Introduction to R Software

Swayam Prabha

Lecture 33

Introduction and Frequencies

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Descriptive statistics:

First hand tools which gives first hand information.

- Central tendency of data
- Variation in data
- Structure and shape of data tendency
- Relationship study

Graphical as well as analytical tools are used.

Graphical tools:

Graphical tools- various type of plots

- 2D & 3D plots,
- scatter diagram
- Pie diagram
- Histogram
- Bar plot
- Stem and leaf plot
- Box plot ...

Suppose there are 10 persons coded into two categories as male (M) and female (F).

M, F, M, F, M, M, F, M, M.

Use a_1 and a_2 to refer to male and female categories.

There are 7 male and 3 female persons, denoted as $n_1 = 7$ and $n_2 = 3$

The number of observations in a particular category is called the absolute frequency.

The <u>relative frequencies</u> of a_1 and a_2 are

$$f_1 = \frac{n_1}{n_1 + n_2} = \frac{7}{10} = 0.7 = 70\%$$

$$f_2 = \frac{n_2}{n_1 + n_2} = \frac{3}{10} = 0.3 = 30\%$$

This gives us information about the proportions of male and female persons.

table(variable) creates the absolute frequency of the variable of the data file.

Enter data as x

table(x) # absolute frequencies

table(x)/length(x) # relative frequencies

Example: Code the 10 persons by using, say 2 for male (M) and 1 for female (F).

```
M, F, M, F, M, M, F, M, M
2, 1, 2, 1, 2, 2, 1, 2, 2
```

- > gender <- c(2,1,2,1,2,2,2,1,2,2)
- > gender

```
[1] 2 1 2 1 2 2 2 1 2 2
```

```
R Console
> gender <- c(2,1,2,1,2,2,2,1,2,2)
> gender
[1] 2 1 2 1 2 2 2 1 2 2
>
```

```
> table(gender)/length(gender) #Relative freq.
gender
```

0.3 0.7

```
> table(gender)/length(gender)
gender
    1    2
0.3 0.7
>
```

3 7

Example

Consider a data set on home delivery of grocery items. The home delivery is centrally managed over phone and delivered by one of the three branches (East- denoted as 1, West- denoted as 2, Central- denoted as 3) of the shop and the 100 data values are recorded on the directions where the grocery items are delivered.

```
direction <-
c(1,1,2,1,2,3,2,2,3,3,3,1,2,3,2,2,3,1,
1,3,3,1,2,1,3,3,3,2,2,2,2,1,2,2,1,1,1,3,2,2,1,2
,3,2,2,1,2,3,3,2,1,2,2,3,1,1,2,1,2,3,2,2,3,2,2,3,
1,2,3,3,3,2,1,1,1,2,1,1,2,1,2,3,3,1,2,3,3,2,1,2
,3,2,1,3,2,2,2,2,2,3,2,2)</pre>
```

Example:

```
> table(direction)
direction
  1 2 3
28 43 29
```

```
> table(direction)
direction
1 2 3
28 43 29
```

Example:

```
> table(direction)/length(direction)
direction
    1    2    3
0.28  0.43  0.29
```

```
> table(direction)/length(direction)
direction
1 2 3
0.28 0.43 0.29
```