Solution to Problem 2.2

Let $t_{l}=$ Arrival time of the first student $t_{2}=$ Arrival time of the second student

Since the arrival process is Poisson, $f_{\left(t_{2}-t_{1}\right)}(\tau)=\lambda e^{-\lambda \tau}$ for $\tau \geq 0$
(a) When $X=c$ (fixed), then
$\mathrm{P}\{$ second student does not wait $\}=P\{\tau>c\}=\int_{c}^{\infty} \lambda e^{-\lambda \tau} d \tau=e^{-\lambda c}$

Average waiting time for the second student $=\int_{0}^{c}(c-\tau) \lambda e^{-\lambda \tau} d \tau=\left(c-\frac{1}{\lambda}\right)+\frac{1}{\lambda} e^{-\lambda c}$
(b) When X is exponentially distributed with parameter μ, then
$\mathrm{P}\{$ second student does not wait $\mid X=x\}=\int_{x}^{\infty} \lambda e^{-\lambda \tau} d \tau=e^{-\lambda x}$
$P\{$ second student does not wait $\}=\int_{0}^{\infty} e^{-\lambda x} \mu e^{-\mu x} d x=\frac{\mu}{\lambda+\mu}$
$\mathrm{E}\{$ waiting time for the second student $\mid X=x\}=\left(x-\frac{1}{\lambda}\right)+\frac{1}{\lambda} e^{-\lambda x}$
$\mathrm{E}\{$ waiting time for the second student $\}=\int_{0}^{\infty}\left(\left(x-\frac{1}{\lambda}\right)+\frac{1}{\lambda} e^{-\lambda x}\right) \mu e^{-\mu x} d x=\frac{1}{\mu}-\frac{1}{\lambda}+\frac{\mu}{\lambda(\mu+\lambda)}$
$=\frac{\lambda}{\mu(\lambda+\mu)}$

