Introduction to Sampling Theory

Lecture 23 Regression Method of Estimation

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Slides can be downloaded from http://home.iitk.ac.in/~shalab/sp

Regression Estimates in Stratified Sampling:

Under the set up of stratified sampling, let the population of N sampling units be divided into k strata.

The strata sizes are
$$N_1$$
, N_2 ,..., N_k such that $\sum_{i=1}^k N_i = N$.

A sample of size n_i on (x_{ij}, y_{ij}) , $j = 1, 2, ..., n_i$, is drawn from i^{th} strata (i = 1, 2, ..., k) by SRSWOR where x_{ij} and y_{ij} denote the j^{th} unit from i^{th} strata on auxiliary and study variables, respectively.

Regression Estimates in Stratified Sampling:

Regression Estimates in Stratified Sampling:

In order to estimate the population mean, there are two approaches:

- 1. Separate regression estimator
- 2. Combined regression estimator

Estimate regression estimator

$$\hat{\overline{Y}}_{reg} = \overline{y} + \beta_0 (\overline{X} - \overline{x})$$

from each stratum separately, i.e., the regression estimate in the i^{th} stratum is $\hat{Y}_{reg(i)} = \overline{y}_i + \beta_i (\overline{X}_i - \overline{x}_i).$

• Find the stratified mean as the weighted mean of $\hat{\overline{Y}}_{reg(i)}$ i=1,2,...,k

$$\begin{split} \hat{\bar{Y}}_{sreg} &= \sum_{i=1}^k \frac{N_i \overline{Y}_{reg(i)}}{N} \\ &= \sum_{i=1}^k \big[w_i \big\{ \overline{y}_i + \beta_i (\overline{X}_i - \overline{x}_i) \big\} \big] \\ \text{where} \qquad \beta_i &= \frac{S_{ixy}}{S_{ix}^2}, \ w_i &= \frac{N_i}{N}. \end{split}$$

where
$$\beta_i = \frac{\beta_i}{\alpha}$$

In this approach, the regression estimator is separately obtained in each of the stratum and then combined using the philosophy of stratified sample.

So $\hat{\overline{Y}}_{sreg}$ is termed as separate regression estimator.

Another strategy is to estimate \overline{x} and \overline{y} in the \hat{Y}_{reg} as respective stratified mean.

Replacing
$$\overline{X}$$
 by $\overline{X}_{st} = \sum_{i=1}^k w_i \overline{X}_i$ and \overline{Y} by $\overline{Y}_{st} = \sum_{i=1}^k w_i \overline{Y}_i$, we have $\hat{\overline{Y}}_{creg} = \overline{Y}_{st} + \beta(\overline{X} - \overline{X}_{st})$.

In this case, all the sample information is combined first and then implemented in regression estimator, so \hat{Y}_{reg} is termed as combined regression estimator.

Properties of Separate and Combined Regression Estimators:

In order to derive the mean and variance of \hat{Y}_{sreg} and \hat{Y}_{creg} , there are two cases

- when β is pre-assigned as β_0 .
- when β is estimated from the sample.

We consider here the case that β is pre-assigned as β_0 .

Other case when β is estimated as $\hat{\beta} = \frac{S_{xy}}{S_x^2}$ can be dealt with the same approach based on defining various \mathcal{E} 's and using the approximation theory as in the case of \hat{Y}_{reg} .

Assume β is known, say β_0 . Then

$$\hat{\overline{Y}}_{sreg} = \sum_{i=1}^{k} w_i [\overline{y}_i + \beta_{0i} (\overline{X}_i - \overline{x}_i)]$$

$$E(\hat{\overline{Y}}_{sreg}) = \sum_{i=1}^{k} w_i \left[E(\overline{y}_i) + \beta_{0i} \left(\overline{X}_i - E(\overline{x}_i) \right) \right]$$
$$= \sum_{i=1}^{k} w_i \left[\overline{Y}_i + (\overline{X}_i - \overline{X}_i) \right]$$
$$= \overline{Y}.$$

$$\begin{split} Var(\hat{\overline{Y}}_{sreg}) &= E \bigg[\hat{\overline{Y}}_{sreg} - E(\hat{\overline{Y}}_{sreg}) \bigg]^2 \\ &= E \bigg[\sum_{i=1}^k w_i \overline{y}_i + \sum_{i=1}^k w_i \beta_{0i} (\overline{X}_i - \overline{x}_i) - \overline{Y} \bigg]^2 \\ &= E \bigg[\sum_{i=1}^k w_i (\overline{y}_i - \overline{Y}) - \sum_{i=1}^k w_i \beta_{0i} (\overline{x}_i - \overline{X}_i) \bigg]^2 \\ &= \sum_{i=1}^k w_i^2 E(\overline{y}_i - \overline{Y}_i)^2 + \sum_{i=1}^k w_i^2 \beta_{0i}^2 E(\overline{x}_i - \overline{X}_i)^2 - 2 \sum_{i=1}^k w_i^2 \beta_{0i} E(\overline{x}_i - \overline{X}_i) (\overline{y}_i - \overline{Y}_i) \\ &= \sum_{i=1}^k w_i^2 Var(\overline{y}_i) + \sum_{i=1}^k w_i^2 \beta_{0i}^2 Var(\overline{x}_i) - 2 \sum_{i=1}^k w_i^2 \beta_{0i} Cov(\overline{x}_i, \overline{y}_i) \\ &= \sum_{i=1}^k \frac{w_i^2 f_i}{n} (S_{iY}^2 + \beta_{0i}^2 S_{iX}^2 - 2 \beta_{0i} S_{iXY}) \bigg] \end{split}$$

$$Var(\hat{Y}_{sreg})$$
 is minimum when $\beta_{0i} = \frac{S_{iXY}}{S_{iX}^2}$ and so substituting β_{0i} , we

have

$$V_{\min}(\hat{\bar{Y}}_{sreg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (S_{iY}^2 - \beta_{0i}^2 S_{iX}^2) \right]$$

where
$$f_i = \frac{N_i - n_i}{N_i}$$
.

Since SRSWOR is followed in drawing the samples from each stratum, so

$$E(s_{ix}^2) = S_{iX}^2$$

$$E(s_{iy}^2) = S_{iY}^2$$

$$E(s_{ixy}) = S_{iXY}.$$

Thus an unbiased estimator of variance can be obtained by replacing S_{iX}^2 and S_{iY}^2 by their respective unbiased estimators s_{ix}^2 and s_{iy}^2 , respectively as

$$\widehat{Var}(\widehat{\overline{Y}}_{sreg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (s_{iy}^2 + \beta_{0i}^2 s_{ix}^2 - 2\beta_{0i} s_{ixy}) \right]$$

and

$$\widehat{Var}_{\min}(\widehat{\overline{Y}}_{sreg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (s_{iy}^2 - \beta_{0i}^2 s_{ix}^2) \right].$$

Assume β is known, say β_0 . Then

$$\hat{\overline{Y}}_{creg} = \sum_{i=1}^{k} w_i \overline{y}_i + \beta_0 (\overline{X} - \sum_{i=1}^{k} w_i \overline{x}_i)$$

$$E(\hat{\overline{Y}}_{creg}) = \sum_{i=1}^{k} w_i E(\overline{y}_i) + \beta_0 [\overline{X} - \sum_{i=1}^{k} w_i E(\overline{x}_i)]$$

$$= \sum_{i=1}^{k} w_i \overline{Y}_i + \beta_0 [\overline{X} - \sum_{i=1}^{k} w_i \overline{X}_i]$$

$$= \overline{Y} + \beta_0 (\overline{X} - \overline{X})$$

$$= \overline{Y}.$$

Thus $\hat{\overline{Y}}_{creg}$ is an unbiased estimator of \overline{Y} .

$$Var(\hat{\overline{Y}}_{creg}) = E[\overline{Y}_{creg} - E(\overline{Y}_{creg})]^{2}$$

$$= E \left[\sum_{i=1}^{k} w_i \overline{y}_i + \beta_0 (\overline{X} - \sum_{i=1}^{k} w_i \overline{x}_i) - \overline{Y} \right]^2$$

$$= E \left[\sum_{i=1}^{k} w_i (\overline{y}_i - \overline{Y}) - \beta_0 \sum_{i=1}^{k} w_i (\overline{x}_i - \overline{X}_i) \right]^2$$

$$= \sum_{i=1}^{k} w_i^2 Var(\overline{y}_i) + \beta_0^2 \sum_{i=1}^{k} w_i^2 Var(\overline{x}_i) - 2 \sum_{i=1}^{k} w_i^2 \beta_0 Cov(\overline{x}_i, \overline{y}_i)$$

$$= \sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} \left[S_{iY}^2 + \beta_0^2 S_{iX}^2 - 2\beta_0 S_{iXY} \right].$$

$Var(\hat{\overline{Y}}_{creg})$ is minimum when

$$\beta_0 = \frac{Cov(\overline{x}_{st}, \overline{y}_{st})}{Var(\overline{x}_{st})}$$

$$= \frac{\sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} S_{iXY}}{\sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} S_{iX}^2}$$

and the minimum variance is given by

$$Var_{\min}(\hat{\bar{Y}}_{creg}) = \sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} (S_{iY}^2 - \beta_0^2 S_{iX}^2).$$

Since SRSWOR is followed to draw the sample from strata, so using

$$E\left(s_{ix}^2\right) = S_{iX}^2$$
 , $E\left(s_{iy}^2\right) = S_{iY}^2$ and $E\left(s_{ixy}^2\right) = S_{iXY}^2$,

we get the estimate of variance as

$$\widehat{Var}(\widehat{\overline{Y}}_{creg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (s_{iy}^2 + \beta_0^2 s_{ix}^2 - 2\beta_{0i} s_{ixy}) \right]$$

and

$$\widehat{Var}_{\min}(\widehat{Y}_{creg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} (s_{iy}^2 - \beta_{0i}^2 s_{ix}^2) \right].$$

Comparison of Separate and Combined Regression Estimator:

The variance of $\hat{\overline{Y}}_{sreg}$ is minimum when $\beta_{0i} = \beta_0$ for all i.

The variance of $\hat{\overline{Y}}_{creg}$ is minimum when $\beta_0 = \frac{Cov(\overline{x}_{st}, \overline{y}_{st})}{Var(\overline{x}_{st})} = \beta_0^*$.

Comparison of Separate and Combined Regression Estimator:

The minimum variance is

$$Var(\hat{\overline{Y}}_{creg})_{\min} = Var(\overline{y}_{st})(1-\rho_*^2)$$

where
$$\rho_* = \frac{Cov(\overline{x}_{st}, \overline{y}_{st})}{\sqrt{Var(\overline{x}_{st})Var(\overline{y}_{st})}}$$
.

$$Var(\hat{\bar{Y}}_{creg}) - Var(\hat{\bar{Y}}_{sreg}) = \sum_{i=1}^{k} (\beta_{0i}^{2} - \beta_{0}^{2}) \frac{w_{i}^{2} f_{i}}{n_{i}} S_{iX}^{2}$$

$$Var(\hat{\bar{Y}}_{creg})_{\min} - Var(\hat{\bar{Y}}_{sreg})_{\beta_{0i} = \beta_0} = \sum_{i=1}^{k} \frac{f_i}{n_i} (\beta_{0i} - \beta_0)^2 w_i^2 S_{iX}^2 \ge 0$$

Comparison of Separate and Combined Regression Estimator:

We observe that

$$Var(\hat{\overline{Y}}_{creg})_{\min} - Var(\hat{\overline{Y}}_{sreg})_{\beta_{0i} = \beta_0} = \sum_{i=1}^{k} \frac{f_i}{n_i} (\beta_{0i} - \beta_0)^2 w_i^2 S_{iX}^2 \ge 0$$

which is always true.

So if the regression line of y on x is approximately linear and the regression coefficients do not vary much among the strata, then separate regression estimate is more efficient than combined regression estimator.