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EE 679, Queueing Systems (2001-02F)
Solutions to Test -2

1. Applying Eqs. (2.7) and (2.8) and using 
µ
λ

ρ = , we can directly get that
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Using the normalization condition, we can then obtain
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The mean number, N, in the system will be given by
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We can see that the series summation required for applying the normalization condition
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kp  may be evaluated only if ρ<1 or λ<µ. This is the condition required for the

queue to be stable.

2. The state transition for this system diagram is given below.

The balance equations may be written as follows.
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These may be solved to get the following state probabilities.
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where application of the normalization condition yields 
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Let P{k}=P{k users in the system}. Using the state probabilities given above, we can find
these as
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The server in this system will be busy in all states other than states 0, 1', and 2'.
Therefore, the probability Pserver busy will be given by

Pserver busy = ρ=−=−−− 0'2'10 311 pppp

The interesting thing to note is that even in spite of its different behavior, the server has
to work just as hard it would in a normal M/M/1 queue.


