EE 679, Queueing Systems (2000-01F) Solutions to Test -4

Note: The notation used below is the standard notation that has been used in the text

1. (a) The imbedded Markov Chain at the departure instants may be written as -

$$
\begin{aligned}
n_{i+1} & =n_{i}+a_{i+1}-1 & & \text { for } n_{i} \geq 1 \\
& =a_{i+1}+j-U(j) & & \text { for } n_{i}=0
\end{aligned}
$$

where n_{i} is the number left behind in the system by a departing customer, a_{i+1} is the number of arrivals in the $(i+l)^{t h}$ service time, and j is the number in the system at the end of the only vacation the server takes after the end of a busy period (i.e. for the case $n_{i}=0$) with $\operatorname{pdf} f_{j}$ and generating function $F(z)$

Note that-

$$
\begin{array}{llll}
& F(z)=\tilde{F}_{V}(\lambda-\lambda z) & f_{0}=F(0)=\tilde{F}_{V}(\lambda) \quad F^{\prime}(1)=\lambda \bar{V} \quad F^{\prime \prime}(1)=\lambda^{2} \overline{V^{2}} \\
\& & A(z)=\widetilde{B}(\lambda-\lambda z) & A^{\prime}(1)=\lambda \bar{X} \quad A^{\prime \prime}(1)=\lambda^{2} \overline{X^{2}} &
\end{array}
$$

To find p_{0} we can take expectation of both sides of the Imbedded Markov Chain equation to get -

$$
\begin{array}{ll}
& \bar{n}=\bar{n}+\lambda \bar{X}-\left(1-p_{0}\right)+p_{0} E\{j-U(j)\} \\
\text { or } \quad 1-\lambda \bar{X}=p_{0}\left[1+\lambda \bar{V}-\left(1-f_{0}\right)\right] \quad \Rightarrow \quad p_{0}=\frac{1-\lambda \bar{X}}{\lambda \bar{V}+\widetilde{F}_{V}(\lambda)}
\end{array}
$$

(b)

$$
\begin{aligned}
& \quad P(z)=\left(1-p_{0}\right) A(z)\left[\frac{1}{z\left(1-p_{0}\right)}\left\{P(z)-p_{0}\right\}\right]+p_{0} A(z) E\left\{f_{0}+\sum_{j=1}^{\infty} f_{j} z^{j-1}\right\} \\
& \text { or } \quad P(z)=A(z)\left[\frac{P(z)}{z}-\frac{p_{0}}{z}+p_{0} f_{0}+p_{0} \frac{F(z)}{z}-p_{0} \frac{f_{0}}{z}\right] \\
& P(z)=\left[\frac{1-\lambda \bar{X}}{\lambda \bar{V}+\widetilde{F}_{V}(\lambda)}\right]\left[\frac{A(z)}{z-A(z)}\right]\left[\tilde{F}_{V}(\lambda-\lambda z)-(1-z) \tilde{F}_{V}(\lambda)-1\right]
\end{aligned}
$$

The expression for p_{0} obtained in (a) may also be verified by using $P(1)=1$ in the above expression. Note that for this, L'Hospital's Rule will have to be used.
2. As in the usual $M / G / 1$ queue, we can write

$$
\begin{aligned}
& \bar{W}_{q}=R+\lambda \bar{W}_{q} \bar{X} \\
& \bar{W}_{q}=\frac{R}{1-\lambda \bar{X}}
\end{aligned}
$$

leading to
Consider an interval $(0, t)$ where $t \rightarrow \infty$ and let -

$$
\begin{aligned}
& M(t)=\text { Total Number of Arrivals in }(0, t) \\
& N(t)=\text { Total Number of Busy Periods in }(0, t)
\end{aligned}
$$

If there was no exceptional first service, then the average busy period length will be $\frac{\bar{X}}{1-\lambda \bar{X}}$
Taking exceptional first service into account, the average busy period length will be $\left[\overline{\tilde{X}}+(\lambda \overline{\tilde{X}})\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)\right]=\frac{\overline{\tilde{X}}}{1-\lambda \bar{X}}$
Therefore, the Mean Cycle Time $=\frac{1}{\lambda}+\frac{\overline{\tilde{X}}}{1-\lambda \bar{X}}=\frac{1+\lambda \overline{\widetilde{X}}-\lambda \bar{X}}{\lambda(1-\lambda \bar{X})}=T_{C}$
Then

$$
\begin{equation*}
N(t)=\frac{t}{T_{C}}=\frac{\lambda t(1-\lambda \bar{X})}{1+\lambda \overline{\tilde{X}}-\lambda \bar{X}} \tag{say}
\end{equation*}
$$

This yields -

$$
\begin{aligned}
R_{t} & =\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{2}\left[\frac{1}{t} \sum_{i=1}^{M(t)-N(t)} X_{i}^{2}+\frac{1}{t} \sum_{j=1}^{N(t)} \tilde{X}_{j}^{2}\right] \\
\text { or } & R_{t}=\frac{1}{2}\left[\frac{(M-N)}{t}\left(\frac{1}{M-N}\right)_{i=1}^{M-N} X_{i}^{2}+\frac{N}{t}\left(\frac{1}{N}\right) \sum_{j=1}^{N} \tilde{X}_{j}^{2}\right]
\end{aligned}
$$

Taking limits as $t \rightarrow \infty$, we get -

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{\lambda(1-\lambda \bar{X})}{1+\lambda \tilde{\tilde{X}}-\lambda \bar{X}} \\
\& \quad \lim _{t \rightarrow \infty} \frac{M(t)-N(t)}{t}=\lambda-\frac{\lambda(1-\lambda \bar{X})}{1+\lambda \overline{\tilde{X}}-\lambda \bar{X}}=\frac{\lambda^{2} \overline{\tilde{X}}}{(1+\lambda \overline{\tilde{X}}-\lambda \bar{X})}
\end{gathered}
$$

Therefore, $\quad R=\frac{1}{2} \frac{\lambda^{2} \overline{\tilde{X}}}{(1+\lambda \overline{\tilde{X}}-\lambda \bar{X})}\left(\overline{X^{2}}\right)+\frac{1}{2} \frac{\lambda(1-\lambda \bar{X})}{1+\lambda \overline{\tilde{X}}-\lambda \bar{X}}\left(\overline{\tilde{X}^{2}}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \lambda \overline{\tilde{X}^{2}} \frac{(1-\lambda \bar{X})}{(1+\lambda \overline{\widetilde{X}}-\lambda \bar{X})}+\frac{1}{2} \lambda \overline{X^{2}} \frac{[1+\lambda \overline{\tilde{X}}-\lambda \bar{X}-(1-\lambda \bar{X})]}{(1+\lambda \overline{\widetilde{X}}-\lambda \bar{X})} \\
& =\frac{1}{2} \lambda \overline{X^{2}}+\frac{1}{2} \lambda \frac{(1-\lambda \bar{X})}{(1+\lambda \overline{\tilde{X}}-\lambda \bar{X})}\left(\overline{\tilde{X}^{2}}-\overline{X^{2}}\right)
\end{aligned}
$$

From this, we can get that $\overline{W_{q}}=\frac{1}{2} \frac{\lambda \overline{X^{2}}}{(1-\lambda \bar{X})}+\frac{1}{2} \lambda \frac{\left(\overline{\tilde{X}^{2}}-\overline{X^{2}}\right)}{(1+\lambda \tilde{\tilde{X}}-\lambda \bar{X})}$

$$
\text { Mean Service Time }=\bar{X}\left(1-p_{0}\right)+p_{0} \overline{\tilde{X}}
$$

We can find p_{0} as $\quad p_{0}=\frac{1 / \lambda}{T_{C}}=\frac{1-\lambda \bar{X}}{1+\lambda \bar{X}-\lambda \overline{\tilde{X}}}$
Therefore, simplifying we get -
and

$$
\begin{aligned}
& \text { Mean Service Time }=\frac{\overline{\tilde{X}}}{1+\lambda \tilde{X}-\lambda \bar{X}} \\
& \qquad \bar{W}=\overline{W_{q}}+\frac{\overline{\tilde{X}}}{1+\lambda \tilde{\tilde{X}}-\lambda \bar{X}}
\end{aligned}
$$

Simplifying, we get -

$$
\bar{W}=\frac{\overline{\tilde{X}}}{1+\lambda \overline{\tilde{X}}-\lambda \bar{X}}+\frac{\lambda \overline{X^{2}}}{2(1-\lambda \bar{X})}+\frac{\lambda\left(\overline{\tilde{X}^{2}}-\overline{X^{2}}\right)}{2(1+\lambda \overline{\tilde{X}}-\lambda \bar{X})}
$$

