Solution to Problem 4.1

Following the residual life approach of Chapter 4, we get

\[W_q = R + \lambda W_q \bar{X} \quad \text{or} \quad W_q = \frac{R}{1 - \lambda \bar{X}} \]

where \(\bar{X} \) is the mean service time and \(R \) is the mean residual service time. The exceptional first service time is the random variable \(X^* \). This may be alternatively expressed as \(X + \Delta \) where \(\Delta \) is a random variable indicating the additional service required by the first customer starting a busy period.

To find \(R \), we consider a time interval of length \(t \) where we will subsequently let \(t \to \infty \). Let \(M(t) \) be the number of arrivals in this interval and \(N(t) \) the number of busy periods. We note that -

Mean Busy Period Length (without exceptional first service) is \(\frac{\bar{X}}{1 - \lambda \bar{X}} \) and the actual mean busy period length \(BP \) will then be given as

\[BP = X^* + \lambda X^* \frac{\bar{X}}{1 - \lambda \bar{X}} = \frac{X^*}{1 - \lambda \bar{X}} = \frac{X + \Delta}{1 - \lambda \bar{X}} \]

Using this, the mean cycle time \(T_C \) will be given by

\[T_C = \frac{1}{\lambda} + \frac{X^*}{1 - \lambda \bar{X}} = \frac{(1 + \lambda \Delta)}{\lambda(1 - \lambda \bar{X})} \]

\[N(t) = \frac{t}{T_C} = \frac{\lambda t (1 - \lambda \bar{X})}{(1 + \lambda \Delta)} \]

We can define the mean residual service time \(R_t \) measured over the time duration \((0, t)\) as the following as a good approximation (which gets better as \(t \to \infty \)).

\[R_t = \frac{1}{t} \int_0^t r(\tau) d\tau = \frac{1}{t} \sum_{i=1}^{M(t)-N(t)} \frac{X_i^2}{2} + \frac{1}{t} \sum_{j=1}^{N(t)} X_j^2 \]

\[= \frac{1}{2} \left[\left(\frac{M - N}{t} \right) \left(\frac{1}{(M - N)} \sum_{i=1}^{M-N} X_i^2 \right) + \left(\frac{N}{t} \right) \left(\frac{1}{N} \sum_{j=1}^{N} X_j^2 \right) \right] \]
For $t \to \infty$, we observe the following

\[
\begin{align*}
\lim_{t \to \infty} R_t &= R \\
\lim_{t \to \infty} \frac{N(t)}{t} &= \frac{\lambda(1 - \lambda \bar{X})}{1 + \lambda \Delta} \\
\lim_{t \to \infty} \frac{M(t)}{t} &= \lambda \\
\lim_{t \to \infty} \frac{M(t) - N(t)}{t} &= \lambda - \frac{\lambda(1 - \lambda \bar{X})}{1 + \lambda \Delta} = \frac{\lambda^2 (\bar{X} + \Delta)}{(1 + \lambda \Delta)} = \frac{\lambda^2 \bar{X}}{(1 + \lambda \Delta)}
\end{align*}
\]

Substituting, we get

\[
R = \frac{\lambda^2 \bar{X}}{2} + \frac{\lambda^2 \bar{X}^2}{1 + \lambda \Delta}
\]

\[
= \frac{\lambda \bar{X}^2}{2} \left[(1 - \lambda \bar{X}) \right] + \frac{\lambda \bar{X}^2}{2} \left[(1 + \lambda \Delta) - (1 - \lambda \bar{X}) \right]
\]

\[
= \frac{\lambda \bar{X}^2}{2} + \frac{\lambda(1 - \lambda \bar{X})(\bar{X}^2 - \bar{X}^2)}{2(1 + \lambda \Delta)}
\]

with \(\bar{X}^2 = \bar{X} + \Delta \left[\bar{X}^2 = \bar{X} + 2\Delta \bar{X} + \Delta^2 \right] \)

and therefore \(W_q = \frac{\lambda \bar{X}^2}{2(1 - \lambda \bar{X})} + \frac{\lambda(\bar{X}^2 - \bar{X}^2)}{2(1 + \lambda \Delta)} \)