EE 679, Queueing Systems (2002-03F)
 Solutions to Exam - II

1. (a) Considering a batch as one job, its service time is characterized by -
L.T.of batch service time pdf

$$
\begin{aligned}
& L_{B}(s)=\frac{1}{2} L_{\alpha}(s)\left[1+L_{\beta}(s)\right] \\
& \overline{X_{B}}=\alpha^{(1)}+\frac{1}{2} \beta^{(1)} \\
& \overline{X_{B}^{2}}=\left(\alpha^{(2)}+\alpha^{(1)} \beta^{(1)}+\frac{1}{2} \beta^{(2)}\right) \\
& \rho=\lambda \overline{X_{B}}=\lambda\left[\alpha^{(1)}+\frac{1}{2} \beta^{(1)}\right]
\end{aligned}
$$

Mean of batch service time

Second moment of batch service time

Offered Traffic
For a batch considered as one job, we get

$$
\begin{array}{ll}
\text { L.T. of pdf of batch queueing delay } & L_{W q b}(s)=\frac{s(1-\rho)}{s-\lambda+\lambda L_{B}(s)} \\
\text { Mean batch queueing delay } & W_{q b}=\frac{\lambda \overline{X_{B}^{2}}}{2(1-\rho)}
\end{array}
$$

Therefore
Mean queueing delay

$$
\begin{aligned}
& W_{q}=W_{q b}+\frac{1}{3} \alpha^{(1)} \\
& L_{W_{q}}(s)=\frac{1}{3} L_{W q b}(s)\left[2+L_{\alpha}(s)\right]
\end{aligned}
$$

L.T. of pdf of queueing delay
(b) Mean Queueing Delay observed by the second job will be $W_{q 2}=W_{q b}+\alpha$
2. (a) Solving the flow balance equations, we get the following -

$$
\begin{aligned}
& \lambda_{1}=2.5 \lambda \quad \lambda_{2}=1.5 \lambda \quad \lambda_{3}=2.5 \lambda \quad \lambda_{4}=\lambda \quad \Rightarrow \quad P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\rho^{n_{1}+n_{2}+n_{3}+n_{4}}(1-\rho)^{4} \\
& \rho_{1}=\rho_{2}=\rho_{3}=\rho_{4}=\rho
\end{aligned}
$$

(b) Mean number in the system $\quad N=\frac{4 \rho}{(1-\rho)}$
(c) Mean delay averaged over all arrivals $\quad W_{\text {overall }}=\frac{4}{3 \mu(1-\rho)}$
(d) The delay (queueing+service) at each of the queues will be as follows -
$W_{1}=\frac{2}{5 \mu(1-\rho)} \quad W_{2}=\frac{2}{3 \mu(1-\rho)} \quad W_{3}=\frac{2}{5 \mu(1-\rho)} \quad W_{4}=\frac{1}{\mu(1-\rho)}$
The following result for a queueing system with a delay of W_{f} on the forward path and a delay of W_{r} on the reverse (feedback path) will be useful.

$$
\begin{aligned}
W_{\text {total }} & =W_{f}+\sum_{j=1}^{\infty}\left[j\left(W_{f}+W_{r}\right)\right](1-p) p^{j} \\
& =W_{f}+\left(W_{f}+W_{r}\right) \frac{p}{1-p}
\end{aligned}
$$

Using this, we can easily get that

$W_{(\lambda \text { entry })}=\frac{W_{2}+W_{3}}{1-0.2}=\frac{4}{3 \mu(1-\rho)}$

The other delay term $W_{\left(2 \lambda_{\text {entry })}\right.}$ required to be found may also be calculated explicitly in a similar manner. However, it is much simpler to note that $W_{(\lambda \text { entry) }}$ is the same as the overall average $W_{\text {overall }}$. Hence, the delay term $W_{(2 \lambda \text { entry })}$ must be the same as $W_{\text {overall. }}$

Therefore, we get that $W_{(2 \lambda \text { entry) }}=\frac{4}{3 \mu(1-\rho)}$

(Alternate Solution Approach from Nabhendra Bisnik)

Let λ_{A} be the input at \mathbf{A}. Let $\lambda_{1 A}$ be the flow in the $i^{\text {th }}$ queue corresponding to this input flow. By solving the flow balance equations just for this flow alone, we can show that $\lambda_{1 A}=1.25 \lambda_{A}, \lambda_{2 A}=0.125 \lambda_{A}, \lambda_{3 A}=0.625 \lambda_{A}, \lambda_{4 A}=0.5 \lambda_{A}$ corresponding to visit ratios (for this flow alone) of $V_{1 A}=1.25, V_{2 A}=0.125, V_{3 A}=0.625, V_{4 A}=0.5$.
Therefore, we get that for jobs input from \mathbf{A}, the mean time spent in the system before departure will be -

$$
\begin{aligned}
W_{A}=W_{(2 \lambda \text { entry })}= & \sum_{j=1}^{4} V_{j A} W_{j}=1.25\left[\frac{2}{5 \mu(1-\rho)}\right]+0.125\left[\frac{2}{3 \mu(1-\rho)}\right] \\
& +0.625\left[\frac{2}{5 \mu(1-\rho)}\right]+0.5\left[\frac{1}{\mu(1-\rho)}\right]=\frac{4}{3 \mu(1-\rho)}
\end{aligned}
$$

Similarly, let λ_{B} be the input at B. Let $\lambda_{1 B}$ be the flow in the $i^{\text {th }}$ queue corresponding to this input flow. By solving the flow balance equations just for this flow alone, we can show that $\lambda_{1 B}=0, \lambda_{2 B}=\lambda_{3 B}=1.25 \lambda_{B}, \lambda_{4 B}=0$ corresponding to visit ratios (for this flow alone) of $V_{1 B}=V_{4 B}=0, V_{2 B}=V_{3 B}=1.25$. Therefore

$$
\begin{aligned}
W_{B} & =W_{(\lambda \text { entry })}=\sum_{j=1}^{4} V_{j B} W_{j}=1.25\left[\frac{2}{3 \mu(1-\rho)}\right]+1.25\left[\frac{2}{5 \mu(1-\rho)}\right] \\
& =\frac{4}{3 \mu(1-\rho)}
\end{aligned}
$$

3. In order to get the Norton's equivalent circuit, we should short $Q 4$ by setting its service time to zero (i.e. the service rate to infinity) in Fig. 3.1 and calculate the actual throughput λ_{4} under these conditions. This is done for $M=1,2,3,4$ and the λ_{4} obtained would be the service rates of the FES in Figure 3.2. It would be convenient to do this using the MVA algorithm as given below

Visit Ratios $\quad V_{1}=1 \quad V_{2}=1.25 \quad V_{3}=0.5 \quad V_{4}=0.5$

$$
\begin{aligned}
& M=0 \quad N_{1}(0)=N_{2}(0)=N_{3}(0)=N_{4}(0)=0 \\
& M=1 \quad\left\{\begin{array}{l}
W_{1}(1)=1 \quad W_{2}(1)=0.5 \quad W_{3}(1)=1 \\
\lambda(1)=\frac{1}{1+0.625+0.5}=0.4706 \quad \Rightarrow \quad \lambda_{4}(1)=0.2353 \\
N_{1}(1)=0.4706 \quad N_{2}(1)=0.2941 \quad N_{3}(1)=0.2353
\end{array}\right. \\
& M=2\left\{\begin{array}{lll}
W_{1}(2)=1.4706 & W_{2}(2)=0.64705 & W_{3}(2)=1.2353 \\
\lambda(2)=0.6903 & & \Rightarrow \\
N_{1}(2)=1.0151 & N_{2}(2)=0.5583 & N_{3}(2)=0.4624
\end{array}\right. \\
& M=3\left\{\begin{array}{lll}
W_{1}(3)=2.0151 & W_{2}(3)=0.7792 & W_{3}(3)=1.4264 \\
\lambda(3)=0.8103 & & \Rightarrow \quad \lambda_{4}(3)=0.4051 \\
N_{1}(3)=1.6328 & N_{2}(3)=0.7892 & N_{3}(3)=0.5779
\end{array}\right. \\
& M=4\left\{\begin{array}{lll}
W_{1}(4)=2.6328 & W_{2}(4)=0.8946 & W_{3}(4)=1.5779 \\
\lambda(4)=0.8810 & & \lambda_{4}(4)=0.4405 \\
N_{1}(4)=2.3195 & N_{2}(4)=0.9852 & N_{3}(4)=0.6951
\end{array}\right.
\end{aligned}
$$

From the above, we get that the FES of Fig. 3.2 must have the following state dependent service rates

$$
\begin{aligned}
& \mu_{F E S}(1)=\lambda_{4}(1)=0.2353 \\
& \mu_{F E S}(2)=\lambda_{4}(2)=0.3452 \\
& \mu_{F E S}(3)=\lambda_{4}(3)=0.4051 \\
& \mu_{F E S}(4)=\lambda_{4}(4)=0.4405
\end{aligned}
$$

4. (a) Late Arrival Model

Early Arrival Model

$$
\left.\begin{array}{rlrl}
n_{i+1} & =a_{i+1} & n_{i}=0 \\
& =n_{i}+a_{i+1}-1 \\
n_{i+1} & =\tilde{a}_{i+1} & & n_{i} \geq 1 \\
& =n_{i}+a_{i+1}-1
\end{array} \quad \begin{array}{rl}
n_{i}=0 \\
n_{i} \geq 1
\end{array}\right\} \begin{aligned}
& \text { Give a } \\
& \text { graphical } \\
& \text { argument to } \\
& \text { justify these } \\
& \text { equations }
\end{aligned}
$$

where a_{i+1} is the number of arrivals in the $(i+1)^{t h}$ service time and \tilde{a}_{i+1} is the number of arrivals in the $(i+1)^{t h}$ service time minus one slot.
(b) To find p_{o} directly for the two cases, consider the Markov Chain at equilibrium and take the expectation of both left-hand and right-hand sides. This gives the following.

Late Arrival Model

$$
\begin{aligned}
N= & p_{0}[\lambda b]+N+\left(1-p_{0}\right)[\lambda b-1] \\
& \Rightarrow p_{0}=1-\lambda b
\end{aligned}
$$

$$
N=p_{0}[\lambda(b-1)]+N+\left(1-p_{0}\right)[\lambda b-1]
$$

Early Arrival Model

$$
\Rightarrow \quad p_{0}=\frac{1-\lambda b}{1-\lambda}
$$

Note that p_{0} is higher in the case of the Early Arrival Model. This is because in this model, at the job departure instants, the arrivals that may come at that slot boundary are not taken into account. Hence, the system would have a higher probability of being observed to be empty.
(c) Note that the queue has been assumed FCFS in nature. Therefore, the number seen in the system at a job's departure instant would be the number arriving while the job was in the system. It may also be noted that for the time spent in system in the Early Arrival Model the slot in which the job arrives and the slot in which it leaves will both be counted. The model also implies that for the arrival and subsequent departure of a job, other jobs may only arrive in one less slot than the total number of slots that the job spends in the system.

Let $g_{w}(j)$ be the probability that a job spends j slots in the system with $G_{W}(z)=\sum_{j=1}^{\infty} g_{w}(j) z^{j}$. Therefore -
$P_{E}(z)=\sum_{j=1}^{\infty} g_{w}(j) \sum_{k=0}^{j-1}\binom{j-1}{k} h^{k}(1-\lambda)^{j-1-k} z^{k}=\sum_{j=1}^{\infty} g_{w}(j)(1-\lambda+\lambda z)^{j-1}=\frac{G_{W}(1-\lambda+\lambda z)}{(1-\lambda+\lambda z)}$
5. We consider each class separately, starting from the highest priority class

Class 3: Mean Residual Lifetime $R_{3}=\frac{1}{2}\left(\lambda_{2} \overline{X_{2}^{2}}+\lambda_{3} \overline{X_{3}^{2}}\right)$

$$
\begin{aligned}
& W_{q 3}=R_{3}+\overline{X_{3}} N_{q 3} \quad \Rightarrow \quad W_{q 3}=\frac{R_{3}}{\left(1-\rho_{3}\right)} \quad \text { with } \rho_{3}=\lambda_{3} \overline{X_{3}} \\
& W_{3}=\overline{X_{3}}+\frac{1}{2\left(1-\rho_{3}\right)}\left(\lambda_{2} \overline{X_{2}^{2}}+\lambda_{3} \overline{X_{3}^{2}}\right)
\end{aligned}
$$

Class 2: Mean Residual Lifetime $R_{2}=R_{3}=\frac{1}{2}\left(\lambda_{2} \overline{X_{2}^{2}}+\lambda_{3} \overline{X_{3}^{2}}\right)$

$$
\begin{aligned}
& W_{q 2}=R_{2}+N_{q 3} \overline{X_{3}}+\overline{X_{3}} \lambda_{3} W_{q 2}+\overline{X_{2}} N_{q 2}^{2} \\
& \Rightarrow W_{q 2}=\frac{R_{2}+\rho_{3} W_{q 3}}{\left(1-\rho_{2}-\rho_{3}\right)} \quad \text { with } \rho_{2}=\lambda_{2} \overline{X_{2}} \\
& W_{2}=\overline{X_{2}}+\frac{1}{\left(1-\rho_{2}-\rho_{3}\right)}\left[\frac{\left(\lambda_{2} \overline{X_{2}^{2}}+\lambda_{3} \overline{X_{3}^{2}}\right)}{2}+\rho_{3} W_{q 3}\right]
\end{aligned}
$$

Class 1: Mean Residual Lifetime $R_{1}=\frac{1}{2}\left(\lambda_{1} \overline{X_{1}^{2}}+\lambda_{2} \overline{X_{2}^{2}}+\lambda_{3} \overline{X_{3}^{2}}\right)$

$$
\begin{aligned}
& W_{1}=\overline{X_{1}}+\frac{R_{1}}{\left(1-\rho_{1}-\rho_{2}-\rho_{3}\right)}+\overline{X_{3}} \lambda_{3} W_{1}+\overline{X_{2}} \lambda_{2} W_{1} \quad \text { with } \rho_{1}=\lambda_{1} \overline{X_{1}} \\
& \Rightarrow \quad W_{1}=\frac{\overline{X_{1}}\left(1-\rho_{1}-\rho_{2}-\rho_{3}\right)+R_{1}}{\left(1-\rho_{2}-\rho_{3}\right)\left(1-\rho_{1}-\rho_{2}-\rho_{3}\right)}
\end{aligned}
$$

