6.3.1 Fork/Join Node without Synchronising Queuesin Open or
Closed Networks of I nfinite Capacity Queues

In this case, the service time encountered by a job entering the fork/join
node will be the maximum of the service times for the sub-jobs at the k
sibling queues. Assuming that the service provided at the sibling queues are
independent of each other, the probability density function of this service
time (i.e. of the fork/join node) may be found from the probability density
function/cumulative distribution function of the service times of the k sibling
gueues. For doing this, we can use the result that if X and Y are independent
random variables and Z is a random variable defined as Z=max(X,Y), then
the cumulative distribution function Fz(z) and probability density function
fZ(2) of Z are respectively given by
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where Fx(X), F(y), fx(X) and f\(y) are the cumulative distribution function
and probability density function of X and Y, respectively.

Note that the probability density function and cumulative distribution
function of Z may be found using Egs. (6.39) and (6.40), if the probability
density function and cumulative distribution function of X and Y are known.
This result may also be easily extended for the case of k random variables
corresponding to the service times of the k sibling queues. One way to do
this will be to take the maximum of any two random variables and then take
the maximum of this result with the next random variable and continue this
until all the variables have been considered. Given the service time
distributions of the individual (single server) sibling queues, the overal
service time distribution of ajob entering the fork/join node can then aways
be found. We can then also use this service time distribution to find the mean
and SQV of the job’s service timein afork/join node of this type.

Even though the above calculation of the service time distribution can be
done for any given sub-job service time distribution at the sibling queues, the
results are greatly simplified if we assume the sub-jobs to be independent,
exponentialy distributed random variables. In this case, let 1/m be the mean
of the (exponentialy distributed) service time of a sub-job at the i sibling
gueue, i=1,......k. Let X be the random variable denoting the overall service
time of a job at the fork/join node without synchronising queues. Using the
earlier approach and Eg. (6.39), we can then write the cumulative



distribution function Fx(x) of the overall service time at this fork/join node
as

ps
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i=1
Open Network

In this case, we consider the situations where there are fork/join nodes of
this type in an open network of GI/G/m queues or if such nodes are being
considered in isolation. We can then find the cumulative distribution
function and probability density function of the overal service times at the
fork/join nodes, we can use Eq. (6.41) directly if the sub-jobs have
independent, exponentially distributed service times. We can then use these
distributions to find the mean and SQV of the resultant overall service time
random variable at each of the fork/join nodes. Using these two service
parameters, the approach of Section 6.2 may be directly applied to obtain the
required solution.

Closed Network

In this case, we consider the situation where there are fork/join nodes of
this type in a closed network. For analysing such a network, we would like
to apply the MVA or the Convolution Algorithms. This however requires
that the service times at al the queues should be exponentially distributed in
nature. To approximately satisfy this condition, we fit an exponential
distribution to the resultant distribution of the overall service time at each of
the fork/join nodes. Note that the resultant distributions are the ones obtained
as the distribution of the maximum of the k random service times at each of
the k sibling queues of a fork/join node. This may be done by simply
matching the first moments, as an exponential distribution is completely
characterised by its mean. However, simulations show that a somewhat
better way is to minimise the mean square error between the two
distributions to get the best exponential fit. For this, let Fx(X) be the
resultant cumulative distribution function of the service time X at the
fork/join node. (Note that if the sibling queues have exponentially distributed
service times then this will be given by Eq. (6.41).) Let Fesimaea(X) be the
cumulative digtribution function (to be found) of the exponentialy
distributed minimum mean square error fit to Fx(x). This may then be found
as
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as the desired distribution. Once these resultant approximate exponential
service time distributions are found for each of the fork/join nodes without
synchronisation queues, we can use standard MVA or Convolution

Algorithms to solve the overal queueing network in the same manner as
described in Sections. 5.6 and 5.7.



