M/G/m/m Loss System

We can use our analysis of the finite capacity $\mathrm{M} / \mathrm{G} / 1 / \mathrm{K}$ system, to get results for the $\mathrm{M} / \mathrm{G} / 1 / 1$ queue, considered as a special case of the $\mathrm{M} / \mathrm{G} / \mathrm{m} / \mathrm{m}$, m-server loss system discussed here.

Consider the M/G/1/K queue for the special case of $K=1$. For this, we get $p_{d, 0}=1$, as the departing job will always leave the system empty. This leads to the equilibrium state probabilities at any arbitrary instant to be

$$
p_{1}=\frac{\rho}{1+\rho}=P_{B} \quad p_{0}=1-p_{1}=\frac{1}{1+\rho} \quad \text { for } \rho=\lambda \bar{X}=\text { offered traffic }
$$

The throughput (carried traffic) of the M/G/1/1 queue will be

$$
\rho_{c}=\rho\left(1-P_{B}\right)=\frac{\rho}{1+\rho}
$$

Note that this, $\rho(l+\rho)^{-1}$, will also be the mean number in the system As expected, the mean delay W through this queue will be merely its mean service time \bar{X}.

The equilibrium state distribution at an arbitrary time instant for the $\mathrm{M} / \mathrm{G} / \mathrm{m} / \mathrm{m}$ queue is obtained subsequently. Rather surprisingly, it turns out that the state probabilities of this system are the same as that of the corresponding $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ system where the service times are exponentially distributed. This is the reason why it is sometimes stated that the state probabilities of a m-server loss system are independent of the actual state
distribution of its service times. It may be recalled that the $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ system was actually used to model a telephone exchange and its probability of blocking was given by the Erlang Blocking formula to be

$$
\begin{equation*}
P_{B}=B(m, \rho)=\frac{\frac{\rho^{m}}{m!}}{\sum_{j=0}^{m} \frac{\rho^{j}}{j!}} \quad \rho=\lambda \bar{X} \tag{1}
\end{equation*}
$$

where ρ is the load offered to the system. This would then also hold for a $\mathrm{M} / \mathrm{G} / \mathrm{m} / \mathrm{m}$ system. Another implication of our earlier statement would then be that the Erlang Blocking formula may still be used to calculate the blocking (i.e. the grade of service) in a telephone system, even when the call duration is not an exponentially distributed random variable.

Consider a $\mathrm{M} / \mathrm{G} / \mathrm{m} / \mathrm{m}$ queue, where the average arrival rate is λ and where the service time X has a pdf $b(x)$ with cdf $B(x)$. We can define the conditional distribution $b_{c}(x)$ as the pdf of the service time X, given that $X>x$, such that

$$
b_{c}(x) d x=P\{x<X<x+d x \mid X>x\}
$$

Using the fact that the $\operatorname{cdf} B(x)=P\{X \leq x\}$ and Baye's rule, we get

$$
\begin{equation*}
b_{c}(x)=\frac{b(x)}{1-B(x)} \tag{2}
\end{equation*}
$$

This conditional distribution is required in the subsequent derivation.
Let N be the number in the system, with $0 \leq N \leq K$. We also define p_{0} as the equilibrium probability that the system is empty, i.e. $p_{0}=P\{N=0\}$. Note that since this queue has no additional buffers other than the servers, the state N also represents the number of busy servers in the queue. An arrival is lost (i.e. blocked) if it finds the system in state N. Therefore the probability of blocking P_{B} under equilibrium conditions will be the same as p_{N}.

For a system in state $k>0$ (i.e. $N=k$), let the random variables $X_{i} i=1, \ldots, k$ represent the elapsed service time for the job at the $i^{\text {th }}$ server. We define the joint probability density $f_{k}\left(x_{1}, \ldots . ., x_{k}\right)$ as

$$
\begin{aligned}
& f_{k}\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots . d x_{k} \\
& \Delta \underline{\Delta}\left\{N=k, x_{1}<X_{1}<x_{1}+d x_{1}, \ldots ., x_{k}<X_{k}<x_{k}+d x_{k}\right\} \quad k=1, \ldots, m \\
& p_{k}=\int_{0}^{\infty} \ldots . \int_{0}^{\infty} f_{k}\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots . . d x_{k}
\end{aligned}
$$

Using these, the following balance equations may be written

$$
\begin{array}{r}
f_{1}(0) d x=\lambda p_{0} d x \tag{4}\\
f_{1}(0)=\lambda p_{0}
\end{array}
$$

$$
\begin{align*}
& f_{k+1}\left(x_{1}, \ldots, x_{k}, 0\right)(k+1) d x=\lambda f_{k}\left(x_{1}, \ldots x_{k}\right) d x \\
& f_{k+1}\left(x_{1}, \ldots, x_{k}, 0\right)=\frac{\lambda}{k+1} f_{k}\left(x_{1}, \ldots x_{k}\right) \quad k=1, \ldots \ldots, m-1 \tag{5}
\end{align*}
$$

$$
\begin{align*}
& f_{k}\left(x_{1}+\Delta x, \ldots \ldots, x_{k}+\Delta x\right)=f_{k}\left(x_{1}, \ldots \ldots, x_{k}\right)(1-\lambda \Delta x) \prod_{n=1}^{k}\left[1-b_{c}\left(x_{n}\right)\right] \Delta x \\
& \quad+(k+1) \int_{0}^{\infty} f_{k+1}\left(x_{1}, \ldots \ldots, x_{k}, x\right) b_{c}(x) d x \Delta x \quad k=1, \ldots \ldots ., m-1 \\
& f_{m}\left(x_{1}+\Delta x, \ldots \ldots ., x_{m}+\Delta x\right)=f_{m}\left(x_{1}, \ldots \ldots ., x_{m}\right) \prod_{n=1}^{m}\left[1-b_{c}\left(x_{n}\right)\right] \Delta x \quad k=m \tag{6}
\end{align*}
$$

It should be noted that for Δx small, i.e. when $\Delta x \rightarrow 0$

$$
\begin{equation*}
f_{k}\left(x_{1}+\Delta x, \ldots \ldots ., x_{k}+\Delta x\right)=f_{k}\left(x_{1}, \ldots \ldots ., x_{k}\right)+\Delta x \sum_{n=1}^{k} \frac{\partial f_{k}\left(x_{1}, \ldots \ldots, x_{k}\right)}{\partial x} \tag{7}
\end{equation*}
$$

Using (6) and (7), we get that for $\Delta x \rightarrow 0$

$$
\begin{align*}
& \sum_{n=1}^{k} \frac{\partial f_{k}\left(x_{1}, \ldots \ldots, x_{k}\right)}{\partial x_{n}}+\left[\lambda+\sum_{n=1}^{k} b_{c}\left(x_{n}\right)\right] f_{k}\left(x_{1}, \ldots \ldots, x_{k}\right) \\
& \quad=(k+1) \int_{0}^{\infty} f_{k+1}\left(x_{1}, \ldots \ldots, x_{k}, x\right) b_{c}(x) d x \quad k=1, \ldots \ldots, m-1 \tag{8}\\
& \sum_{n=1}^{m} \frac{\partial f_{m}\left(x_{1}, \ldots \ldots, x_{m}\right)}{\partial x_{n}}+\left[\sum_{n=1}^{k} b_{c}\left(x_{n}\right)\right] f_{m}\left(x_{1}, \ldots \ldots, x_{m}\right)=0
\end{align*}
$$

The conditional distributions $f_{k}\left(x_{1}, \ldots . ., x_{k}\right)$ may be obtained by solving (8) subject to the boundary conditions given by (4) and (5). This solution will be

$$
\begin{equation*}
f_{k}\left(x_{1}, \ldots \ldots ., x_{k}\right)=f_{k}(0, \ldots \ldots, 0) \prod_{n=1}^{k}\left[1-B\left(x_{n}\right)\right] \quad k=1, \ldots \ldots ., m \tag{9}
\end{equation*}
$$

subject to $\lambda f_{k}(0, \ldots \ldots, 0)=(k+1) f_{k+1}(0, \ldots \ldots, 0,0) \quad k=1, \ldots \ldots, m-1$
Using (5) and (10) gives

$$
\begin{equation*}
f_{k}(0, \ldots \ldots, 0)=p_{0} \frac{\lambda^{k}}{k!} \quad k=1, \ldots \ldots, m \tag{11}
\end{equation*}
$$

Note that $\int_{0}^{\infty}[1-B(x)] d x=\left.[1-B(x)] x\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{d[1-B(x)]}{d x} x d x=\int_{0}^{\infty} x b(x) d x=\bar{X}$
We use this and apply (3), (9) and (11) to the normalization condition, to get

$$
\begin{equation*}
1=\sum_{k=0}^{m} p_{k}=p_{0}+\sum_{k=1}^{m} f_{k}(0, \ldots \ldots ., 0)(\bar{X})^{k}=p_{0} \sum_{k=0}^{m} \frac{\rho^{k}}{k!} \quad \rho=\lambda \bar{X} \tag{12}
\end{equation*}
$$

This gives the equilibrium state probabilities as

$$
\begin{equation*}
p_{k}=\frac{\frac{\rho^{k}}{k!}}{\sum_{n=0}^{m} \frac{\rho^{n}}{n!}} \quad \text { for } k=0,1, \ldots \ldots, m \tag{13}
\end{equation*}
$$

and the blocking probability $P_{B}=p_{m}$ leading to the same equation as (1), mentioned earlier.

