M/G/m/m Loss System

We can use our analysis of the finite capacity M/G/1/K system, to get results for the M/G/1/1 queue, considered as a special case of the M/G/m/m, m-server loss system discussed here.

Consider the M/G/1/K queue for the special case of $K=1$. For this, we get $p_{d,0}=1$, as the departing job will always leave the system empty. This leads to the equilibrium state probabilities at any arbitrary instant to be

$$p_d = \frac{\rho}{1+\rho} = P_{\text{b}} \quad p_0 = 1 - p_1 = \frac{1}{1+\rho} \quad \text{for } \rho = \lambda \bar{X} = \text{offered traffic}$$

The throughput (carried traffic) of the M/G/1/1 queue will be

$$\rho_c = \rho(1-P_{\text{b}}) = \frac{\rho}{1+\rho}$$

Note that this, $\rho(1+\rho)^{-1}$, will also be the mean number in the system. As expected, the mean delay W through this queue will be merely its mean service time \bar{X}.

The equilibrium state distribution at an arbitrary time instant for the M/G/m/m queue is obtained subsequently. Rather surprisingly, it turns out that the state probabilities of this system are the same as that of the corresponding M/M/m/m system where the service times are exponentially distributed. This is the reason why it is sometimes stated that the state probabilities of a m-server loss system are independent of the actual state
distribution of its service times. It may be recalled that the M/M/m/m system was actually used to model a telephone exchange and its probability of blocking was given by the Erlang Blocking formula to be

\[
P_B = B(m, \rho) = \frac{\rho^m}{m!} \sum_{j=0}^{m} \frac{\rho^j}{j!} \quad \rho = \lambda \bar{X}
\]

where \(\rho \) is the load offered to the system. This would then also hold for a M/G/m/m system. Another implication of our earlier statement would then be that the Erlang Blocking formula may still be used to calculate the blocking (i.e. the grade of service) in a telephone system, even when the call duration is not an exponentially distributed random variable.

Consider a M/G/m/m queue, where the average arrival rate is \(\lambda \) and where the service time \(X \) has a pdf \(b(x) \) with cdf \(B(x) \). We can define the conditional distribution \(b_c(x) \) as the pdf of the service time \(X \), given that \(X > x \), such that

\[
b_c(x)dx = P[x < X < x + dx | X > x]
\]

Using the fact that the cdf \(B(x) = P[X \leq x] \) and Baye's rule, we get

\[
b_c(x) = \frac{b(x)}{1 - B(x)}
\]

This conditional distribution is required in the subsequent derivation.

Let \(N \) be the number in the system, with \(0 \leq N \leq K \). We also define \(p_0 \) as the equilibrium probability that the system is empty, i.e. \(p_0 = P[N=0] \). Note that since this queue has no additional buffers other than the servers, the state \(N \) also represents the number of busy servers in the queue. An arrival is lost (i.e. blocked) if it finds the system in state \(N \). Therefore the probability of blocking \(P_B \) under equilibrium conditions will be the same as \(p_N \).

For a system in state \(k > 0 \) (i.e. \(N=k \), let the random variables \(X_i \) for \(i=1,...,k \) represent the elapsed service time for the job at the \(i \)th server. We define the joint probability density \(f_s(x_1,...,x_k) \) as
Using these, the following balance equations may be written:

\[f_i(0)dx = \lambda p_0 dx \]
\[f_i(0) = \lambda p_0 \] (4)

\[
\begin{align*}
 f_{k+1}(x_1, \ldots, x_k,0)(k+1)dx &= \lambda f_k(x_1, \ldots, x_k)dx \\
 f_{k+1}(x_1, \ldots, x_k,0) &= \frac{\lambda}{k+1} f_k(x_1, \ldots, x_k) \\
 k &= 1, \ldots, m-1
\end{align*}
\] (5)

\[
\begin{align*}
 f_k(x_1 + \Delta x, \ldots, x_k + \Delta x) &= f_k(x_1, \ldots, x_k)(1 - \lambda \Delta x) \prod_{n=1}^{k} [1 - b_c(x_n)] \Delta x \\
 f_m(x_1 + \Delta x, \ldots, x_m + \Delta x) &= f_m(x_1, \ldots, x_m) \prod_{n=1}^{m} [1 - b_c(x_n)] \Delta x \\
 k &= m
\end{align*}
\] (6)

It should be noted that for \(\Delta x \) small, i.e. when \(\Delta x \to 0 \)

\[
\begin{align*}
 f_k(x_1 + \Delta x, \ldots, x_k + \Delta x) &= f_k(x_1, \ldots, x_k) + \Delta x \sum_{n=1}^{k} \frac{\partial f_k(x_1, \ldots, x_k)}{\partial x} \\
 k &= m
\end{align*}
\] (7)

Using (6) and (7), we get that for \(\Delta x \to 0 \)
The conditional distributions \(f_k(x_1, \ldots, x_k) \) may be obtained by solving (8) subject to the boundary conditions given by (4) and (5). This solution will be

\[
f_k(x_1, \ldots, x_k) = f_k(0, \ldots, 0) \prod_{n=1}^{k} [1 - B(x_n)] \quad k = 1, \ldots, m \tag{9}
\]

subject to \(\lambda f_k(0, \ldots, 0) = (k + 1) f_{k+1}(0, \ldots, 0, 0) \quad k = 1, \ldots, m - 1 \tag{10} \)

Using (5) and (10) gives

\[
f_k(0, \ldots, 0) = p_0 \frac{\lambda^k}{k!} \quad k = 1, \ldots, m \tag{11}
\]

Note that

\[
\int_0^\infty [1 - B(x)] dx = [1 - B(x)] |_0^\infty - \int_0^\infty \frac{d[1 - B(x)]}{dx} dx = \int_0^\infty x b(x) dx = \bar{X}
\]

We use this and apply (3), (9) and (11) to the normalization condition, to get

\[
1 = \sum_{k=0}^{m} p_k = p_0 + \sum_{k=1}^{m} f_k(0, \ldots, 0)(\bar{X})^k = p_0 \sum_{k=0}^{m} \frac{\rho^k}{k!} \quad \rho = \lambda \bar{X} \tag{12}
\]

This gives the equilibrium state probabilities as

\[
p_k = \frac{\rho^k}{k!} \quad \text{for} \quad k = 0, 1, \ldots, m \tag{13}
\]
and the blocking probability $P_b = p_m$ leading to the same equation as (1), mentioned earlier.