Introduction to Sampling Theory

Lecture 23
Regression Method of Estimation

Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur

Slides can be downloaded from
http://home.iitk.ac.in/~shalab/sp
Regression Estimates in Stratified Sampling:

Under the set up of stratified sampling, let the population of N sampling units be divided into k strata.

The strata sizes are N_1, N_2, \ldots, N_k such that $\sum_{i=1}^{k} N_i = N$.

A sample of size n_i on (x_{ij}, y_{ij}), $j = 1, 2, \ldots, n_i$, is drawn from i^{th} strata $(i = 1, 2, \ldots, k)$ by SRSWOR where x_{ij} and y_{ij} denote the j^{th} unit from i^{th} strata on auxiliary and study variables, respectively.
Regression Estimates in Stratified Sampling:
Regression Estimates in Stratified Sampling:

In order to estimate the population mean, there are two approaches:

1. Separate regression estimator
2. Combined regression estimator
1. Separate Regression Estimator:

- Estimate regression estimator
 \[\hat{Y}_{\text{reg}} = \bar{y} + \beta_0 (\bar{X} - \bar{x}) \]
 from each stratum separately, i.e., the regression estimate in the \(i^{th} \) stratum is \(\hat{Y}_{\text{reg}(i)} = \bar{y}_i + \beta_i (\bar{X}_i - \bar{x}_i) \).
- Find the stratified mean as the weighted mean of \(\hat{Y}_{\text{reg}(i)} \) \(i = 1, 2, \ldots, k \) as
 \[
 \hat{Y}_{\text{sreg}} = \sum_{i=1}^{k} \frac{N_i \hat{Y}_{\text{reg}(i)}}{N} = \sum_{i=1}^{k} \left[w_i \{ \bar{y}_i + \beta_i (\bar{X}_i - \bar{x}_i) \} \right]
 \]
 where \(\beta_i = \frac{S_{i xy}}{S_{ix}^2}, w_i = \frac{N_i}{N} \).
1. Separate Regression Estimator:

In this approach, the regression estimator is separately obtained in each of the stratum and then combined using the philosophy of stratified sample.

So \(\hat{Y}_{sreg} \) is termed as separate regression estimator.
2. Combined Regression Estimator:

Another strategy is to estimate \bar{x} and \bar{y} in the \hat{Y}_{reg} as respective stratified mean.

Replacing \bar{x} by $\bar{x}_{st} = \sum_{i=1}^{k} w_i \bar{x}_i$ and \bar{y} by $\bar{y}_{st} = \sum_{i=1}^{k} w_i \bar{y}_i$, we have

$$\hat{Y}_{creg} = \bar{y}_{st} + \beta(\bar{X} - \bar{x}_{st}).$$

In this case, all the sample information is combined first and then implemented in regression estimator, so \hat{Y}_{reg} is termed as combined regression estimator.
Properties of Separate and Combined Regression Estimators:

In order to derive the mean and variance of \hat{Y}_{sreg} and \hat{Y}_{creg}, there are two cases

- when β is pre-assigned as β_0.
- when β is estimated from the sample.

We consider here the case that β is pre-assigned as β_0.

Other case when β is estimated as $\hat{\beta} = \frac{S_{xy}}{S_x^2}$ can be dealt with the same approach based on defining various ε^ts and using the approximation theory as in the case of \hat{Y}_{reg}.
1. Separate Regression Estimator:

Assume β is known, say β_0. Then

$$\hat{Y}_{s\text{reg}} = \sum_{i=1}^{k} w_i [\bar{y}_i + \beta_{0i} (\bar{X}_i - \bar{x}_i)]$$

$$E(\hat{Y}_{s\text{reg}}) = \sum_{i=1}^{k} w_i \left[E(\bar{y}_i) + \beta_{0i} (\bar{X}_i - E(\bar{x}_i)) \right]$$

$$= \sum_{i=1}^{k} w_i [\bar{Y}_i + (\bar{X}_i - \bar{X}_i)]$$

$$= \bar{Y}.$$
1. Separate Regression Estimator:

\[
\text{Var}(\hat{Y}_{s\text{reg}}) = E \left[\hat{Y}_{s\text{reg}} - E(\hat{Y}_{s\text{reg}}) \right]^2
\]

\[
= E \left[\sum_{i=1}^{k} w_i \bar{y}_i + \sum_{i=1}^{k} w_i \beta_{0i} (\bar{X}_i - \bar{x}_i) - \bar{Y} \right]^2
\]

\[
= E \left[\sum_{i=1}^{k} w_i (\bar{y}_i - \bar{Y}) - \sum_{i=1}^{k} w_i \beta_{0i} (\bar{x}_i - \bar{X}_i) \right]^2
\]

\[
= \sum_{i=1}^{k} w_i^2 E(\bar{y}_i - \bar{Y})^2 + \sum_{i=1}^{k} w_i^2 \beta_{0i}^2 E(\bar{x}_i - \bar{X}_i)^2 - 2 \sum_{i=1}^{k} w_i \beta_{0i} E(\bar{x}_i - \bar{X}_i)(\bar{y}_i - \bar{Y}_i)
\]

\[
= \sum_{i=1}^{k} w_i^2 \text{Var}(\bar{y}_i) + \sum_{i=1}^{k} w_i^2 \beta_{0i}^2 \text{Var}(\bar{x}_i) - 2 \sum_{i=1}^{k} w_i^2 \beta_{0i} \text{Cov}(\bar{x}_i, \bar{y}_i)
\]

\[
= \sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} \left(S_{iY}^2 + \beta_{0i}^2 S_{iX}^2 - 2 \beta_{0i} S_{iXY} \right)
\]
1. Separate Regression Estimator:

\[\text{Var} \left(\hat{Y}_{s\text{reg}} \right) \text{ is minimum when } \beta_{0i} = \frac{S_{iXY}}{S_{iX}^2} \text{ and so substituting } \beta_{0i}, \text{ we have} \]

\[
V_{\text{min}} \left(\hat{Y}_{s\text{reg}} \right) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(S_{iY}^2 - \beta_{0i}^2 S_{iX}^2 \right) \right]
\]

where \(f_i = \frac{N_i - n_i}{N_i} \).

Since SRSWOR is followed in drawing the samples from each stratum, so

\[
E(s_{ix}^2) = S_{iX}^2
\]
\[
E(s_{iy}^2) = S_{iY}^2
\]
\[
E(s_{ixy}) = S_{iXY}
\]
1. Separate Regression Estimator:

Thus an unbiased estimator of variance can be obtained by replacing S_{iX}^2 and S_{iY}^2 by their respective unbiased estimators s_{ix}^2 and s_{iy}^2, respectively as

\[
\widehat{Var}(\hat{Y}_{sreg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(s_{iy}^2 + \beta_{0i}^2 s_{ix}^2 - 2 \beta_{0i} s_{ixy} \right) \right]
\]

and

\[
\widehat{Var}_{\text{min}}(\hat{Y}_{sreg}) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(s_{iy}^2 - \beta_{0i}^2 s_{ix}^2 \right) \right].
\]
2. Combined Regression Estimator:

Assume \(\beta \) is known, say \(\beta_0 \). Then

\[
\hat{Y}_{creg} = \sum_{i=1}^{k} w_i \bar{y}_i + \beta_0 (\bar{X} - \sum_{i=1}^{k} w_i \bar{x}_i)
\]

\[
E\left(\hat{Y}_{creg}\right) = \sum_{i=1}^{k} w_i E(\bar{y}_i) + \beta_0 [\bar{X} - \sum_{i=1}^{k} w_i E(\bar{x}_i)]
\]

\[
= \sum_{i=1}^{k} w_i \bar{y}_i + \beta_0 [\bar{X} - \sum_{i=1}^{k} w_i \bar{x}_i]
\]

\[
= \bar{Y} + \beta_0 (\bar{X} - \bar{X})
\]

\[
= \bar{Y}.
\]

Thus \(\hat{Y}_{creg} \) is an unbiased estimator of \(\bar{Y} \).
2. Combined Regression Estimator:

\[
Var(\hat{Y}_{creg}) = E[\bar{Y}_{creg} - E(\bar{Y}_{creg})]^2
\]

\[
= E\left[\sum_{i=1}^{k} w_i \bar{y}_i + \beta_0 (X - \sum_{i=1}^{k} w_i \bar{x}_i) - \bar{Y} \right]^2
\]

\[
= E\left[\sum_{i=1}^{k} w_i (\bar{y}_i - \bar{Y}) - \beta_0 \sum_{i=1}^{k} w_i (\bar{x}_i - \bar{X}) \right]^2
\]

\[
= \sum_{i=1}^{k} w_i^2 Var(\bar{y}_i) + \beta_0^2 \sum_{i=1}^{k} w_i^2 Var(\bar{x}_i) - 2 \sum_{i=1}^{k} w_i^2 \beta_0 Cov(\bar{x}_i, \bar{y}_i)
\]

\[
= \sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} \left[S_{iY}^2 + \beta_0^2 S_{iX}^2 - 2 \beta_0 S_{iXY} \right].
\]
2. Combined Regression Estimator:

\(\text{Var}(\hat{Y}_{\text{creg}}) \) is minimum when

\[
\beta_0 = \frac{\text{Cov}(\bar{x}_{st}, \bar{y}_{st})}{\text{Var}(\bar{x}_{st})}
\]

\[
= \frac{\sum_{i=1}^{k} w_i^2 f_i S_{iXY}}{\sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} S_{iX}^2}
\]

and the minimum variance is given by

\[
\text{Var}_{\text{min}}(\hat{Y}_{\text{creg}}) = \sum_{i=1}^{k} \frac{w_i^2 f_i}{n_i} (S_{iY}^2 - \beta_0^2 S_{iX}^2).
\]
2. Combined Regression Estimator:

Since SRSWOR is followed to draw the sample from strata, so using

\[E \left(s_{ix}^2 \right) = S_{ix}^2, \quad E \left(s_{iy}^2 \right) = S_{iy}^2 \text{ and } E \left(s_{iXY} \right) = S_{iXY}, \]

we get the estimate of variance as

\[
\hat{Var} \left(\hat{Y}_{c\text{reg}} \right) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(s_{iy}^2 + \beta_{0i}^2 s_{ix}^2 - 2 \beta_{0i} s_{iXY} \right) \right]
\]

and

\[
\hat{Var}_{\text{min}} \left(\hat{Y}_{c\text{reg}} \right) = \sum_{i=1}^{k} \left[\frac{w_i^2 f_i}{n_i} \left(s_{iy}^2 - \beta_{0i}^2 s_{ix}^2 \right) \right].
\]
Comparison of Separate and Combined Regression Estimator:
The variance of $\hat{Y}_{s\text{reg}}$ is minimum when $\beta_{0i} = \beta_0$ for all i.

The variance of $\hat{Y}_{c\text{reg}}$ is minimum when $\beta_0 = \frac{\text{Cov}(\bar{x}_{st}, \bar{y}_{st})}{\text{Var}(\bar{x}_{st})} = \beta^*_0$.
Comparison of Separate and Combined Regression Estimator:

The minimum variance is

\[\text{Var}(\hat{Y}_{\text{c reg}})_{\text{min}} = \text{Var}(\bar{y}_{st})(1 - \rho^*_2) \]

where \(\rho_* = \frac{\text{Cov}(\bar{x}_{st}, \bar{y}_{st})}{\sqrt{\text{Var}(\bar{x}_{st})\text{Var}(\bar{y}_{st})}}. \)

\[\text{Var}(\hat{Y}_{\text{c reg}}) - \text{Var}(\hat{Y}_{\text{s reg}}) = \sum_{i=1}^{k} (\beta_{0i}^2 - \beta_0^2) \frac{w_i f_i}{n_i} S_{lX}^2 \]

\[\text{Var}(\hat{Y}_{\text{c reg}})_{\text{min}} - \text{Var}(\hat{Y}_{\text{s reg}})_{\beta_{0i} = \beta_0} = \sum_{i=1}^{k} \frac{f_i}{n_i} (\beta_{0i} - \beta_0)^2 w_i^2 S_{lX}^2 \geq 0 \]
Comparison of Separate and Combined Regression Estimator:

We observe that

\[
Var(\hat{Y}_{c\text{reg}})_{\min} - Var(\hat{Y}_{s\text{reg}})_{\beta_0=\beta_0} = \sum_{i=1}^{k} \frac{f_i}{n_i} (\beta_{0i} - \beta_0)^2 w_i S_{iX}^2 \geq 0
\]

which is always true.

So if the regression line of \(y \) on \(x \) is approximately linear and the regression coefficients do not vary much among the strata, then separate regression estimate is more efficient than combined regression estimator.