Solution to Problem 2.20

The state transition diagram for this system will be as shown in Fig. 1.15. The state is represented as (m, j) where m is the number of jobs in the system and j is the stage that the job is currently in.

Figure 1.15. State Transition Diagram

Choosing convenient closed boundaries, the balance equations for this system may be written as

$$
\begin{aligned}
& \lambda p_{0}=\mu p_{11}=(\lambda+\mu) p_{12} \\
& \lambda\left(p_{11}+p_{12}\right)=\mu p_{21} \\
& p_{22}+p_{12}=p_{11}+p_{21}
\end{aligned}
$$

which gives

$$
p_{11}=\rho p_{0} \quad p_{12}=\frac{\rho}{1+\rho} p_{0} \quad p_{21}=\frac{\rho^{2}(2+\rho)}{1+\rho} p_{0} \quad p_{22}=\frac{\rho^{2}(3+\rho)}{1+\rho} p_{0}
$$

Applying the normalisation condition to this, we get

$$
p_{0}=\frac{1+\rho}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}
$$

The probability P_{B} that an arrival leaves without service is $\left(p_{21}+p_{22}\right)$. This leads to

$$
P_{B}=\frac{\rho^{2}(5+2 \rho)}{(1+\rho)} p_{0} \quad \text { and } \quad \lambda_{e f f}=\lambda\left(1-P_{B}\right)=\lambda \frac{1+3 \rho+\rho^{2}}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}
$$

Since $N_{q}=p_{21}+p_{22}=\frac{\rho^{2}(5+2 \rho)}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}$, we get $W_{q}=\frac{\rho^{2}(5+2 \rho)}{\lambda\left(1+3 \rho+\rho^{2}\right)}$
The Laplace Transform of the effective overall service distribution will be given by

$$
\begin{aligned}
L_{B}(s) & =0.5\left(\frac{2 \mu}{s+2 \mu}\right) \sum_{i=0}^{\infty}\left[0.5\left(\frac{2 \mu}{s+2 \mu}\right)\left(\frac{\mu}{s+\mu}\right)\right]^{i} \\
& =\frac{\mu(s+\mu)}{\left(s^{2}+3 \mu s+\mu^{2}\right)}
\end{aligned}
$$

