Introduction to Sampling Theory

Lecture 18 Ratio Method of Estimation in Stratified Sampling

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Ratio Estimator in Stratified Sampling:

Suppose a population of size N is divided into k strata.

The objective is to estimate the population mean \overline{Y} using ratio method of estimation.

In such situation, a random sample of size n_i is being drawn from the i^{th} strata of size N_i on variable under study Y and auxiliary variable X using SRSWOR.

Ratio Estimator in Stratified Sampling:

Ratio Estimator in Stratified Sampling:

Let

 $y_{ii}: j^{th}$ observation on Y from i^{th} strata

 $x_{ij}: j^{th}$ observation on X from i^{th} strata i = 1, 2, ..., k; $j = 1, 2, ..., n_i$.

An estimator of \overline{Y} based on the philosophy of stratified sampling can be derived in following two possible ways:

- 1. Separate ratio estimator
- 2. Combined ratio estimator

1. Separate Ratio Estimator

• Employ first the ratio method of estimation separately in each strata and obtain ratio estimator \hat{Y}_{R_i} i=1,2,..,k assuming the stratum mean \overline{X}_i to be known.

Then combine all the estimates using weighted arithmetic mean.

This gives the separate ratio estimator.

1. Separate Ratio Estimator

This gives the separate ratio estimator as

$$\hat{\overline{Y}}_{Rs} = \sum_{i=1}^k \frac{N_i \hat{\overline{Y}}_{R_i}}{N} = \sum_{i=1}^k w_i \hat{\overline{Y}}_{R_i} = \sum_{i=1}^k w_i \frac{\overline{y}_i}{\overline{x}_i} \overline{X}_i$$

where

 $\overline{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$: sample mean of Y from i^{th} strata

 $\overline{x}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} x_{ij}$: sample mean of X from i^{th} strata

 $\bar{X}_i = \frac{1}{N_i} \sum_{j=1}^{N_i} x_{ij}$: mean of all the X units in i^{th} strata

No assumption is made that the true ratio remains constant from stratum to stratum. It depends on information on each \overline{X}_i .

2. Combined Ratio Estimator

• Find first the stratum mean of Y's and X's as

$$\overline{y}_{st} = \sum_{i=1}^k w_i \overline{y}_i$$
, $\overline{x}_{st} = \sum_{i=1}^k w_i \overline{x}_i$.

Then define the combined ratio estimator as

$$\hat{\overline{Y}}_{Rc} = \frac{\overline{y}_{st}}{\overline{x}_{st}} \overline{X}$$

where \overline{X} is the population mean of X based on all the $N = \sum_{i=1}^k N_i$ units.

It does not depend on individual stratum units.

It does not depend on information on each \overline{X}_i but only on \overline{X} .

Properties of Separate Ratio Estimator: Bias

Note that there is an analogy between $\overline{Y} = \sum_{i=1}^{\kappa} w_i \overline{Y}_i$ and $\overline{Y}_{Rs} = \sum_{i=1}^{\kappa} w_i \overline{Y}_{Ri}$.

We already have derived the approximate bias of $\hat{Y}_R = \frac{\overline{y}}{\overline{x}} \overline{X}$ as

$$E(\hat{\overline{Y}}_R) = \overline{Y} + \frac{\overline{Y}f}{n}(C_x^2 - \rho C_X C_Y).$$

So for $\hat{\overline{Y}}_{Ri}$, we can write

$$E(\hat{\overline{Y}}_{Ri}) = \overline{Y}_i + \overline{Y}_i \frac{f_i}{n_i} (C_{ix}^2 - \rho_i C_{iX} C_{iY})$$

Properties of Separate Ratio Estimator: Bias

$$\begin{aligned} \textbf{where } & \overline{Y_i} = \frac{1}{N_i} \sum_{j=1}^{N_i} y_{ij}, \ \ \overline{X_i} = \frac{1}{N_i} \sum_{j=1}^{N_i} x_{ij} \\ & f_i = \frac{N_i - n_i}{N_i}, C_{iy}^2 = \frac{S_{iy}^2}{\overline{Y_i^2}}, \ C_{ix}^2 = \frac{S_{ix}^2}{\overline{X_i^2}}, \\ & S_{iy}^2 = \frac{1}{N_i - 1} \sum_{i=1}^{N_i} (Y_{ij} - \overline{Y_i})^2, \ S_{ix}^2 = \frac{1}{N_i - 1} \sum_{i=1}^{N_i} (X_{ij} - \overline{X_i})^2, \end{aligned}$$

 P_i : correlation coefficient between the observation on X and Y in i^{th} stratum

 C_{ix} : coefficient of variation of X values in i^{th} sample.

Properties of Separate Ratio Estimator: Bias

Thus
$$E(\hat{Y}_{Rs}) = \sum_{i=1}^{k} w_{i} E(\hat{Y}_{Ri})$$

$$= \sum_{i=1}^{k} w_{i} \left[\overline{Y}_{i} + \overline{Y}_{i} \frac{f_{i}}{n_{i}} (C_{ix}^{2} - \rho_{i} C_{ix} C_{iy}) \right]$$

$$= \overline{Y} + \sum_{i=1}^{k} \frac{w_{i} \overline{Y}_{i} f_{i}}{n_{i}} (C_{ix}^{2} - \rho_{i} C_{ix} C_{iy})$$

$$Bias(\widehat{Y}_{Rs}) = E(\overline{Y}_{Rs}) - \overline{Y}$$

$$= \sum_{i=1}^{k} \frac{w_i \overline{Y}_i f_i}{n_i} C_{ix} (C_{ix} - \rho_i C_{iy}).$$

up to the second order of approximation.

Properties of Separate Ratio Estimator: MSE

Now we derive the MSE of $\hat{\overline{Y}}_{Rs}$.

We already have derived the approximate MSE of $\widehat{\overline{Y}}_{\!\scriptscriptstyle R}$ earlier as

$$MSE(\hat{\overline{Y}}_R) = \frac{\overline{Y}^2 f}{n} (C_X^2 + C_Y^2 - 2\rho C_x C_y)$$

$$= \frac{f}{n(N-1)} \sum_{i=1}^{N} (Y_i - RX_i)^2 \quad \text{where} \quad R = \frac{\overline{Y}}{\overline{X}}.$$

Thus the MSE of ratio estimator up to the second order of approximation based on the i^{th} stratum is

$$MSE(\hat{\overline{Y}}_{Ri}) = \frac{f_i \overline{Y}_i^2}{n_i (N_i - 1)} (C_{iX}^2 + C_{iY}^2 - 2\rho_i C_{iX} C_{iY})$$
$$= \frac{f_i}{n_i (N_i - 1)} \sum_{i=1}^{N_i} (Y_{ij} - R_i X_{ij})^2.$$

Properties of Separate Ratio Estimator: MSE

and so

$$MSE(\hat{Y}_{Rs}) = \sum_{i=1}^{k} w_i^2 MSE(\hat{Y}_{Ri})$$

$$= \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \bar{Y}_i^2 (C_{iX}^2 + C_{iY}^2 - 2\rho_i C_{iX} C_{iY}) \right]$$

$$= \sum_{i=1}^{k} \left[w_i^2 \frac{f_i}{n_i (N_i - 1)} \sum_{j=1}^{N_i} (Y_{ij} - R_i X_{ij})^2 \right].$$

Properties of Separate Ratio Estimator: Estimator of MSE

An estimate of $MSE(\hat{\overline{Y}}_{Rs})$ can be found by substituting the unbiased estimators of S_{iX}^2, S_{iY}^2 and S_{iXY}^2 as s_{ix}^2, s_{iy}^2 and s_{ixy} , respectively for i^{th} stratum and $R_i = \overline{Y}_i / \overline{X}_i$ can be estimated by $r_i = \overline{y}_i / \overline{x}_i$.

$$\widehat{MSE}(\widehat{Y}_{Rs}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (s_{iy}^2 + r_i^2 s_{ix}^2 - 2r_i s_{ixy}) \right].$$

Also

$$\widehat{MSE}(\widehat{Y}_{Rs}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i (n_i - 1)} \sum_{j=1}^{n_i} (y_{ij} - r_i x_{ij})^2 \right].$$

Properties of Combined Ratio Estimator:

Here

$$\hat{\overline{Y}}_{RC} = \frac{\sum_{i=1}^{k} w_i \overline{y}_i}{\sum_{i=1}^{k} w_i \overline{x}_i} \overline{X} = \frac{\overline{y}_{st}}{\overline{x}_{st}} \overline{X} = \hat{R}_c \overline{X}.$$

It is difficult to find the exact expression of bias and mean squared error of \hat{Y}_{Rc} , so we find their approximate expressions.

Properties of Combined Ratio Estimator:

Define

$$\varepsilon_{1} = \frac{\overline{y}_{st} - \overline{Y}}{\overline{Y}}, \qquad \varepsilon_{2} = \frac{\overline{x}_{st} - \overline{X}}{\overline{X}}$$

$$E(\varepsilon_{1}) = 0, \qquad E(\varepsilon_{2}) = 0$$

$$E(\varepsilon_{1}^{2}) = \sum_{i=1}^{k} \frac{N_{i} - n_{i}}{N_{i} n_{i}} \frac{w_{i}^{2} S_{iY}^{2}}{\overline{Y}^{2}} = \sum_{i=1}^{k} \frac{f_{i}}{n_{i}} \frac{w_{i}^{2} S_{iY}^{2}}{\overline{Y}^{2}}$$

$$E(\varepsilon_{2}^{2}) = \sum_{i=1}^{k} \frac{f_{i}}{n_{i}} \frac{w_{i}^{2} S_{iX}^{2}}{\overline{X}^{2}}$$

$$E(\varepsilon_{1}\varepsilon_{2}) = \sum_{i=1}^{k} \frac{w_{i}^{2} f_{i}}{n_{i}} \frac{S_{iXY}}{\overline{X}\overline{Y}}.$$

Properties of Combined Ratio Estimator:

Thus assuming $|\mathcal{E}_2| < 1$,

$$\hat{\overline{Y}}_{RC} = \frac{(1+\varepsilon_1)\overline{Y}}{(1+\varepsilon_2)\overline{X}}\overline{X}$$

$$= \overline{Y}(1+\varepsilon_1)(1-\varepsilon_2+\varepsilon_2^2-...)$$

$$= \overline{Y}(1+\varepsilon_1-\varepsilon_2-\varepsilon_1\varepsilon_2+\varepsilon_2^2-...).$$

Expanding and retaining the terms up to order two.

$$\hat{\overline{Y}}_{RC} \simeq \overline{Y}(1 + \varepsilon_1 - \varepsilon_2 - \varepsilon_1 \varepsilon_2 + \varepsilon_2^2)$$

$$\hat{\overline{Y}}_{RC} - \overline{Y} \simeq \overline{Y} (\varepsilon_1 - \varepsilon_2 - \varepsilon_1 \varepsilon_2 + \varepsilon_2^2).$$

Properties of Combined Ratio Estimator: Bias

The approximate bias of \hat{Y}_{Rc} up to second order of approximation is

$$Bias(\hat{\overline{Y}}_{Rc}) = E(\hat{\overline{Y}}_{Rc} - \overline{Y})$$

$$\approx \overline{Y}E(\varepsilon_{1} - \varepsilon_{2} - \varepsilon_{1}\varepsilon_{2} + \varepsilon_{2}^{2})$$

$$= \overline{Y} \left[0 - 0 - E(\varepsilon_{1}\varepsilon_{2}) + E(\varepsilon_{2}^{2}) \right]$$

$$= \overline{Y} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} \left(\frac{S_{iX}^{2}}{\overline{X}^{2}} - \frac{S_{iXY}}{\overline{X}\overline{Y}} \right) \right]$$

$$= \overline{Y} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} \left(\frac{S_{iX}^{2}}{\overline{X}^{2}} - \frac{\rho_{i}S_{iX}S_{iY}}{\overline{X}\overline{Y}} \right) \right]$$

$$= \frac{\overline{Y}}{\overline{X}} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} S_{iX} \left(\frac{S_{iX}}{\overline{X}} - \frac{\rho_{i}S_{iY}}{\overline{Y}} \right) \right]$$

$$= R \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} S_{iX} \left(C_{iX} - \rho_{i}C_{iY} \right) \right]$$

Properties of Combined Ratio Estimator: Bias

Here $R=rac{\overline{Y}}{\overline{X}},~
ho_i$ is the correlation coefficient between the observations on Y and X in the i^{th} stratum,

 C_{ix} and C_{iy} are the coefficients of variation of X and Y respectively in the i^{th} stratum.

Properties of Combined Ratio Estimator: MSE

The mean squared error up to second order of approximation is

$$\begin{split} MSE(\hat{\overline{Y}}_{Rc}) &= E(\hat{\overline{Y}}_{Rc} - \overline{Y})^{2} \\ &\simeq \overline{Y}^{2} E(\varepsilon_{1} - \varepsilon_{2} - \varepsilon_{1} \varepsilon_{2} + \varepsilon_{2})^{2} \\ &\simeq \overline{Y}^{2} E(\varepsilon_{1}^{2} + \varepsilon_{2}^{2} - 2\varepsilon_{1} \varepsilon_{2}) \\ &= \overline{Y}^{2} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} \left(\frac{S_{iX}^{2}}{\overline{X}^{2}} + \frac{S_{iY}^{2}}{\overline{Y}^{2}} - \frac{2S_{iXY}}{\overline{X}\overline{Y}} \right) \right] \\ &= \overline{Y}^{2} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} \left(\frac{S_{iX}^{2}}{\overline{X}^{2}} + \frac{S_{iY}^{2}}{\overline{Y}^{2}} - 2\rho_{i} \frac{S_{iX}}{\overline{X}} \frac{S_{iY}}{\overline{Y}} \right) \right] \\ &= \frac{\overline{Y}^{2}}{\overline{Y}^{2}} \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} \left(\frac{\overline{Y}^{2}}{\overline{X}^{2}} S_{iX}^{2} + S_{iY}^{2} - 2\rho_{i} \frac{\overline{Y}}{\overline{X}} S_{iX} S_{iY} \right) \right] \\ &= \sum_{i=1}^{k} \left[\frac{f_{i}}{n_{i}} w_{i}^{2} (R^{2} S_{iX}^{2} + S_{iY}^{2} - 2\rho_{i} R S_{iX} S_{iY}) \right]. \end{split}$$

Properties of Combined Ratio Estimator: Estimator of MSE

An estimate of $MSE(\hat{Y}_{Rc})$ can be obtained by replacing S_{iX}^2 , S_{iY}^2 and S_{iXY}

by their unbiased estimators s_{ix}^2 , s_{iy}^2 and s_{ixy} respectively whereas

$$R = \frac{\overline{Y}}{\overline{X}}$$
 is replaced by $r = \frac{\overline{y}}{\overline{x}}$.

Thus the following estimate is obtained:

$$\widehat{MSE}(\widehat{Y}_{Rc}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(r^2 s_{ix}^2 + s_{iy}^2 - 2r s_{ixy} \right) \right]$$

Comparison of Combined and Separate Ratio Estimators:

An obvious question arises that which of the estimates $\hat{\overline{Y}}_{\!\!Rs}$ or $\hat{\overline{Y}}_{\!\!Rc}$ is better.

So we compare their *MSE*s.

Note that the only difference in the term of these *MSE*s is due to the form of ratio estimate. It is

*
$$R_i = \frac{\overline{y}_i}{\overline{x}_i}$$
 in $MSE(\hat{Y}_{Rs})$

*
$$R = \frac{\overline{Y}}{\overline{X}}$$
 in $MSE(\hat{\overline{Y}}_{Rc})$.

Comparison of Combined and Separate Ratio Estimators:

Thus
$$\Delta = MSE(\hat{Y}_{Rc}) - MSE(\hat{Y}_{Rs})$$

$$= \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left[(R^2 - R_i^2) S_{iX}^2 + 2(R_i - R) \rho_i S_{iX} S_{iY} \right] \right]$$

$$= \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left[(R - R_i)^2 S_{iX}^2 + 2(R - R_i)(R_i S_{iX}^2 - \rho_i S_{iX} S_{iY}) \right] \right].$$

The difference Δ depends on

- i. The magnitude of the difference between the strata ratios (R_i) and whole population ratio (R).
- ii. The value of $(R_i S_{ix}^2 \rho_i S_{ix} S_{iy})$ is usually small and vanishes when the regression line of y on x is linear and passes through origin within each stratum.

22

Comparison of Combined and Separate Ratio Estimators:

The value of $(R_i S_{ix}^2 - \rho_i S_{ix} S_{iy})$ is usually small and vanishes when the regression line of y on x is linear and passes through origin within each stratum.

See as follows:

$$R_i S_{ix}^2 - \rho_i S_{ix} S_{iy} = 0$$

$$R_i = \frac{\rho_i S_{ix} S_{iy}}{S_i^2}$$

which is the estimator of the slope parameter in the regression of y on x in the i^{th} stratum.

In such a case
$$MSE(\hat{\overline{Y}}_{Rc}) > MSE(\hat{\overline{Y}}_{Rs})$$

but
$$Bias(\hat{\overline{Y}}_{Rc}) < Bias(\hat{\overline{Y}}_{Rs}).$$

Comparison of Combined and Separate Ratio Estimators

So unless R_i varies considerably, the use of $\hat{\overline{Y}}_{Rc}$ would provide an estimate of \overline{Y} with negligible bias and the precision as good as $\hat{\overline{Y}}_{Rs}$.

- If $R_i \neq R$, \hat{Y}_{Rs} can be more precise but bias may be large.
- If $R_i \simeq R$, $\hat{\overline{Y}}_{Rc}$ can be as precise as $\hat{\overline{Y}}_{Rs}$ but its bias will be small. It also does not require knowledge of $\overline{X}_1, \overline{X}_2, ..., \overline{X}_k$.