Introduction to Sampling Theory

Lecture 16 Ratio Method of Estimation

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Ratio estimator of \overline{Y}

$$\hat{\overline{Y}}_{R} = \frac{\overline{y}}{\overline{x}} \, \overline{X} = \hat{R} \overline{X}$$

We approximate the bias and mean squared error (mse) as follows:

Let

$$\varepsilon_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}} \Longrightarrow \overline{y} = (1 + \varepsilon_o)\overline{Y}$$

$$\varepsilon_1 = \frac{\overline{x} - \overline{X}}{\overline{X}} \Longrightarrow \overline{x} = (1 + \varepsilon_1)\overline{X}.$$

SRSWOR is being followed to draw the sample.

$$E(\varepsilon_0) = 0$$

$$E(\varepsilon_1) = 0$$

$$E(\varepsilon_0^2) = \frac{f}{n} C_Y^2$$

$$E(\varepsilon_1^2) = \frac{f}{n} C_X^2$$

$$E(\varepsilon_0 \varepsilon_1) = \frac{1}{\overline{X} \overline{Y}} \frac{f}{n} S_{XY} = \frac{1}{\overline{X} \overline{Y}} \frac{f}{n} \rho S_X S_Y = \frac{f}{n} \rho \frac{S_X}{\overline{X}} \frac{S_Y}{\overline{Y}} = \frac{f}{n} \rho C_X C_Y$$

where
$$f = \frac{N-n}{N}$$
, $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$

$$C_X = \frac{S_X}{\overline{X}}, C_Y = \frac{S_Y}{\overline{Y}}$$
: coefficient of variation related to Y .

Writing $\hat{\overline{Y}}_{R}$ in terms of $\mathcal{E}'S$, we get

$$\hat{\overline{Y}}_{R} = \frac{\overline{y}}{\overline{x}} \overline{X} = \frac{(1 + \varepsilon_{0})\overline{Y}}{(1 + \varepsilon_{1})\overline{X}} \overline{X}$$
$$= (1 + \varepsilon_{0})(1 + \varepsilon_{1})^{-1} \overline{Y}.$$

Assuming $|\varepsilon_1| < 1$, the term $(1 + \varepsilon_1)^{-1}$ may be expanded as an infinite series and it would be convergent.

Assuming $|\varepsilon_1| < 1$ means that

$$\left|\frac{\overline{x} - \overline{X}}{\overline{X}}\right| < 1,$$

i.e., possible estimate \overline{X} of population mean \overline{X} lies between 0 and $2\overline{X}$.

This is likely to hold true if the variation in \overline{x} is not large.

In order to ensures that variation in \bar{x} is small, assume that the sample size n it is fairly large.

With this assumption

$$\hat{\overline{Y}}_{R} = \overline{Y}(1 + \varepsilon_{0})(1 - \varepsilon_{1} + \varepsilon_{1}^{2} - \dots)$$

$$= \overline{Y}(1 + \varepsilon_{0} - \varepsilon_{1} + \varepsilon_{1}^{2} - \varepsilon_{1}\varepsilon_{0} + \dots).$$

So the estimation error of $\hat{\overline{Y}}_{\!\scriptscriptstyle R}$ is

$$\hat{\overline{Y}}_R - \overline{Y} = \overline{Y}(\varepsilon_0 - \varepsilon_1 + \varepsilon_1^2 - \varepsilon_1 \varepsilon_0 + \dots).$$

In case, when sample size is large, then \mathcal{E}_0 and \mathcal{E}_1 are likely to be small quantities and so the terms involving second and higher powers of \mathcal{E}_0 and \mathcal{E}_1 would be negligibly small.

In such a case,

$$\hat{\overline{Y}}_R - \overline{Y} \simeq \overline{Y}(\varepsilon_0 - \varepsilon_1)$$

and

$$E(\hat{\overline{Y}}_R - \overline{Y}) = 0.$$

So the ratio estimator is an unbiased estimator of population mean up to the first order of approximation.

If we assume that only terms of \mathcal{E}_0 and \mathcal{E}_1 involving powers more than two are negligibly small (which is more realistic than assuming that powers more than one are negligibly small), then the estimation error of $\hat{Y}_{\!\scriptscriptstyle R}$ can be approximated as

$$\hat{\overline{Y}}_R - \overline{Y} \simeq \overline{Y}(\varepsilon_0 - \varepsilon_1 + \varepsilon_1^2 - \varepsilon_1 \varepsilon_0).$$

Then the bias of $\hat{Y}_{\!\scriptscriptstyle R}$ is given by

$$E(\hat{\overline{Y}}_R - \overline{Y}) = \overline{Y} \left(0 - 0 + \frac{f}{n} C_X^2 - \frac{f}{n} \rho C_X C_y \right)$$

$$Bias(\hat{\overline{Y}}_R) = E(\hat{\overline{Y}}_R - \overline{Y}) = \frac{f}{n} \overline{Y} C_X (C_X - \rho C_Y)$$

up to the second order of approximation.

The bias generally decreases as the sample size grows large.

The bias of \hat{Y}_R is zero, i.e.,

$$Bias(\widehat{\overline{Y}}_R) = 0$$
 if
$$E(\varepsilon_1^2 - \varepsilon_0 \varepsilon_1) = 0$$
 or if
$$\frac{Var(\overline{x})}{\overline{X}^2} - \frac{Cov(\overline{x}, \overline{y})}{\overline{X}\overline{Y}} = 0$$
 or if
$$\frac{1}{\overline{X}^2} \left[Var(\overline{x}) - \frac{\overline{X}}{\overline{Y}} Cov(\overline{x}, \overline{y}) \right] = 0$$
 or if
$$Var(\overline{x}) - \frac{Cov(\overline{x}, \overline{y})}{R} = 0 \quad (\text{assuming } \overline{X} \neq 0)$$
 or if
$$R = \frac{\overline{Y}}{\overline{X}} = \frac{Cov(\overline{x}, \overline{y})}{Var(\overline{x})}$$

which is satisfied when the regression line of Y on X passes through origin.

Now, to find the mean squared error, consider

$$MSE(\hat{\overline{Y}}_R) = E(\hat{\overline{Y}}_R - \overline{Y})^2$$

$$= E\left[\overline{Y}^2(\varepsilon_0 - \varepsilon_1 + \varepsilon_1^2 - \varepsilon_1 \varepsilon_0 + ...)^2\right].$$

Under the assumption $|\varepsilon_1|<1$ and the terms of ε_0 and ε_1 involving powers more than two are negligible small,

$$MSE(\hat{Y}_{R}) \simeq E\left[\overline{Y}^{2}(\varepsilon_{0}^{2} + \varepsilon_{1}^{2} - 2\varepsilon_{0}\varepsilon_{1})\right]$$

$$= \overline{Y}^{2}\left[\frac{f}{n}C_{X}^{2} + \frac{f}{n}C_{Y}^{2} - \frac{2f}{n}\rho C_{X}C_{Y}\right]$$

$$= \frac{\overline{Y}^{2}f}{n}\left[C_{X}^{2} + C_{Y}^{2} - 2\rho C_{X}C_{Y}\right]$$

up to the second order of approximation.