The
 G/M/1, G/G/1, G/G/m and M/G/m/m

Queues

The G/M/1 Queue

- The $\mathrm{G} / \mathrm{M} / 1$ queue is the dual of the $\mathrm{M} / \mathrm{G} / 1$ queue where the arrival process is a general one but the service times are exponentially distributed.
- Service time distribution is exponential with parameter $1 / \mu$
- General Arrival Process with mean arrival rate λ.

Inter-arrival time is random with pdf $a(t)$, cdf $A(t)$ and L.T. of the pdf as $L_{A}(s)$

- Total Traffic $\rho=\lambda \mu$

Stability consideration require that $\rho<1$ for the queue to be at equilibrium

- For analyzing the G/M/1 queue using the Imbedded Markov Chain approach, the imbedded points are chosen to be the arrival instants of jobs to the system
- System State $=$ Number in the system immediately before an arrival instant
$n_{i}=$ Number in the system just before the $i^{\text {th }}$ arrival
$s_{i+1}=$ Number of jobs served between the $i^{t h}$ and the $(i+1)^{t h}$ arrivals

The sequence $\left\{n_{i}\right\}, i=1,2, \ldots \ldots$ at the imbedded Markov points (i.e. just before arrival instants) forms a Markov Chain.

Consider the chain $\quad n_{i+1}=n_{i}+1-s_{i+1} \quad n_{i}=0,1, \ldots ., \infty \quad s_{i+1} \leq n_{i}+1$ at equlibrium
(i.e. for $i \rightarrow \infty$)

One-Step Transition
Probabilities $\left\{\begin{array}{l}p_{j k}=P\left\{n_{i+1}=k \mid n_{i}=j\right\} \\ p_{j k}=0\end{array}\right.$ for $\quad k>j+1$.

Balance
Equations

$$
\begin{equation*}
p_{k}=\sum_{j=0}^{\infty} p_{j} p_{j k} \quad k=0,1, \ldots \ldots . ., \infty \tag{3}
\end{equation*}
$$

Normalization
Condition
$\sum_{k=0}^{\infty} p_{k}=1$

Allowable state transitions ($j \rightarrow k$) in the $\mathrm{G} / \mathrm{M} / 1$ queue between successive imbeded points

The points shown are the ones for which the $(j \rightarrow k)$ transitions can occur. For all other points, the corresponding transitions cannot occur.

The diagonal lines correspond to a constant number of departures $(0,1,2, \ldots \ldots)$ between the corresponding $(j \rightarrow k)$ transitions.

Let $\alpha_{n}=\mathrm{P}\{n$ departures in an inter-arrival time interval \mid server is always busy during this inter-arrival time $\}$

$$
\begin{equation*}
\alpha_{j}=\int_{x=0}^{\infty} \frac{(\mu x)^{j}}{j!} e^{-\mu x} a(x) d x \quad j=0,1, \ldots \ldots ., \infty \tag{5}
\end{equation*}
$$

Justification: Since the service times are exponentially distributed, the number of departures in an inter-arrival time instant where the server is always busy will have the Poisson distribution.
and $\quad \sum_{j=0}^{\infty} \alpha_{j} z^{j}=\int_{0}^{\infty} e^{-\mu x(1-z)} a(x) d x=L_{A}(\mu-\mu z)$

The α_{j} 's may be found as the coefficient of z^{j} in the series expansion of $L_{A}(\mu-\mu z)$

The Balance Equations of (3) then become

$$
\begin{equation*}
p_{j}=\alpha_{0} p_{j-1}+\sum_{k=0}^{\infty} \alpha_{k+1} p_{j+k} \quad j=1, \ldots \ldots, \infty \tag{4}
\end{equation*}
$$

Solutions to these, satisfying the normalization condition are -

$$
\begin{equation*}
p_{j}=(1-\sigma) \sigma^{j} \quad j=0,1, \ldots \ldots ., \infty \tag{6}
\end{equation*}
$$

where σ is a unique root of $\sigma=L_{A}(\mu-\mu \sigma)$
It may be shown that if $\rho<1$, then there will always be a unique real solution for $\sigma=L_{A}(\mu-\mu \sigma)$ which will be in the range $0<\sigma<1$.

The solution may be verified by direct substitution, as given below -

$$
\begin{aligned}
& (1-\sigma) \sigma^{j}=\alpha_{0}(1-\sigma) \sigma^{j-1}+\sum_{k=0}^{\infty} \alpha_{k+1}(1-\sigma) \sigma^{j+k} \\
& \sigma^{j}=\alpha_{0} \sigma^{j-1}+\sum_{k=1}^{\infty} \alpha_{k} \sigma^{j+k-1} \\
& \sigma=\alpha_{0}+\sum_{k=1}^{\infty} \alpha_{k} \sigma^{k} \\
& =\sum_{k=0}^{\infty} \alpha_{k} \sigma^{k}=L_{A}(\mu-\mu \sigma)
\end{aligned}
$$

- The state distribution $\left\{p_{j}\right\} j=0,1, \ldots \ldots$ is found under equilibrium conditions at the time instants just before job arrivals to the system.
- It is also valid for the departure instants (just after a job leaves the system) as Kleinrock's principle is applicable to this system (i.e. the state changes are at most +1 or -1 .
- It in not valid for arbitrary time instants (or ergodic, timeaverage results) since PASTA will not be applicable to the system (i.e. the arrival process is not Poisson).

For a FCFS M/G/1 queue at equilibrium, the following queueing delay results may be obtained.

These may be derived using the fact that the service time distribution is exponential and
hence memory less

$$
\begin{aligned}
& W_{q}=\sum_{n=1}^{\infty} \frac{n}{\mu}(1-\sigma) \sigma^{n}=\frac{\sigma}{\mu(1-\sigma)} \\
& f_{W q}(t)=(1-\sigma) \delta(t)+\mu \sigma(1-\sigma) e^{-\mu(1-\sigma) t} \\
& \quad \text { for } t \geq 0
\end{aligned}
$$

Other parameters such as W and N_{q} and the distribution $f_{W}(t)$ may also be obtained

The multi-server $G / M / m$ queue may also be analyzed using a similar approach

The G/G/1 Queue

We cannot analyse this queue exactly but there are useful bounds that have been developed for the waiting time in queue W_{q}. This can then be used to find bounds on W, N and N_{q} in the usual fashion, i.e.Little's Result and $W=W_{q}+\bar{X}$
$\lambda=$ Average arrival rate of jobs (general arrival process)
Let T be the (random) inter-arrival time with $\begin{aligned} & \text { (general service time distribution) }\end{aligned}\left\{\begin{array}{l}E\{T\}=1 / \lambda \\ \sigma_{T}^{2}=E\left\{T^{2}\right\}-[E\{T\}]^{2}\end{array}\right.$
Let X be the (random) service time with $\left\{\begin{array}{l}E\{X\}=\bar{X} \\ \sigma_{X}^{2}=E\left\{X^{2}\right\}-[E\{X\}]^{2}\end{array}\right.$
$\rho=\lambda \bar{X} \quad=$ Traffic Offered
$\rho<1$ for queue to be stable

If the mean and variance (or second moment) of the inter-arrival times and the service times are known, then the following bounds have been shown to hold for W_{q}, the waiting time in queue, of any G/G/1 queue.

$$
\begin{equation*}
\frac{\lambda \sigma_{X}^{2}-\bar{X}(2-\rho)}{2(1-\rho)} \leq W_{q} \leq \frac{\lambda\left(\sigma_{X}^{2}+\sigma_{T}^{2}\right)}{2(1-\rho)} \tag{1}
\end{equation*}
$$

Lower Bound Upper Bound

The upper bound of (1) is quite useful. The lower bound is actually not very useful as it often gives a negative result which is a trivial conclusion.

Another interesting (and very useful) bound for the G/G/1 queue has been given for the special case where the inter-arrival time T satisfies the following property for all values of t.

$$
\begin{equation*}
E\{T-t \mid T>t\} \leq \frac{1}{\lambda} \quad \text { for all } t \geq 0 \tag{2}
\end{equation*}
$$

- Note that $\mathrm{E}\{T\}=1 / \lambda$. The condition of (2) is not very hard to satisfy. If the inter-arrival time is known to be more than t, then (2) requires that the expected length of the remaining interarrival time should be less than or equal to the unconditioned expected inter-arrival time 1λ.
- For the special case when the arrival process is Poisson, the inter-arrival times will be exponentially distributed and will satisfy (2) as an equality.
- Note that many distributions (like say the uniform distribution) will satisfy (2). An exception to this are hyper-exponential type distributions

If the arrival process is such that (2) is satisfied, then the following bounds have been shown to hold

$$
\begin{equation*}
W_{q U}-\frac{1+\rho}{2 \lambda} \leq W_{q} \leq W_{q U} \tag{3}
\end{equation*}
$$

where $W_{q U}$ is the upper bound of (1), i.e. $W_{q U}=\frac{\lambda\left(\sigma_{X}^{2}+\sigma_{T}^{2}\right)}{2(1-\rho)}$

To see the tightness of the bounds of (3), consider using it to find the bounds on N_{q}, the mean number waiting in queue for a G/G/1 system.

We get

$$
\begin{equation*}
\lambda W_{q U}-\frac{1+\rho}{2} \leq N_{q} \leq \lambda W_{q U} \tag{4}
\end{equation*}
$$

- The difference between the upper and the lower bounds is only $0.5(1+\rho)$.
- Note that ρ will be small anyway as $0<\rho<1$ for a stable queue.
- In any case, the difference between the upper and the lower bounds will be between 0.5 and 1 . In percentage terms, as $\rho \rightarrow 1$, i.e the traffic increases, this will get increasingly smaller compared to N_{q}.

Heavy Traffic Approximation for the G/G/1 Queue

As $\rho \rightarrow 1$, (i.e. when the offered traffic is high), the distribution of the waiting time in a G/G/1 queue will be approximately an exponentially distributed radom variable with mean given by

$$
W_{q}=\frac{\lambda\left(\sigma_{X}^{2}+\sigma_{T}^{2}\right)}{2(1-\rho)}
$$

Note that this results is an interesting one as it not only provides a mean but also a distribution for the waiting time in queue under very general conditions.

The G/G/m Queue

$m=$ Number of Servers $\quad W_{q l}=$ Average waiting time in queue
$\rho=\lambda \bar{X}=$ Offered Traffic

$$
91-\mathrm{T}
$$ for the equivalent $\mathrm{G} / \mathrm{G} / 1$ queue.

Other notations same as for the $\mathrm{G} / \mathrm{G} / 1$ queue

The Equivalent G/G/1 Queue

Same arrival process of jobs as for the $\mathrm{G} / \mathrm{G} / \mathrm{m}$ queue
For the service times, use $\frac{\bar{X}}{m}$ and $\frac{\sigma_{X}^{2}}{m^{2}}$ as the mean and variance,
respectively.
Note that the server here works m times faster than a server in the original G/G/m queue

The following bounds then hold for the $\mathrm{G} / \mathrm{G} / \mathrm{m}$ queue

$$
W_{q 1}-\frac{(m-1) \overline{X^{2}}}{2 m \bar{X}} \leq W_{q} \leq \lambda \frac{\left[\sigma_{T}^{2}+\frac{\sigma_{X}^{2}}{m}+\frac{(m-1)(\bar{X})^{2}}{m^{2}}\right]}{2\left[1-\frac{\rho}{m}\right]}
$$

- The value of $W_{q 1}$ may be computed as a lower bound on W_{q}
- These bounds are rather loose and may not be very useful in practice

Heavy Traffic Approximation for the G/G/m Queue

For $(\rho / m) \rightarrow 1$ in a $G / \mathrm{G} / \mathrm{m}$ queue, a heavy traffic approximation result holds in a manner similar to that given for the G/G/1 case.

Specifically, for $(\rho / m) \rightarrow 1$ in a $G / G / m$ queue, the waiting time in queue at steady-state tends towards a random variable with an exponential distribution which has a mean given by -

$$
W_{q} \approx \lambda \frac{\left[\sigma_{T}^{2}+\frac{\sigma_{X}^{2}}{m}\right]}{2\left[1-\frac{\rho}{m}\right]}
$$

The M/G/m/m Queue

- Even though the $\mathrm{M} / \mathrm{G} / \mathrm{m}$ queue is hard to analyze, the finite capacity $\mathrm{M} / \mathrm{G} / \mathrm{m} / \mathrm{m}$ queue (m server queue without waiting positions) is surprisingly easy to analyze. (See additional notes)
- Even more remarkably, its state probability distribution and blocking probability results are identical to those obtained for the corresponding $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ queue

$$
\begin{aligned}
& p_{k}=\frac{\frac{\rho^{k}}{k!}}{\sum_{n=0}^{m} \frac{\rho^{n}}{n!}} \quad P_{B}=B(m, \rho)=\frac{\frac{\rho^{m}}{m!}}{\sum_{j=0}^{m} \frac{\rho^{j}}{j!}} \quad \rho=\lambda \bar{X} \\
& \text { for } k=0,1, \ldots \ldots, m
\end{aligned}
$$

