EE 679, Queueing Systems (2000-01F)

Test -3, October 3, 2001

Max. Marks $=25$
Time $=\mathbf{6 0}$ minutes
Attempt both problems

1. Consider a $\mathrm{M} /-/ 1 / 2$ queue where the service facility is modeled as shown below. After finishing service at Stage 1, the job either exits the system with probability 0.5 or moves to Stage 2 with probability 0.5 , as shown. Note that a job entering the service facility always gets served at Stage 1 first.

Assume that the arrival rate to the queue is λ.
(a) Draw an appropriate state transition diagram for the system.
(b) Write the balance equations and solve these for the state probabilities using $\rho=\lambda / \mu$
(c) What is the mean queueing delay seen by an arrival entering the system?
(d) What is the effective service time distribution of the server?
2. Consider the same system as in Problem 1 except that the arrivals come in batches of size 1 or 2 with probabilities 0.5 each and with λ as the batch arrival rate. Assume that a whole batch acceptance strategy is being followed.
(a) Draw an appropriate state transition diagram for the system.
(b) Write the balance equations and solve for the state probabilities using $\rho=\lambda / \mu$.
(c) What is the probability that an arriving job will actually be allowed to enter the system?
[Note: For 2(c), you may leave the final answer in terms of the state probabilities. Further simplification is not needed.]

