_1}{\sigma^2}\right)}{\left(\frac{Q_2}{\sigma^2}\right)} \sim F(p-1, n-p).$$

$$\frac{\left(\frac{Q_2}{\sigma^2}\right)}{\left(\frac{\sigma^2}{n-p}\right)}$$

The likelihood ratio test reject H_0 whenever

$$\frac{q_1}{q_2} > C$$

where the constant $C = F_{1-\alpha}(p-1, n-p)$.

If $F > F_{1-\alpha}(p-1, n-p)$, then $H_0: \beta_1 = \beta_2 = ... = \beta_p$ is rejected.

The analysis of variance table for the one-way classification in fixed effect model is

Source of variation	Degrees of freedom	Sum of squares	Mean squares	F - value
Between populations	p-1	$q_{_1}$	$\frac{q_1}{p-1}$	
				$\left \left(\underline{n-p}\right)\underline{q_1}\right $
Within populations	n-p	q_2	$\frac{q_2}{n-p}$	$p-1$ q_2
Total	n-1	$q_1 + q_2$		

Note that

$$E\left\lceil \frac{Q_2}{n-p} \right\rceil = \sigma^2$$

$$E\left[\frac{Q_1}{p-1}\right] = \sigma^2 + \frac{\sum_{i=1}^{p} (\beta_i - \overline{\beta})^2}{p-1};$$

$$\overline{\beta} = \frac{1}{p} \sum_{i=1}^{p} \beta_i$$