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M/G/m/m Loss System

We can use our analysis of the finite capacity M/G/1/K system, to get
results for the M/G/1/1 queue, considered as a special case of the M/G/m/m,
m-server loss system discussed here.

Consider the M/G/1/K queue for the special case of K=1. For this, we get
pd,0=1, as the departing job will always leave the system empty. This leads to
the equilibrium state probabilities at any arbitrary instant to be
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The throughput (carried traffic) of the M/G/1/1 queue will be
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Note that this, ρ(1+ρ)-1, will also be the mean number in the system As
expected, the mean delay W through this queue will be merely its mean
service time X .

The equilibrium state distribution at an arbitrary time instant for the
M/G/m/m queue is obtained subsequently. Rather surprisingly, it turns out
that the state probabilities of this system are the same as that of the
corresponding M/M/m/m system where the service times are exponentially
distributed. This is the reason why it is sometimes stated that the state
probabilities of a m-server loss system are independent of the actual state
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distribution of its service times. It may be recalled that the M/M/m/m system
was actually used to model a telephone exchange and its probability of
blocking was given by the Erlang Blocking formula to be
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where ρ is the load offered to the system. This would then also hold for a
M/G/m/m system. Another implication of our earlier statement would then
be that the Erlang Blocking formula may still be used to calculate the
blocking (i.e. the grade of service) in a telephone system, even when the call
duration is not an exponentially distributed random variable.

Consider a M/G/m/m queue, where the average arrival rate is λ and where
the service time X has a pdf b(x) with cdf B(x). We can define the
conditional distribution bc(x) as the pdf of the service time X, given that X>x,
such that
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Using the fact that the cdf B(x)=P{X≤ x} and Baye's rule, we get
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This conditional distribution is required in the subsequent derivation.
Let N be the number in the system, with 0 ≤ N ≤ K. We also define p0 as

the equilibrium probability that the system is empty, i.e. p0 = P{N=0}. Note
that since this queue has no additional buffers other than the servers, the
state N also represents the number of busy servers in the queue. An arrival is
lost (i.e. blocked) if it finds the system in state N. Therefore the probability
of blocking PB under equilibrium conditions will be the same as pN.

For a system in state k>0 (i.e. N=k), let the random variables Xi i=1,...,k
represent the elapsed service time for the job at the ith server. We define the
joint probability density fk(x1,.....,xk) as
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Using these, the following balance equations may be written
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It should be noted that for ∆x small, i.e. when ∆x→0
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Using (6) and (7), we get that for ∆x→0
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The conditional distributions fk(x1,....., xk) may be obtained by solving (8)
subject to the boundary conditions given by (4) and (5). This solution will be
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Using (5) and (10) gives
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We use this and apply (3), (9) and (11) to the normalization condition, to get

X
k

pXfpp
m

k

km

k

m

k

k
kk λρ

ρ
==+== ∑∑ ∑

== = 0
0

0 1
0 !

))(0,.......,0(1 (12)

This gives the equilibrium state probabilities as
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and the blocking probability PB=pm leading to the same equation as (1),
mentioned earlier.


