Exploratory Statistical Data Analysis With R Software (ESDAR)

Swayam Prabha

Lecture 5

Built-in Commands and Missing Values

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Built in commands

Some commands are readily available in R to compute

mathematical functions.

How to use them and utilize them in computing various quantities.

Maximum

Minimum

Overview Over Other Functions

abs()	Absolute value
sqrt()	Square root
round(), floor(), ceiling()	Rounding, up and down
<pre>sum(), prod()</pre>	Sum and product
log(), log10(), log2()	Logarithms
exp()	Exponential function
<pre>sin(), cos(), tan(), asin(), acos(), atan()</pre>	Trigonometric functions
<pre>sinh(), cosh(), tanh(), asinh(), acosh(), atanh()</pre>	Hyperbolic functions

```
> sqrt(9)
[1] 3

> sqrt(c(36,49,64,81))
[1] 6 7 8 9
```

```
R Console
> sqrt(9)
[1] 3
```

```
R Console

> sqrt(c(36,49,64,81))
[1] 6 7 8 9
```

```
> sqrt(16)
[1] 4
```

```
> sqrt(16)
[1] 4
```

```
> sqrt(c(4,9,16,25))
[1] 2 3 4 5
```

```
R Console

> sqrt(c(4,9,16,25))
[1] 2 3 4 5
```

```
> sum(c(6,7,8,9))
[1] 30
```

```
> prod(c(6,7,8,9))
[1] 3024
```

```
R Console

> sum (c(6,7,8,9))
[1] 30
```

```
R Console
> prod(c(6,7,8,9))
[1] 3024
```

Assignments

An assignment can also be used to save values in variables:

```
 > x = c(6,7,8,9) 
 > y = x^2 
 > y 
 [1] 36 49 64 81
```

```
> x = c(6,7,8,9)
>
> y = x^2
>
> y
[1] 36 49 64 81
>
```

To find sum of squares:

> x = c(6,7,8,9)
$$z = \sum_{i=1}^{n} x_i^2$$

To find sum of squares:

```
> x = c(6,7,8,9)
> z = sum(x^2)
> z
[1] 230
```

```
R Console

> x = c(6,7,8,9)
> z = sum(x^2)
> z
[1] 230
>
```

To find sum of squares of deviation from mean

$$> x = c(6,7,8,9)$$
 $z = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$

To find sum of squares of deviation from mean

>
$$\mathbf{x} = \mathbf{c}(6,7,8,9)$$

 $z = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$

```
> z = sum(x^2)-length(x)*mean(x)^2
```

```
> length(x)
[1] 4
> z
[1] 5
```

```
R Console

> x = c(6,7,8,9)
> z = sum(x^2)-length(x)*mean(x)^2
> length(x)
[1] 4
> z
[1] 5
```

To find sum of cross product:

```
> x1 = c(6,7,8,9)
> x2 = c(2,3,4,5)
6 \times 2 + 7 \times 3 + 8 \times 4 + 9 \times 5
> z = sum(x1*x2)
> z
[1] 110
```

```
> x1 = c(6,7,8,9)
> x2 = c(2,3,4,5)
> z = sum(x1*x2)
> z
[1] 110
```

R represents missing observations through the data value NA

NA: Reserved word

Missing values can be detected in a data vector by using is.na

Create a data with NA.

```
> x <- NA  # assign NA to variable x
> is.na(x)  # is it missing?
[1] TRUE
```

```
R Console
> x <- NA
> is.na(x)
[1] TRUE
> |
```

TRUE and FALSE are logical operators that are used to compare expressions.

TRUE and FALSE are reserved words.

T can also be used in place of TRUE.

F can also be used in place of FALSE.

TRUE and FALSE are not the same as true and false respectively.

How to know if any value is missing in a data vector?

```
> x <- c(50,60,70,80)
> is.na(x)
[1] FALSE FALSE FALSE FALSE
```

```
R Console

> x <- c(50,60,70,80)
> is.na(x)
[1] FALSE FALSE FALSE FALSE
>
```

How to know if any value is missing in a data vector?

```
> x <- c(50,NA,70,80)
> is.na(x)
[1] FALSE TRUE FALSE FALSE
```

```
> x <- c(50,NA,70,80)
> is.na(x)
[1] FALSE TRUE FALSE FALSE
>
```

How to know if any value is missing in a data vector?

```
> x <- c(50,NA,NA,80)
> is.na(x)
[1] FALSE TRUE TRUE FALSE
```

```
> x <- c(50,NA,NA,80)
> is.na(x)
[1] FALSE TRUE TRUE FALSE
>
```

Example: How to work with missing data

```
> x < -c(50,60,NA,80) # data vector
> mean(x) 50+60+NA+80
[1] NA 4
```

```
> mean(x, na.rm = TRUE) # NAs can be removed \frac{50+60+80}{3} = 63.33
```

```
> x <- c(50,60,NA,80)
> mean(x)
[1] NA
> mean(x,na.rm=TRUE)
[1] 63.33333
```

Example: How to work with missing data

The null object, called **NULL**, is returned by some functions and expressions.

Note that NA and NULL are not the same.

Note that NA and na are not the same.

```
> x <- c(50,60,na,80)
Error: object 'na' not found
>
```

NA is a placeholder for something that exists but is missing.

NULL stands for something that never existed at all.