Exploratory Statistical Data Analysis With R Software (ESDAR)
 Swayam Prabha

Lecture 24

Variation Measures based on Range and Quartiles

Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
Slides can be downloaded from
http://home.iitk.ac.in/~shalab/sp

Measures of Variation (or Dispersion)

Measures of variation or dispersion helps in measuring the spread
and scatterdness of data around any point, preferebly the
arithmetic mean value.
Various measures of variation are available:

- Range,
- Interquartile range,
- Quartile deviation,
- Absolute mean deviation,
- Variance,
- Standard deviation etc.

Range

Observations: $x_{1}, x_{2}, \ldots, x_{n}$
Range: Difference between the maximum and minimum values of
the data
$\mathrm{R}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)-\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Range

Decision Making

The data set having higher value of range has more variability.
The data set with lower value of range is preferable.
If we have two data sets and suppose their ranges are Range $_{1}$ and
Range $_{2}$.
If Range $_{1}>$ Range $_{2}$ then the data in Range ${ }_{1}$ is said to have more
variability than the data in Range $_{2}$.

Range

R command:

Data vector: \mathbf{x}
$\max (x)-\min (x)$
If X has missing values as NA, say $x n a$, then R command is
max(xna, na.rm = TRUE) - min(xna, na.rm = TRUE)

Caution:

Command range returns a vector containing the minimum and maximum of all the given arguments.

Range

Example:

Following are the time taken (in seconds) by $\mathbf{2 0}$ participants in a race: $32,35,45,83,74,55,68,38,35,55,66,65,42,68,72,84,67$, 36, 42, 58.
$>$ time $=c(32,35,45,83,74,55,68,38,35$, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58)
$>\max (t i m e)-\min (t i m e)$
[1] 52

Caution:

> range(time)
[1] 3284

Range

Example:

```
R R Console
> time
    [1] 32 35 45 83 74 55 68 38 35 55 66 65 42 68 72 84 67 36 42 58
> max(time) - min(time)
[1] 52
>
> range(time)
[1] 32 84
> |
```


Range

Example: Handling missing values

Suppose two data points are missing in the earlier example where the time taken (in seconds) by 20 participants in a race. They are recorded as NA

NA, NA, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58.
$>$ time.na $=c(N A, N A, 45,83,74,55,68,38$, $35,55,66,65,42,68,72,84,67,36,42,58)$
$>\max (t i m e . n a)-\min (t i m e . n a)$
[1] NA
> max(time.na, na.rm=TRUE)-min(time.na, na.rm=TRUE) [1] 49

Range

Example: Handling missing values

```
RRConsole
    \square
> time.na
    [1] NA NA 45 83 74 55 68 38 35 55 [106
> max(time.na) - min(time.na)
    [1] NA
>
> max(time.na, na.rm=TRUE)- min(time.na,na.rm=TRUE)
[1] 49
```


Interquartile Range

Difference between the $\mathbf{7 5}{ }^{\text {th }}$ and $25^{\text {th }}$ percentiles (or equivalently $3^{\text {rd }}$ and $1^{\text {st }}$ quartiles).
$I Q R=Q_{3}-Q_{1}$

It covers centre of the distribution and contains 50% of the observations.

Interquartile Range

Decision Making

The data set having higher value of interquartile range has more variability.

The data set with lower value of interquartile range is preferable.
If we have two data sets and suppose their interquartile ranges
are $I R_{1}$ and $I R_{2}$.
If $I R_{1}>I R_{2}$ then the data in $I R_{1}$ is said to have more variability than
the data in $\boldsymbol{R}_{\mathbf{2}}$.

Interquartile Range

R command:
Data vector: x
IQR(x)

If data vector x has missing values as NA, say $x n a$, then R
command is
IQR(xna, na.rm = TRUE)

Quartile Deviation

Half difference between the $75^{\text {th }}$ and $25^{\text {th }}$ percentiles (or equivalently $3^{\text {rd }}$ and $1^{\text {st }}$ quartiles).

Half of Interquartile range.
Quartile deviation is defined as

$$
\frac{1}{2}\left(Q_{3}-Q_{1}\right)=\frac{I Q R}{2}
$$

Decision Making

The data set having higher value of quartile deviation has more variability.

Quartile Deviation

R command:

Data vector: \mathbf{x}

IQR(x)/2

If data vector x has missing values as NA, say $x n a$, then R
command is
IQR(xna, na.rm = TRUE)/2

Interquartile Range and Quartile Deviation

Example:

Following are the time taken (in seconds) by 20 participants in a race: $32,35,45,83,74,55,68,38,35,55,66,65,42,68,72,84,67$, 36, 42, 58.
$>$ time
[1] $\begin{array}{lllllllllllllll}32 & 35 & 45 & 83 & 74 & 55 & 68 & 38 & 35 & 55 & 66 & 65 & 42 & 68\end{array}$
728467364258
> IQR(time) \#Interquartile Range
[1] 27
> IQR(time)/2 \#Quartile Deviation
[1] 13.5

Interquartile Range and Quartile Deviation

Example:

```
RRConsle
> time
    [1] 32 35 45 83 74 55 68 38 35 55 66 65 42 68 72 84 67 36 42 58
>
> IQR(time) #Interquartile Range
[1] 27
>
> IQR(time)/2 #Quartile Deviation
[1] 13.5
```


Interquartile Range and Quartile Deviation

Example: Handling missing values

Suppose two data points are missing in the earlier example where the time taken (in seconds) by $\mathbf{2 0}$ participants in a race. They are recorded as NA

NA, NA, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58.
> time.na $=c(N A, N A, 45,83,74,55,68,38$, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58)

Interquartile Range and Quartile Deviation

Example: Handling missing values

> IQR(time.na) \#Interquartile Range Error in quantile.default(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, : missing values and NaN's not allowed if 'na.rm' is FALSE
> IQR(time.na, na.rm = TRUE) \#Interquartile Range [1] 25.25
> IQR(time.na, na.rm = TRUE)/2 \#Quartile Deviation
[1] 12.625

