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Abstract. Grains in f.c.c. polycrystals that accommodate imposed deformation purely by
slip processes develop a multi-scale dislocation substructure that evolves with deformation.
When the polycrystal is subjected to rolling deformation or to channel-die compression, one
of the elements of this substructure, called cell block boundaries, are widely reported to align
parallel to the transverse direction and close to the macroscopic plane of maximum shear. This
observation is explained based on standard rate-independent crystal plasticity augmented by
three hypotheses.

Introduction

Grains in f.c.c. polycrystals of medium to high stacking fault energy, which accommodate
imposed deformation purely by slip processes develop a multi-scale dislocation substructure
that evolves with deformation. At the coarsest scale the grain may divide into lath-shaped
regions, each several tens of dislocation mean free paths wide and extending across the domain
of the entire grain. The misorientation between such regions may be of the order of tens of
degrees [1]. Depending on their morphology, such regions are either termed shear bands or
deformation bands. At the intermediate scale, the crystal may divide into regions called cell
blocks (CBs), a few dislocation mean free paths wide. Cell blocks are demarcated by dislocation
structures called dense dislocation walls and microbands [2], also called cell block boundaries
(CBBs). The misorientation across these structures is of the order of a few degrees. Shear
band boundaries, deformation band boundaries and cell block boundaries are all geometrically
necessary boundaries. Beside these, incidental dislocation boundaries called cell boundaries also
subdivide the grain at the finest scale. The nature of the subdivision (presence or absence of
each of the three scales of subdivision, microstructural morphology, lattice misorientation across
demarcating boundaries, etc.) is depends on the lattice orientation with respect to the imposed
deformation.

When either single crystals or polycrystals of medium to high stacking fault energy f.c.c.
metals such as Cu, Al or Ni are rolled to less than about 50% reduction, they develop CBBs
that are inclined approximately parallel to the transverse direction and make about 45◦ with
the rolling direction [1, 3, 4, 5]. These CBBs are mobile relative to the material of the grain
in that their orientation does not evolve according to the shape of the grain [4]. Instead, CBB
orientation is thought to be controlled by the distribution of slip amongst the slip systems. At
high rolling reductions, CBB mobility is lost so that they align with the rolling plane.

While some understanding has been gained about CBB orientation [6] and the correlation
between the distribution of slip activity within a grain and its CBB structure [7], a compre-
hensive theoretical explanation of CBB structure is still unavailable. In the present work, a
theoretical model for the orientation of CBBs is proposed. The proposed model correctly pre-
dicts that CBB orientations are concentrated perpendicular to the transverse direction. It also



gives important insight into the relative influence of crystallographic and macroscopic factors
on CBB orientation [5].

Theory
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Fig. 1: Schematic diagram of a small part of a grain located well away from the grain boundaries
showing two cell blocks, I and II.

As shown in Fig. 1, a pair of neighboring CBs, denoted I and II, equal in volume and each
interacting across the intervening planar CBB with the other. Each CB has a uniform lattice
orientation. The CBs are, however, mutually misoriented; the misorientation angle is denoted
by ω. In accordance with experimental observations [8, 9], the domain of the entire grain, which
is much larger than the section shown in Fig. 1, is assumed to be patterned repetitively by CBs
of types I and II. The CBB separating two CBs is idealized as a straight and infinitesimally
thin dislocation wall that may move relative to the material of the CBs by the collective motion
of its constituent dislocations.

Each CB is assumed to deform homogeneously following standard rate-independent rigid
plasticity [10, 11]. The strain-rate of material points in CB I and CB II will be denoted ǫ̇

(I)

and ǫ̇
(II), respectively. In order to accommodate the externally imposed strain-rate, ¯̇ǫ, ¯̇ǫ =

(ǫ̇(I) + ǫ̇
(II))/2, where the factor 1/2 is the volume fraction, assumed equal, of each of the two

CB types.
Misorientation and orientation of CBBs are determined by three hypotheses:

1. The deviatoric stress in CB I, σ(I) and that in CB II, σ(II) are equal. Because of the
assumption of repetitious patterning of the entire grain by the two CB types, this amounts
to assuming a uniform deviatoric stress state in the entire grain. Further, by the lower
bound theorem, this hypothesis implies the minimization of the plastic power density
during grain deformation.

2. Of all possible misorientation vectors distributed on the unit sphere, CBs misorient pref-
erentially about the misorientation vector m, which minimizes the plastic power density
of the grain, P = (1/2)(σ(I) : ǫ̇(I) + σ

(II) : ǫ̇(II)).

3. The deformation of CBs is generally incompatible across a CBB. A measure of this in-
compatibility is given by I = Jǫ̇K2XX + Jǫ̇K2YY + Jǫ̇K2ZZ + 2Jǫ̇K2XZ, where, Jǫ̇K = ǫ̇

(I) − ǫ̇
(II)

denotes the jump in strain-rate across a CBB. It is hypothesized that the CBB assumes
the orientation that minimizes the incompatibility I. It can be shown that I is minimized



then the CBB has normal either ν1 = (v1 + v3)/
√
2 or ν2 = (v1 − v3)/

√
2 where v1 and

v3 denote the unit eigenvectors corresponding to the maximum and minimum eigenvalues
of Jǫ̇K. ν1 and ν2 are the normals predicted for the CBBs in the present theory.

Results
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Fig. 2: Equal angle projection of the normals, ν1 and ν2, to the two predicted CBBs in each of
the 2250 orientations regularly spanning the lattice orientation space in the macroscopic (first
column) and crystallographic (second column) systems, corresponding to full, partially relaxed
and fully relaxed constraints (different rows). Intensity levels are 1, 2, . . ..

We now apply the foregoing theory to predict CBB orientation under rolling deformation
in 2250 lattice orientations obtained by regularly sampling the orientation space. The principal
directions of rolling deformation: the rolling, transverse and normal directions are abbreviated
as RD, TD and ND, respectively. The deformation of a material point in a rolled single crystal
or polycrystal may be described by

[¯̇ǫ]RD−TD−ND =





1 ¯̇ǫ12 ¯̇ǫ13
¯̇ǫ21 0 ¯̇ǫ23
¯̇ǫ31 ¯̇ǫ32 −1



 .

Process geometry fully determines the diagonal terms of this matrix, but not the off-diagonal
terms. A simple model of the rolling process, called the full constrained (FC) model, assumes
that rolling deformation is plane strain in character, i.e., ¯̇ǫ12 = ¯̇ǫ13 = ¯̇ǫ23 = 0. Another model,



which treats rolling as flow through a convergent channel is due to Lee and Duggan [12] and
assumes that ¯̇ǫ12 = ¯̇ǫ23 = 0 so that only ¯̇ǫ13 = ¯̇ǫ31 may be non-zero due to geometric and frictional
effects. This model is called the partially relaxed constraints model and is denoted RC13. Yet
another model which finds common use in modeling channel-die compression experiments is
called the fully relaxed constraints model [13] and is denoted RC. In the present calculations a
constant misorientation angle ω = 0.3◦ between the CBs is assumed. This corresponds to the
expected misorientation across an incidental dislocation wall at a strain level of 0.1 according
to the scaling law of Hughes et al [14].

CBB orientations calculated in 2250 lattice orientations obtained by regularly sampling the
entire orientation space for FC, RC13 and RC constraints are shown in Fig. 2. In agreement with
experimental observations [1, 3, 4, 5], it is seen from Fig. 2 (a), (c) and (e) that predicted CBB
normals are predominantly clustered close to the RD-ND plane, i.e., CBBs are predominantly
parallel to TD in the macroscopic coordinate system, regardless of the constraint imposed.

In the crystallographic coordinate system, as seen from Fig. 2 (b), (d) and (f), CBBs are
predominantly aligned near {111} and {110}-type crystallographic planes. The alignment of a
CBB with one of these planes, however, becomes closer with decreasing imposed constraint.
Thus, CBBs are more densely clustered close to {111} and {110}-type crystallographic planes
in Fig. 2 (f) corresponding to RC constraint than in Fig. 2 (d) or (b) corresponding to RC13 and
FC constraints, respectively. This indicates that CBB orientation has both crystallographic and
macroscopic preferences. The macroscopic preference however, dominates the crystallographic
one when grain deformation is highly constrained.
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