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EE 679, Queueing Systems (2002-03F)
Solutionsto Exam - |

1. Let the random variable x, x® 0, be the length of the inter-arrival time, i.e. the time
between successive arrivals, where the earlier arrival occurs at time t=0. We examine the
system at time t measured from this earlier arrival, when no arrivals have occurred in the
time interval (O, t). Let Y={(X-t) | X>t} be the remaining time to the next arriva
(measured from t), given that there have been no arrivals between 0 and t.

Then P{(X-)>y, X>t} = P{(X-0)>y | X>t}P{X>1}

Sincey and t are both positive, we have P{(X-t)>y , X>t}=P{(X-t)>y}

P{X-t)>y} _1- Fx(t+y)

Therefore P{(X - t)>y|X >t} = PX >0} 1- F (1)

Since the inter-arrival times are exponentially distributed, we have f, (x)=le'* x3 0
and therefore F, (x)=1- €'* x3 0.

Substituting, we get that P{(X-t)>y|X>t}=e"Y t,y30
Therefore, the cdf of Yis F(y)=P{(X-t)Ey|X>t}=1-e'Y t,y30
and the pdf of Y is f.(y)=le' y30

Note that the remaining time Y to the next arrival has the same distribution (pdf, cdf) as
the inter-arrival time measured between successive arrivals. This demonstrates the
memoryless property for this case.

2. One can easily argue that as far as computing the probabilities of the number in the
system are concerned, the server may be
—» Sagel ¥ Sage2 |—» modeled as follows where each stage provides
exponential service at ratem

(a)
0 The state of the system (with this server model) is represented
m as (m, j) where m is the number in the system and j is the stage
| ‘\ in which the currently serverd customer is being served,
m m=0,1,2 and j=1,2
11 —» 1,2

m
|
i vm\ il The following balance equations may be written

21 —» 22
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P, =1 Po P2 =TPo

[ = =r(d+r i

( +rn)p12 Py b P (2 )po with Po :;2
| Py =Npy Py =T “@A+1)p, 1+2r(1+r)
Ppat Po = P2 t P p22=r2(2+r)p0

The other values of p; wherei is the number in the system will be

B =P+ P =) and p,=p,+p S CAZIN
1= P T P2 1+2r (1+r)2 2 217 P2 1+2r(1+r)2

At equilibrium, the average departure rate | p of jobs from the system will be the same as
the average arrival rate of jobs actually entering the system. Therefore

3
-I[l— ] | 1+2r +r? +42r
1+2r (1+r)
(b) o |
0 The state trangition diagram is as shown. The
v* balance equations for this are given below.
0.5|¢
11 _> 1.2 np;» =0.75 Po
0. 75| (0.751 +m)p;, =npy,;
0.75 0.25l py +0.75l py; =npy
1—?22 Pt Por = P2 + P
Solving these, we get
p,, =0.75r p,
py; =(0.75r )@+ 0.75r ) p, 1

=} =
o =[0.25r +(0.75r )?(1+0.75r )] p, Po [L+05r +@5r)@+0.75r)?)
2 =[(0.75r )(L+0.75r ) - 0.5r ] p,

Therefore
(0.75r )(2+0.75r )

YL+ 05 +(L5r )L+ 0.75r)?)
_(0.75r )(1+0.75r )(1+ 0.75r ) - 0.25r
2 [L+05r +(L5r )(1+0.75r )2)

Once again, the departure rate of jobs will be the same as the arival rate of jobs which
actually enter the system. Using this, we get

I D= p0[05| +0.5 ]+ p1[05| +0.25/ ] =I [po + 075p1]
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3. For notational simplicity, use g=1-p

€)] Effective Servi ce Time Distribution (L.T.) = Lg+(S)

g (9) = a pLg (9)aLs (9]¢ SERTINTY G
. . . . — 3 e p)_( X
with  Mean Effective Service Time X™ =g pg“ ")(kX) = ~==
kA 1- 9 p
and  Effective Traffic=r " =| 7:'_;(=f_p

Drawing an analogy with the basic M/G/1 queue, we can then write
A- 2)Lg (I - 12)

P(2) = p, L0 -12- 2 with p, =1-r
Simplifying, we get
_é IXu p(l- 2)Lg(l - 12) _é 1Xu p@- 7Lg(l - 12)
A ST (I A1 de( - 12] & pU(pradlel -12)-2
with p,=1- 1 X =P"
p p

(b) For job completions at the server, the following Markov Chain may be written for the
corresponding imbedded points

For ni=0 Ni+1= Q+1 probability p
= a1+l probability q
For n>0 Ni+1= N+ a1 -1 probability p
=n+ a1 probability q
Therefore

P(2) = A(2) po[ p + 2] + A(2) pz '[P(2) - Pyl + A(2)A[P(2) - Pl
ZP(2) = 70, (P + 42 A(2) + (P + 42 A(2)[P(2) - Po]
P(D[(p+a2)A(2) - 2= p,(1- 2)(p+a2)A(2)

1- 2(p+a2)A(z)

[(p+a2)A(2) - 2]

P(2) = p,

Directly taking means of the LHS and the RHS of the Markov Chain expressions at
equilibrium and using E(n}=E{ni+1}=N and E{a.}=1X =r , we get
N=N+IX+pyq- (1- po)p

O=r +p,-p
Note that thisis different from the po obtained in part (a)

therefore p,=p- r
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¥‘ (I X) k-1

Ok~ 11 e *[1- B()]l dx for k=1,2,,..ccu.... ¥ (A)
0 !

4. Toprove A =

Note that since A=P{k or more arrivalsin the time interval}
and A+ 1=P{k+1 or more arrivals in the time interval}

Therefore A= A1+ P{k arrivasin the time interval}
¥‘ | K
=Au1t xg—( I)<(|) e *b(x)dx
¥ K
_ (1)
or A1<+1_Ak' (0) Kl

We prove (A) by mathematical induction by first showing that it holds for k=1 and then
using the recursion of (B) to show that if it holds for k then it will also hold for k+ 1.

e " *b(x)dx (B)

For k=1 A = 5 O(J—)J e "b(x)dx = (J1- & *)b(x)dx=1- (¢ " *b(x)dx
i=1 0 0

Integrating by parts, we can show that
Cp b(dx=e""B(X) +1 (g *B(x)dx (C)
¥ ¥ ¥
and hence (‘)a"xb(x)dx:e"xB(x)ﬁ +1 g B(dx =1 g *B(X)dx
0 0

0
¥

Moreover 1=| (‘)a"xdx

¥
Therefore A =(0p "[1- Bl dx  asgiven by (A) for thecase k=1

Using the recursion of (B) and assuming (A) holds for k, we get the following for k+1

¥‘(| X) k-1

A = Ok- 1

e '*[1- B(X)]dx- (‘)('L)e "Xp(x)dx (D)

Integrating by parts, we can show that

A0 iy 1 Bax
Ot~ 1
—e - B(x)]l(ll)((l)k d[le (L- B(x))+e'xb(x)]1(lx)k dx (E)
0

(R AP
=0, © I (@- B(x))+b(x)]dx
~ K

Substituting (E) in (D), we get the desired result
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¥ k
B2 e st
o Q.E.D.
e ' [1- B(x)]dx

¥‘| K
_(X!)



