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Abstract

The effect of additive noise at the antenna array sig-
nal input on the beam-forming is studied in this paper.
Two techniques, viz., the optimization using reference
signal and the optimal beam-forming are considered in
this work. Methods based on singular value decomposi-
tion and orthogonal polynomial approximation are pre-
sented to combat the effect of noise on beam-forming.

1. Introduction

Wireless communication is becoming increasingly
widespread. In high density use areas, there will be
the need to extract as much utilization as possible from
a given bandwidth by using multiple access technique.
The multiple access technigue used or being introduced
at present, consisting of time division multiple access
(TDMA), frequency division multiple access (FDMA)
and code division multiple access (CDMA), each can be
augmented by space division multiple access (SDMA)
[1]. The SDMA technique employs an adaptive antenna
array at the base station and perhaps at the mobile unit
as well [2]. This technique uses the information of the
location/position of the users.

An adaptive array is a system consisting of an array
of sensor elements and a real time adaptive signal re-
ceiver processor that can be used to select one received
signal out of many, and the terms desired signal and
interfering signals are used to distinguish them [3,4]. A
condition for this spatial selection is that the desired
signal must have some spatial characteristic that dis-
tinguishes it from interferers. In the case of plane wave
reception it could be direction of arrival (DOA). Inter-
ference signal suppression is obtained by appropriately
steering beam pattern nulls and reducing sidelobe lev-
els in the direction of interference sources, while desired
signal reception is maintained by preserving desirable
mainlobe (or signal beam) features [4,5].

By changing the value of weights of antenna elements
(sensors), beam can be formed in the desired direction

and null can be formed in the direction of interference.
Tt is called as beam-forming. There are various types of
beam-forming methods. Beam-forming techniques are
classified, mainly, in two categories:

(1) Narrow band beam-forming

(2) Broad band beam-forming

In this paper we are concentrating on narrow band
beam-forming only. In narrow band beam-forming sev-
eral techniques are used. Two most important tech-
niques are:

(1) Optimal Beam Former

(2) Optimization using Reference Signal

The existing sample matrix inversion (SMI) tech-
nique as applied to the beam-forming method seems to
be too sensitive to noise input [5]. The autocorrelation
matrix is always symmetric and very close to singular
matrix (ill condition matrix). Consequently, when in-
put error due to noise occurs, it may greatly affect the
inverse of autocorrelation matrix and subsequently the
weights of the beam former.

We use the Principal Component Solution (PCS)
method to reduce the effect of noise [6]. When the rank
of matrix is very much less than the number of diagonal
elements of the matrix, this method will give satisfac-
tory results. But, if the rank of matrix is not very much
less than the number of diagonal elements of the matrix,
this method will give substantial variation in results due
to noise effect. We shall present a method based on the
Orthogonal Polynomial Approximation (OPA) [7]. It
has the ability to reduce the effect of noise with the
help of the minimum error variance criterion [8].

Our proposed method which is based on the combina-
tion of the OPA and the Singular Value Decomposition
(SVD) will give better results when the rank of ma-
trix is not very much less than the number of diagonal
elements of the matrix compared to the existing SVD
based PCS method.

2. Signal Model and Beam-forming
Techniques

Consider an array of L omni directional elements im-



mersed in a homogeneous media in the far field of M
uncorrelated sinusoidal point sources of frequency fo .
For a linear array of equispaced elements with element
spacing d aligned with the z - axis such that the first el-
ement situated at the origin, the time taken by a plane
wave arriving from the i** source in direction 6;, and
measured from the I** element to the origin is given by
d
n(6;) = -C—(l — 1)cost; (1)
where c is the speed of propagation of the plane wave
front.
The signal induced on the reference element due to
the i*" source is normally expressed in complex notation

as
my(6)e2H! )

with m;(¢) denoting the complex modulating function.
The structure of the modulating function reflects the
particular modulation used in communications system.

Let z; denote the total signal induced due to all M
directional sources and background noise on the I** el-
ement. Then it is given by

M
T = Z m",(t)eﬂ’l'fo(t + m(6:) 4 n(t)

i =1

(3)

where n(t) is a random noise component on the I el-
ement, which includes background noise and electronic
noise generated in the I** channel. It is assumed to be
temporally white with zero mean and variance equal to
ol

Figure 1: Narrow-band beam former structure

Consider a narrowband beam former, as shown in
Fig. 1, where signals from each element are multiplied
by weight functions and summed to form the array out-
put. It follows from the figure that an expression for
the array output is given by

L
y(t) = waxz(t) (4)

where * denotes a complex conjugate.
weights of beam former as

Denoting the

w=[w;, Wy, oo wy) (5)
and signal induced on all elements as
z(t) = [z1(t), z2(t) ceneene. z(t)] (6)
The output of the beam former becomes
y(t) = wz(t) (7)

where superscripts T and H, respectively, denote the
transpose and complex conjugate transpose of a vector
or matrix.

If the components of the array signal vector z(t) can
be modeled as zero mean stationary processes, then for
a given array weight vector w, the mean output power
of the processor is given by

p(w) = Efyt) v¥ ()] = w’Ruw (8)

where E[.] denotes the expectation operator. The array
correlation matrix is defined by

R = E[z(t) z"(t) (9)

The elements of this matrix denote the variation be-
tween various elements. For example R;; denotes the
correlation between i*" and j'* element of the array.
Denote the steering vector associated with the direc-
tion 8; or the i*" source by a L- dimensional complex
vector s; as

8 = {e:vp(j21rfg1‘1(¢._-, ei)v #isiay exp(jZﬂfUTL(d)ﬁ ei)]T
(10)
Algebraic manipulation using equations (4), (7) and
(10) leads to the following expression for R

M
R=Y pssl + o2 (11)
i=1
where [ is the identity matrix and p; denotes the power
of the i*" source measured at one of the elements of the
array. It should be noted that p; is the variance of the
complex modulating function m;(t) when it is modeled
as a zero mean low pass random process, as mentioned
previously.
Using matrix notation, the correlation matrix R may

be expressed in the following compact form:
R = SPS¥ + J2I (12)

where columns of the L and M matrix S are made up
of steering vectors, i.e.,

5 = E§11§2!

and M by M matrix P denotes the source correlation.
For uncorrelated sources, it is a diagonal matrix with

-

(13)

i=j

else (1)



Denoting the Leigenvalues of R in descending or-
der by Ayl = 1,...L.and their corresponding unit norm
eigenvectors by »; , [ = 1,..L, the matrix takes the
following form:

R = UAUH (15)

with a diagonal matrix

A1

0
A= N (16)
0
AL
and

U =[u,--u) (17)

This representation is refered to as the spectral de-
composition of R. Using the fact that the eigenvectors
form an orthonormal set, this leads to the following
equation for R

M
R =) duwuf + oil.

i=1

(18)

2.1 Optimal Beam Former

Let a L dimensional complex vector w represent the
weight of the beam former, which maximizes the output
SNR. For an array that is not constrained, an expression
for w is given by [3]

w = pRy's (19)
where R, array correlation matrix of the noise alone,
that is, it does not contain any signal arriving from look
direction fy, steering vector sy, and u is a constant. For
an array considered to have a unit response in the look

" direction, this constant becomes equal to

1
e 20)
s Ra's, :
leading to the following expression for the weight vector.
R1s
w o= g (21)
55 Bn s

In practice, when the estimate of the noise alone matrix
is not available, the total R (signal plus noise) is used
to estimate the weights. An expression for the weights
for this case is given by

R sy
“ = FE, =

2.2 Optimization using Reference Signal

A narrowband beam-forming structure that employs
a reference signal to estimate the weights of the beam

R e

Figure 2: Structure of narrowband beam former using

a reference signal

former is shown in Figure 2. The array output is sub-
tracted from an available reference signal r(t) to gener-
ate an error signal £(t) = r(t) — w¥z(t), which is used
to control the weights. Weights are adjusted such that
the MSE between the array output and the reference
signal is minimized. The MSE is given by

MSE = E[le(t)P’]

= E[lr(®)?] + w’Rw — 20”2 (23)

where

z = Elz(t) r#(t)] (24)

is the correlation between the hermitian of reference
signal and the array signal vector z(t).

The MSE surface is a quadratic function of w and is
minimized by setting is gradient with respect to w equal
to zero, yielding the well known Wiener-Hoff equation
for the optimal weight vector

wysg = R’z (25)

2.3 Equation for Array Gain

For a linear array of L equispaced sensor elements,
the overall array response may be found by considering
the phasor sum of signal contribution from each array
element as

L
y(t) = Y wiz()tI®

=1

(26)

where

p = 27r(§)cos& (27)

the directional pattern in a plane containing the array
may therefore be found by considering the array factor

L
AB) = ) wiedtle (28)
i=1



and normalized directional pattern is given by

lA(ﬂ)IQ}

(29)

G(Q) = 10 logw{ L2

3. Techniques to Reduce Effect of Noise
on Beam-Forming

In optimal beam former and optimization using refer-
ence signal method, for finding the weight vector inverse
of autocorrelation matrix is required. We know that au-
tocorrelation matrix is close to singular. Because of this
ill-conditioning of matrix if there is a small change in
the autocorrelation matrix due to the noise effects, in-
verse of it will drastically change and consequently the
weight vector. Change in the weight vector will change
the beam pattern so that the interference may behave
as desired signal and vice versa. So it is essential to
reduce the effect of noise on weight vector. Basically
there are two techniques to reduce the effect of noise:
(1] Principal Component Solution (PCS) method,

[2] Orthogonal Polynomial Approximation (OPA) with
minimum error variance criterion.

Our proposed method is the combination of above two
which will give significant advantage in the noisy env-
iornment.

3.1 Principal Component Solution

When extended-order modelling is used, matrix R
with dimension L x L, rank(R) = M where M << L
has M principal eigenvalues (large value) and remaining
L — M non-principal eigenvalues are close to zero. If we
consider only M principal eigenvalues to compute the
inverse of the matrix, then the effect of remaining L—M
non-principal eigenvlaues can be neglected [9].

If the number of sensors L is much large than the
number of sources M, the PCS method will perform
well in noisy enviornment. However, when the number
of sensors is only two times or three times the number
of sources, this method will give substantial variation
in the weight vector under noisy condition.

3.2 Orthogonal Polynomial Approximation

By using functional approximating in terms of poly-
nomial p;(z), which constitute an orthogonal set over
the collection of sampled points z;, the function f (z:)
is expressed as

Lf
flz) = Y eipsle:) (30)
=1
where _
cj = -f;—;—, (31)
k
wi = 3 fvi(@:), (32)
i=1

k
5= szl (33)
i=1
and f; are sampled values of the function at z; which are
not necessarily at uniform spacing. Note that k is the
number of samples. The polynomials can be evaluated
from the recursive relation

p; = (z—aj)pj-1 — Vi-1Pj-2 (34)
where j > 1, po=1, p_1 = 0; and
1k
a; = szi[pj_l(zi)ﬁ (35)
e =l
5
2= 5.J (36)
j—1

In equation (3.1), the order of approximation lf is cho-
sen such that the error variance

k if
E[fi - ;ijj(mi)F

N k—1f—1 Sl

2
Ulf

ig either minimum or does not decrease appreciably any
further with increase [f.

When the minimum error variance criterion is used
to get the polynomial degree of the approximation, The
reconstruction using equation (30) ensures maximum
noise rejection at the sampled set of data values.

4. Proposed Method for Reducing Ef-
fect of Noise

Simulation results of autocorrelation matrix show
that the effect of white Gaussian noise predominates
on diagonal elements of R and its effect is very less on
off diagonal elements. Ideally there should not be any
effect on the off diagonal elements of autocorrelation
matrix due to noise as shown in equation (11). The
OPA will decrease the noise effect in diagonal elements
but, simultaneously, it will add some noise in the off
diagonal elements. Because when white Gaussian noise
is passed through the OPA, it will be converted into
coloured noise. So it will affect off diagonal elements
of autocorrelation matrix. In our proposed method we
have taken diagonal elements from the matrix which is
passed through the OPA (means after filtering opera-
tion) and off diagonal elements from the original matrix
(matrix generated by the original signal which consists
of signal and noise).

4.1 Procedure for Optimal Beam-Forming
Technique

(1) Find steering vector for desired signal by using
equation (10) with the knowledge of DOA correspond-
ing to desired signal.

(2) Find z; using equation (3), where | = 1,2, oo qgidis



It is the input received signal at I'* sensor. Received
signal at the input of each sensor will be sum of signal
transmitted by desired signal as well as all undesired
signals or interferences.

(3) First consider the noiseless case and find autocorre-
lation matrix R (by taking expectation of input signal
of each sensor with its hermitian). In practice the re-
ceived signal will always have some noise. Add white
Gaussian noise with the signal input and find autocor-
relation matrix with noise R;.

(4) Apply the OPA on the input of each sensors which
consist of noisy signal (signal + noise).

(5) Reconstruct the input of each sensor using algorithm
of minimum order of error variance and find autocor-
relation matrix R with the help of this reconstructed
signal.

(6) Get new autocorrelation matrix R, by considering
diagonal elements from reconstructed autocorrelation
matrix Ry and off diagonal elements from noisy auto-
correlation matrix R;.

(7) Find weight vector using autocorrelation matrix
with noise R; and new autocorrelation matrix R, as
equation (22). Compare this two weight vector. Here
we will use singular value decomposition for both cases
and will consider ‘M’ number of diagonal components
out of 'L’ components.

After comparisons we can say that noise effect in weight
vector by using new autocorrelation matrix Ry is less
compared to weight vector by using autocorrelation ma-
trix with noise R;. It is giving very good advantage for
L = 2M and L = 3M over the existing SVD based
technique. Simulation results in the next section will
prove this statement.

4.2 Procedure for Optimization using Refer-
ence Signal

In optimal beam-forming technique, the steering vec-
tor for the desired signal is required to find the weight
vector, while in this method the reference signal is re-
quired. We need not required to do Step 1. But in Step
2 while finding the autocorrelation matrix by taking
expectation of input signal of each sensor with its her-
mitian, we have to take another expectation of the ref-
erence signal with hermitian of the input signal of each
sensor for finding z as shown in equation (23). Find-
ing the reference signal is critical issue in this method.
Desired signal and undesired signal must have discrim-
ination at the receiver end. Here we have used different
carrier frequencies for the desired signal and interfer-
ences so that we can easily reconstruct the desired sig-
nal at the receiver end. This is only the additional step
required in this method. Then follow Step 3 to Step 6
as described in the optimal beam-forming technique. In
step 7 use equation (24) for finding the weight vector.

5. Simulation Results

In this simulation, we have considered two sources,

one is the desired signal having direction of arrival
(DOA) of 0° and the other is the undesired signal hav-
ing DOA 30°. Each source is modulated by phase-
shift keying (PSK) (digital modulation) having carrier
frequency(Fy)100 MHz, symbol frequency(F,) 10 MHz,
and sampling frequency (F,) of a modulated signal 1000
MHz. Where F, > Fp, & must be integer.

In this simulation we have considered four sensors
having interelment spacing of % Results for autocor-
relation matrix without noise R, with noise(SNR = 10
dB) R;, and autocorrelation matrix after applying OPA
on input signal of each sensor Ry are shown in Tables
1-3.

2.0000 -0.7408 -1.3842 1.86881
- 0.00001 + 1.836861 - 1.88811 - 0.74581
-0.7408 2.0000 -0.7408 -1.8842
- 1.83661 - 0.00001 + 1.83661 - 1.8881i
-1.3842 -0.7408 2.0000 -0.7408
+ 1.8881i - 1.8368i + 0.00001 + 1.83881
1.6661 -1.8842 -0.7408 2.0000
+ 0.74881 + 1.38311 - 1.83661 + 0.0000i

Table 1: Autocorrelation matrix for Noiseless case: (R)

2.6360 -0.7667 -1.3499 1.6673
+ 0.00001 + 1.82791 - 1.8084i - 0.7017i
-0.7667 2.6214 -0.7808 -1.8576
- 1.82791 + 0.00001 + 1.82154 - 1.82621
-1.8400 -0.7808 2.6254 -0.7182
4 1.8084i - 1.8216% - 0.0000i 4 1.8367i
1.6673 -1.3576 -0.7182 2.6278
+ 0.701Ti + 1.32621 - 1.8867i + 0.0000i

Table 2: Autocorrelation matrix for 5 dB SNR: (R1)

1.8873 -0.4112 -1.0185 0.8885
+ 0.0000i + 1.1020i - 0.8838i - 0.5473i
=0.4112 1.7915 -0.4184 -0.8072
- 1.1020i -+ 0.0000i + 1.12186i - 0.6232i
-1.0185 -0.4184 1.0581 -0.4080
+ 0.8838i - 1.1218i - 0.0000i + 1.2020i
0.8895 -0.8072 -0.4080 1.8788
+ 0.5473i + 0.8232i - 1.2020i + 0.0000i

Table 3: Autocorrelation matrix after applying OPA:
(R2)

For simulation purpose we have considered two
sources-four sensors and two sources-eight sensors cases.



One source acts as the desired source and the other as
interference (the undesired source). We have considered
the DOAs of the desired and the undesired signals to be
0° and 30° respectively.. For all cases we have found the
weight vector using the optimal beam-forming method
and by optimization using the reference signal. In all
cases we got same weight vector in noiseless case by us-
ing the two methods. we have shown the beam patterns
for 5 dB and 10 dB SNR levels.

For optimal beam-forming we have considered the
carrier frequency Fy for the desired signal and the in-
terference to be 100 MHz, the symbol frequency Fp 10
MHz and the sampling frequency F, 1000 MHz. We
will get 100 samples per symbol as the ratio of sam-
pling frequency to symbol frequency is 100. Here we
have considered two symbols so we will get 200 sam-
ples on each sensor. Binary phase shift keying (BPSK)
is used for modulation purpose at the transmitter end.
For optimization using the reference signal, we used the
100 MHz carrier frequency for the desired signal and 50
MHz for the undesired signal. Here different frequen-
cies are required to discriminate the desired signal at
receiver end. Remaining all data are same for both the
methods. For each combination, we have plotted array
beam pattern for the noiseless case (solid line ™-’), with
5/10 dB SNR for the PCS method (dashed line ) and
for the proposed method (dash dot line ™-.").

5.1 Array Beam Pattern for Four Sensors

Here we have considered two sources and four sensors.
It is a case of L = 2M(number of sensors is twice
to number of sources). As we have discussed in Sec-
tion 3, the PCS method will give satisfactory results in
noisy enviornment when L >> M. Simulation results
show that in all cases the proposed method is giving
better results compared to the PCS method. In each
plot solid line (*-”) represents the beam pattern for the
noiseless case, dashed () line shows the beam pattern
by the PCS method, and dash-dot (-.") line represents
the beam pattern by using the proposed method under
same noisy enviornment. In most of the cases the beam
pattern by the proposed method is close to that of the
noiseless case. It means that our method is robust to
the effect of noise. In Tables 4-7, we show the norm of
the error in the weight vector. This norm can be taken
as an index of performance.

5.2 Array Beam Pattern for Eight Sensors

Here we have considered two sources and eight sensor
case. Among these two sources one is the desired source
and the other is the interference. We have shown the
array beam pattern for the DOAs of 0° and 30° for the
desired signal and interference respectively. It is a case
of L = 4M (the number of sensors is four times the
number of sources). In this case the PCS method will
give better results than when L = 2M. If we compare
beam patterns of the eight sensors case with that of the

Figure 3: Beam pattern of 0°- 30° by using Reference
signal with 5 dB SNR

Noiseless case

PCS method

Proposed method

0.8472 + 1.02581
0.2276 - 0.3078i
0.2276 4+ 0.3078Bi
0.8472 - 1.0258i

0.14338 + 0.1285i
-0.0168 - 0.1236i
0.0108 + 0.1436i
0.1242 - 0.0950i

0.2858 + 0.8456i
0.5620 - 0.6454i
0.4126 4 0.39911
0.8701 - 1.0982i

Norm (MSE): 1.3805 0.5571

Table 4: Weights for Fig 3 by using PCS and Proposed
methods

four sensors case for same configuration, we can say that
variation in beam pattern due to noise in former case is
much less than that in the later case. However in some
cases our proposed method is still giving better results.
For example when the SNR is 5 dB, the beam pattern
by the PCS method will not give sufficient null in the
direction of interference but beam pattern by using the
proposed method is giving accurate results as shown in
Figures 9 and 10.

6. Conclusion

As the number of sensors increases, the noise effect
reduces because the PCS method gives satisfactory re-
sults when L >> M. In practice it is very difficult to
have condition L >> M. For L = 2M , the PCS
method will not give stable results in noisy enviorn-
ment. Our method based on the OPA gives very good
results under noisy environment when the number of
sensors is not very large (L = 2M or L = 3M )
compared to the number of sources. In this paper, we
have consider only narrowband beam-forming. Similar
work can be extended for broadband beam-forming as
well.
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Figure 5: Beam pattern of 0°- 30° by using Reference
signal with 10 dB SNR

Noiseless case

PCB method

Proposed method

0.8472 + 1.02581
0.2276 - 0.30781
0.2276 + 0.3078i
0.8472 - 1.02581

0.1745 4 0.32101
0.0285 - 0.1783i
0.0897 + 0.17401
0.1841 - 0.300Ti

0.2462 4 0.5618!
0.2202 - 0.340891
0.0407 + 0.1794i
0.2531 - 0.7981}

Norm (MSE):

1.0851

0.5820

Table 6: Weights for Fig 5 by using PCS and Proposed
methods

i

TETTE I

Figure 6: Beam pattern of 0°- 30° by using Optimal
beam former with 10 dB SNR

Noiseless case

PCS method

Proposed method

0.8472 4+ 1.0258i
0.2276 - 0.8078I
0.2276 + 0.8078i
0.8472 - 1.0268i

0.2766 + 0.50721
0.0871 - 0.2883i
0.0827 + 0.2748i
0.2909 - 0.488381

0.83004 + 0.8854i
0.2687 - 0.41601
0.0496 4 0.21801i
0.3089 - 0.97381

Norm (MSE):

0.7939

0.4188

Table 7: Weights for Fig 6 by using PCS and Proposed
methods
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Figure T: Beam pattern of 0°- 30° by using Reference
signal with 5 dB SNR




Noiseless case

PCS thod

d method

Prop

0.1968 4 0.23861
0.0918 - 0.21111
-0.1486 4 0.02381i
0.0720 + 0.0401i
-0.0708 - 0.042381
0.0548 + 0.1402i
0.1869 - 0.18611
-0.8040 - 0.0512i

0.1808 4 0.1174i
0.0288 - 0.12071

-0.0884 + 0.0860i
0.0578 + 0.0187i
-0.0502 - 0.04601
0.0185 4 0.08851
0.0948 - 0.0881i

-0.1608 - 0.06391

0.1980 4 0.2210}
0.0791 - 0.20361
-0.1469 + 0.0235i
0.0586 + 0.0411i
-0.0704 - 0.0424i
0.0565 4 0.1306i
0.1452 - 0.2266i
-0.2196 - 0.0527i

Norm (MSE):

0.2885

0.0987

methods

Table 8: Weights for Fig 7 by using PCS and Proposed

8: Beam pattern of 0°- 30° for Optimal beam
with 5 dB SNR

Noiseless case

PCS method

Proposed method

0.1968 + 0.23851
0.0918 - 0.21111
-0.1486 + 0.0281i
0.0720 + 0.0401i
-0.0708 - 0.04231
0.0548 4 0.1402i
0.1869 - 0.1851i
-0.3049 - 0.05121

0.1814 4 0.16209i
0.0893 - 0.17981
-0.1166 4 0.0512i
0.0794 + 0.0260i
-0.0606 - 0.0638i
0.0187 + 0.120T7i
0.1814 - 0.1222i
-0.2230 - 0.0748i

0.2086 -+ 0.23261
0.0820 - 0.2138i
-0.1640 + 0.0246i
0.0626 + 0.0480i
-0.0788 - 0.04441
0.0802 + 0.14681
0.1622 - D.2374i
-0.2300 - 0.05521

Norm (MSE):

0.1578

0.0052

Table 9: Weights for Fig 8 by using PCS and Proposed
methods

= 5 e
Ry =

Noiseless case

PCS method

Proposed method

0.1968 + 0.28851
0.0918 - 0.2111}
-0.1486 + 0.0231i
0.0720 4 0.0401i
-0.0708 - 0.0428i
0.0543 4 0.14021
0.1369 - 0.1851i
-0.3049 - 0.0612i

0.1480 + 0.1678i
0.0712 - 0.1784i
-0.18380 + 0.0255i
0.0898 + 0.02786i
-0.0691 - 0.08881
0.0155 + 0.13141
0.1008 - 0.1488i
-0.2422 - 0.0461i}

0.1856 + 0.2001i
0.0864 - 0.2091i
-0.1802 + 0.0286i
0.0868 + 0.05T5i
-0.0744 - 0.04186i
0.0433 + 0.12541
0.1503 - 0.2309i
-0.2289 - 0.05081

Norm (MSE):

0.1861

0.1045

Table 10: Weights for Fig 9 by using PCS and Proposed
methods
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Figure 10: Beam pattern of 0°- 30° by using Optimal
beam former with 10 dB SNR,

Noiseless case

PCS method

Proposed method

0.1888 + 0.2385i
0.0918 - 0.2111i
-0.1486 + 0.02811
0.0720 + 0.0401i
-0.0708 - 0.0423i
0.0643 + 0.14021
0.1860 - 0.1851i
-0.83049 - 0.0612i

0.1876 + 0.2008i
0.1055 - 0.1508i
-0.1559 + 0.0494i
0.0833 + 0.0401i
-0.0822 - 0.0981i
0.0488 - 0.1460i1
0.1158 - 0.1652i
-0.28038 - 0.0451i

0.1808 + 0.2118i
0.0059 - 0.23291
-0.1321 + 0.0256i
0.0734 + 0.0398i
-0.0666 - 0.0481i
0.0396 + 0.18261
0.18902 - 0.17001
-0.8061 - 0.06431

Norm (MSE):

0.1001

0.0459

Table 11: Weights for Fig 10 by using PCS and Pro-
Figure 9: Beam pattern of 0°- 30 by using Reference posed methods

signal with 10 dB SNR



