## Solution to Problem 4.2

We assume that the characteristics of the service duration is chosen (depending on the current value of $N$ ) at the instant service starts and is not modified even if there are more arrivals (i.e. $N$ changes) during the time service is provided to a customer.

This problem is difficult to do for a general $N$. We consider the case of $N=2$ next. However, the procedure outlined below for $N=2$ may be extended to larger values of $N$ as required.

In terms of notation, assume $b(t), B(t), L_{B}(s), A(z)=L_{B}(\lambda-\lambda z), a_{i+l}$ for service started when the number of customers is less than $N$. When the number of customers is $N$ or more when service starts, the corresponding notation used is $b^{*}(t), B^{*}(t), L_{B}{ }^{*}(s), A^{*}(z)=L_{B}{ }^{*}(\lambda-\lambda z), a_{i+1}{ }^{*}$.

Case $N=2$

The Markov Chain at the departure instants may be written in the usual fashion as

$$
\begin{aligned}
n_{i+1} & =a_{i+1} & & n_{i}=0 \\
& =n_{i}+a_{i+1}-1 & & 0<n_{i}<2 \\
& =n_{i}+a_{i+1}^{*}-1 & & n_{i} \geq 2
\end{aligned}
$$

Taking the expectation of both sides of the above with $\rho=\lambda \bar{X}, \rho^{*}=\lambda \overline{X^{*}}$, we get that

$$
N=p_{0} \rho+p_{1} \rho+\left(N-p_{1}\right)+\left(1-p_{0}-p_{1}\right)\left(\rho^{*}-1\right)
$$

or $\quad p_{0}\left(\rho-\rho^{*}+1\right)+p_{1}\left(\rho-\rho^{*}\right)=1-\rho^{*}$

In addition, we can show that

$$
\begin{aligned}
& P(z)=\left(p_{0}+p_{1}\right) A(z)+\frac{A^{*}(z)}{z}\left[P(z)-p_{0}-p_{1} z\right] \\
& P(z)=\frac{z A(z)\left(p_{0}+p_{1}\right)-A^{*}(z)\left[p_{0}+p_{1} z\right]}{z-A^{*}(z)}
\end{aligned}
$$

This may be differentiated to give

$$
\begin{aligned}
P^{\prime}(z) & =\frac{z A\left(p_{0}+p_{1}\right)-A^{*}\left(p_{0}+p_{1} z\right)}{\left(z-A^{*}\right)^{2}}\left(A^{* \prime}-1\right) \\
& +\frac{A\left(p_{0}+p_{1}\right)+z A^{\prime}\left(p_{0}+p_{1}\right)-A^{* \prime}\left(p_{0}+p_{1} z\right)-A^{*} p_{1}}{\left(z-A^{*}\right)}
\end{aligned}
$$

Evaluating the above at $z=0$, and using the results that $a_{0}=A(0)=L_{B}(\lambda), a_{0}{ }^{*}=A^{*}(0)=L_{B}{ }^{*}(\lambda)$, $a_{1}=A^{\prime}(0)=L_{B}{ }^{\prime}(\lambda)$ and $a_{1}{ }^{*}=A^{* /}(0)=L_{B}{ }^{* /}(\lambda)$ we get

$$
\begin{aligned}
& P^{\prime}(0)=p_{1}=-\frac{p_{0} a_{0}^{*}\left(a_{1}^{*}-1\right)}{a_{0}^{* 2}}-\frac{a_{0}\left(p_{0}+p_{1}\right)-p_{0} a_{1}^{*}-p_{1} a_{0}^{*}}{a_{0}^{*}} \\
& \text { or } \quad p_{1}=p_{0}\left(\frac{1-a_{1}^{*}-a_{0}+a_{1}^{*}}{a_{0}^{*}}\right)-p_{1}\left(\frac{a_{0}-a_{0}^{*}}{a_{0}^{*}}\right)
\end{aligned}
$$

This gives $p_{1}=p_{0} \frac{1-a_{0}}{a_{0}}$

Eqs. (A) and (B) can now be solved to get $p_{0}$ and $p_{I}$ as

$$
p_{0}=\frac{a_{0}\left(1-\rho^{*}\right)}{a_{0}+\left(\rho-\rho^{*}\right)} \quad p_{1}=\frac{\left(1-a_{0}\right)\left(1-\rho^{*}\right)}{a_{0}+\left(\rho-\rho^{*}\right)}
$$

These may now be substituted to get the actual expression for $P(z)$.

