EE 679, Queueing Systems (2000-01F)

Test -3, September 29, 2000

Max. Marks $=25$
[B] Use calculator for numerical answers in Problem 2(b)

1. A $M /-/ 1 / 2$ queue has a service time distribution given by $\frac{0.5 \mu}{s+\mu}+\frac{0.5 \mu^{2}}{(s+\mu)^{2}}$. The average arrival rate is λ. Note that the queue is limited to a maximum state of 2 . Use the method of stages to solve this queue and obtain the following -
(a) State Transition Diagram (with a proper definition of system states)
(b) Obtain the state probability distribution [6]
(c) What will be the average departure rate from this queue?
2. Consider a $M^{[X]} /-/ 1 / 3$ queue where the batch arrival rate is λ and the generating function of the batch sizes is given by $\left(0.25+0.25 z+0.5 z^{2}\right)$. Note that the queue is limited to a maximum state of 3 and follows the WBAS strategy
(a) If the service time distribution is $\frac{0.5 \mu}{s+\mu}+\frac{0.5 \mu^{2}}{(s+\mu)^{2}}$, draw the state transition diagram of the queue with an appropriately defined system state.
(b) For a service time distribution of $\frac{\mu}{s+\mu}$, do the following -
i. Draw the state transition diagram.
ii. Find the state probabilities of the queue.
iii. What is the probability that a batch is refused entry into the queue?
