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SUMMARY
In this article, the stabilized space-time finite element formulation of incompressible flows, including
those involving moving boundaries and interfaces, is reviewed, and results are presented for certain
unsteady flows past a circular cylinder. One of the cases studied is flow past a cylinder which is forced
to oscillate in the horizontal direction. The case in which the cylinder is mounted on a flexible support
and allowed to oscillate in the vertical direction is also studied. In the latter case the motion of the
cylinder needs to be determined as part of the solution. Efficient iteration techniques are employed to
solve the equation systems resulting from the space-time finite element discretization of the problem.

1. INTRODUCTION

The space-time formulation is used in conjunction with GLS (Galer kin/least-squares)
stabilization. GLS stabilization prevents numerical oscillations that might be produced by the
presence of dominant advection terms in the governing equations or by not using an acceptable
combination of interpolation functions to represent the velocity and pressure fields. In this
kind of stabilization, a series of stabilizing terms is added to the Galerkin formulation of the
problem. These terms can be obtained by minimizing the sum of the squared residual of the
momentum equation integrated over each element domain. The GLS stabilization leads to a
consistent formulation, in the sense that an exact solution still satisfies the stabilized
formulation. Consequently, it introduces minimal excess diffusion, and therefore results in
solutions with minimal loss of accuracy.

The space-time finite element formulation with GLS stabilization has recently been used for
various problems with fixed spatial domains. These authors are most familiar with the work
of Hughes et al., 1 Hughes and Hulbert,2 Shakib, 3 and Hansbo and Szepessy.4 The basics of

the space-time formulation, its implementation, and the associated stability and accuracy
analysis can be found in these references.

In the space-time formulation, finite element discretization is applied not only spatially but
also temporally. Consequently, the deformation of the spatial domain is taken into account
automatically. This feature of the stabilized space-time formulation was first pointed out and
implemented by Tezduyar et al.5.6 They introduced the Deforming-Spatial-
Domain/Space- Time (DSD/ST) procedure and applied it to several unsteady incompressible
flow problems involving moving boundaries and interfaces, such as free-surface flows, liquid

1052-9268/91/020083-14$07.00
@ 1991 by John Wiley & Sons, Ltd,

Received 2 September 1991
Revised 8 October 1991



S. MITTAL, A. RATNER, D. HASTREITER AND T. E. TEZDUYAR84

drops, two-liquid flows and flows with drifting cylinders. In the DSD/ST procedure the
frequency of remeshing is minimized. Here we define remeshing as the process of generating
a new mesh, and projecting the solution from the old mesh to the new one. Since remeshing,
in general, involves projection errors, minimizing the frequency of remeshing results in
minimizing the projection errors. Furthermore, minimizing the frequency of remeshing
increases the massive parallelization potential of the computations.

It is important to realize that the finite element interpolation functions are discontinuous in
time so that the fully discrete equations are solved one space-time slab at a time, and this
makes the computations feasible. Still, the computational cost associated with the space-time
finite element formulations using piecewise linear functions in time is quite heavy. For large-
scale problems it becomes imperative to employ efficient iteration methods to reduce the cost
involved. This was achieved by Liou and Tezduyar 7 by using the generalized minimal residual

(GMRES)8 iteration algorithm with the clustered element-by-element (CEBE) preconditioners.
The CEBE method is a generalized version of the standard element-by-element method. 9,10

In this technique the elements are partitioned into clusters of elements, with a desired number
of elements in each cluster, and the iterations are performed in a cluster-by-cluster fashion.
The number of clusters should be viewed as an optimization parameter to minimize the
computational cost (both memory and CPU time). By specifying the number of clusters, one
can select an algorithm anywhere in the spectrum of algorithms ranging from the direct
solution technique (when the number of clusters is one) to the standard element-by-element
method (when the number of clusters is the same as the number of elements).

The numerical examples considered here consist of certain unsteady flows past a circular
cylinder. First, flow past a fixed circular cylinder at Reynolds number (based on the free-stream
velocity) 100 is solved. Then, at the same Reynolds number, the cylinder is subjected to forced
horizontal oscillations; this leads to a symmetric mode of vortex shedding. The final case
studied involves flow past a circular cylinder that is mounted on flexible supports and is free
to respond to the fluid forces in the vertical direction; the Reynolds number for this simulation

is 324.

p (~+ u. Vu ) - v. 0' = 0 on 0/ vt E (0, T) (1)

(2)V.u=O on Ot vtE(O,T)

where p and u are the density and velocity, and C1 is the stress tensor given as

C1(p,U) = - pI + 2p.e(u) (3)

with

2. GOVERNING EQUATIONS

Let Or E Rn'd be the spatial domain at time t E (0, T), where nsd is the number of space
dimensions. Let r r denote the boundary of Or. We consider the following velocity-pressure
formulation of the Navier-Stokes equations governing unsteady incompressible flows:
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The 'natural' boundary conditions associated with (1) are the conditions on the stress
components, and these are the conditions assumed to be imposed at the remaining part of the
boundary:

n'a=h on(rr)hvtE(O,T) (6)

The homogeneous version of (6), which corresponds to the 'traction-free' (i,e., zero normal
and shear stress) conditions, is often imposed at the outflow boundaries. As initial condition,
a divergence-free velocity field uo(x) is specified over the domain nr at t = 0:

u(x,O) = uo(x) on no (7)

3. STABILIZED SPACE-TIME FINITE ELEMENT FORMULATION

In the space-time finite element formulation, the time interval (0, T) is partitioned into
subintervals In = (tn, tn+ 1), where tn and tn+ 1 belong to an ordered series of time levels
O=tO<tl<...<tN=T. It was first shown by Tezduyar et al.S.6 that the stabilized
space-time finite element formulation can be effectively applied to fluid dynamics
computations involving moving boundaries and interfaces. In this formulation the spatial
domains at various time levels are allowed to vary. We let On = 01. and r n = r I., and define
the space-tim~ slab Qn as the space-time domain enclosed by the surfaces On, On + 1 and Pn
(see Figure 1). Here Pn, the lateral surface of Qn, is the surface described by the boundary r,
as t traverses In. Similar to the way it was represented by equations (5) and (6), Pn is
decomposed into (Pn)g and (Pn)h with respect to the type of boundary condition being
imposed.

Finite element discretization of a space-time slab Qn is achieved by dividing it into elements
Q~, e= 1,2,...,(nel)n, where (nel)n is the number of elements in the space-time slab Qn.
Associated with this discretization, for each space-time slab we define the following finite
element interpolation function spaces for the velocity and pressure:

(S~)n = (Uh I Uh E [H1h(Qn)] no., Uh ::!: gh on (Pn)gJ (8)

(V~)n = (Wh I Wh E [Hlh(Qn)]no., Wh ::!: 0 on (Pn)gJ (9)

(S;)n = (V;)n = (qh I qh E Hlh(Qn)J (10)

Here H1h (Qn) represents the finite-dimensional function space over the space-time slab Qn.
This space is formed by using, over the parent (element) domains, first-order polynomials in
space and time. It is also possible to use zeroth-order polynomials in time. In either case,
globally, the interpolation functions are continuous in space but discontinuous in time.

rn+l

t=tn+l
t

~
t=tn

rn

Figure I. Space-time slab for the DSD/ST formation
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(11)

The space-time formulation of (1)-(7) can be written as follows: start with

(Uh)i) = (UO)h;

sequentially for QI, Q2, ..., QN- I, given (Uh);;, find Uh E (S~)n and ph E (S~)n, such that

VWh E (V~)n and vqh E (V~)n

W h ( auh 'p-

at

C(Wh): a(ph, Uh) dQ
1Q.~Q.

- r wh'h dP+ r
J(Pn)~ JQn ...

(n.un ~ [ (awh ) ]+ 2: T P - + Uh.Vwh - V.U(qh, Wh)

e=l Q~ at

. [p(~ + Uh.VUh) - V.U(ph, Uh)] dQ = 0

In the variational formulation given by (12), the following notation is being used:

(uh);T = lim o-oUh(tn:t 0)

(...) dQ= r r (...) dO dt
, J I. J D

qhpV'Uh dQ + -, n (Wh): 'p«Uh): - (Uh);) dO

~Q,
(14)

(15)

Remark 1. If we were in a standard finite element formulation, rather than a space-time one,
the Galerkin formulation of (1)-(7) would have consisted of the first four integrals (their
spatial versions of course) appearing in equation (12). In the space-time formulation, because
the interpolation functions are discontinuous in time, the fifth integral in equation (12)
enforces, weakly, the continuity of the velocity in time. The remaining series of integrals in
equation (12) consist of the least-squares terms added to the Galerkin variational formulation
to assure the numerical stability of the computations. The coefficient T determines the weight
of such added terms. For the definition of T see Tezduyar et al. S

Remark 2. This kind of stabilization of the Galerkin formulation is referred to as the
Galerkin/least-squares (GLS) procedure, and can be considered as a generalization of the
stabilization based on the streamline-upwind/Petrov-Galerkin (SUPG) and the pressure-
stabilizing/Petrov-Galerkin (PSPG) procedure employed for incompressible flows. II It is with

such stabilization procedures that it is possible to use elements which have equal-order
interpolation functions for velocity and pressure, and which are otherwise unstable.

Remark 3. It is important to realize that the stabilizing terms added involve the momentum
equation as a factor. Therefore, despite these additional terms, an exact solution is still
admissable for the variational formulation given by equation (12).

Remark 4. Because the finite element interpolation functions are discontinuous in time, the
fully discrete equations can be solved one space-time slab at a time. Still, the memory needed
for the global matrices involved in this methoci ;s quite substantial. For example, in two
dimensions, the memory needed for space-time formulation (with interpolation functions

L
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which are piecewise linear in time) of a problem is approximately four times more compared
to using the finite element method only for spatial discretization. However, iteration methods
can be employed to substantially reduce the cost involved in solving the linear equation systems
arising from the space-time finite element discretization (see Section 4).

Remark 5. In the DSD/ST procedure, to facilitate the motion of free-surfaces, interfaces and
solid boundaries, we need to move the boundary nodes with the normal component of the
velocity at those nodes. Except for this restriction, we have the freedom to move all the nodes
any way we would like to. With this freedom, we can move the mesh in such a way that we
only need to remesh when it becomes necessary to do so to prevent unacceptable degrees of
mesh distortion and potential entanglements. By minimizing the frequency of remeshing we
minimize the projection errors expected to be introduced by remeshing. In fact, for some
computations, as a byproduct of moving the mesh, we may be able to get a limited degree of
automatic mesh refinement, again with minimal projection errors. For example, a mesh
moving scheme suitable for a single cylinder drifting in a bounded flow domain is described
by Tezduyar et af.6 We use the same mesh moving scheme for all the results presented here.

4. CLUSTERED ELEMENT -BY-ELEMENT (CEBE) METHOD

It was pointed out in Remark 4 that the memory needed for the global matrices involved in
the space-time method is quite substantial. It was shown by Liou and Tezduyar 7 that the

clustered element-by-element (CEBE) preconditioners, together with the generalized minimal
residual (GMRES) method 8 can be effectively used to reduce the associated cost significantly.

In this section we review the clustered element-by-element method.
After linearization of the fully discretized equations, the following system needs to be solved

for the nodal values of the unknowns:

Ax=b

We rewrite (16) in a scaled form

Ax=b
where

A = W-1/2 AW-1/2

X = Wl/2X

b= W-1/2b

(19)

(20)

The scaling matrix W is defined as

W = diag A (21)

With this definition of W, diag A becomes an indentity matrix.
For the formulations presented in this article, the matrix A is not in general symmetric and

positive-definite. Therefore, the proposed CEBE preconditioner will be used in conjunction
with the GMRES method; an outline of the GMRES method used is given below.

Set the iteration counter m = 0, and start with an initial guess xo:
Calculate the residual scaled with the preconditioner matrix P

im = P-l(AXm - b)

Step O.
Step i.

(22)
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Step ii. Construct the Krylov vector space:

(23)e(l} = rm/ll rm II

1
f() = p-1 A e()-l) - it (p-1 Ae()-I), e(i»e(i), 2 ~ j ~ k (24)

i= 1

e(}) = f(})/llf(})11 (25)

where k is the dimension of the Krylov space and e(i), i= 1,2, ...,k, are the basis

vectors.
Step iii. Update the unknown vector:

k- - 'i:"' (j)
Xm+ 1 = Xm + £..; Sje

j=l

where s = {sA is the solution of the equation system

Qs=z

with

Q = [(p-1Ae(j), p-1Ae(j»]

z = {(P-1A e(j), - fm»)

(28)1 ~ i, j ,

~i~k

~k

Step iv. For next iteration, set m - m + 1 and go to step i:
The iterations continue until II im II falls below a predetermined value. It should be
noted that the matrix Q is symmetric and positive-definite.

Remark 6. The convergence rate of this algorithm depends on the condition number of the
matrix p-1 A. Therefore one would like to select a preconditioner that involves minimal
inversion cost, and provides, within cost limitations, an optimal representation of A.

In the CEBE method, the set of elements e is partitioned into clusters of elements eJ,
J = I, 2, , Ncl, where Ncl is the number of the clusters. The global matrix ~ associated with
the cluster J is defined as

'AJ= L:; Ae
eE £J

where Ae is the element level matrix associated with element e.
The matrix A can then be expressed as

Nol

A = 1+ 2: OJ
J=l

where

BJ=~-WJ J=I,2,...,Ncl (32)
The CEBE preconditioning is based on the approximation of (31) by a sequential product

of cluster level matrices. The Crout CEBE preconditioner is defined as

Ncl 1

P = II LJ II OJ
J= 1 J=Ncl

(33)

..
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where LJ and UJ are the matrices resulting from the following Crout factorization:

(I+BJ)=LJUJ, J=I,2,...,Ncl (34)

Remark 7. The convergence of the algorithm depends on the numbering of the clusters
but not on the numbering of the elements within each cluster. By treating each cluster as a
super-element, we can identify the CEBE procedure as a generalizatio.. - i the standard
element-by-element method.

Remark 8. We have the option of storing the cluster matrices and their inverses, or
recomputing them as they are needed.

Remark 9. The method is highly vectorizable and parallelizable.

5. NUMERICAL EXAMPLES: UNSTEADY FLOWS PAST A CIRCULAR CYLINDER

All solutions presented here were obtained with linear-in-time interpolation functions. In all
cases, the computational values for the cylinder radius and the free-stream velocity are,
respectively, 1.0 and 0'125; a time step of 1.0 is used for the computations. The dimensions
of the computational domain, normalized by the cylinder radius, are 61 . 0 and 32.0 in the flow

and cross-flow directions, respectively. The mesh employed consists of 4060 elements and 4209
nodes. Symmetry conditions are imposed at the upper and lower computational boundaries,
and the traction-free condition is imposed at the outflow boundary. The periodic solution is
obtained by introducing a short term perturbation to the symmetric solution. For all
computations, we use the CEBE iteration method to solve the resulting equation system. At
each time step about 25,000 equations are solved simultaneously. We chose a Krylov vector
space of dimension 25 and an average cluster size of 23 elements. For this set of problems,
the CEBE technique takes less then one-sixth the CPU time and less than one-third the storage
needed by the direct method. The nodal values of the stationary stream function (normalized
with the free-stream velocity) and vorticity are obtained by the least-squares interpolation. All
the flow-field pictures shown in this paper display the part of the domain enclosed by a
rectangular region, with the lower left and upper right co-ordinates (13,10) and (43,22)
respectively, relative to the lower left corner of the domain.

The data from the solution for the flow field involving oscillating cylinders was used to
produce a set of animations to understand these phenomena better. For each of the cases, there
are two parts to the animations: one showing the vorticity field and the other showing the
stationary stream function. In all the animations, the global flow field is shown at the top half
of the screen. The lower half of the screen displays (from left to right) a close-up of the
cylinder, the time evolution of the data related to the cylinder, and the color map employed.

5.1. Fixed cylinder at Reynolds number 100

In this problem the cylinder location is fixed at (16,16) relative to the lower left corner of
the domain. Figure 2 shows time history of the lift, drag and torque coefficients for the fixed
cylinder. The Strouhal number obtained is O. 167. The difference between this value and the
ones reported by Tezduyar et aI., 11 computed with different formulations and on a finer mesh,

is less than 211Jo. Plates I and II show a sequence of frames for the vorticity and stationary
stream function during one period of the lift coefficient. In both plates, the first, third and last
frames correspond to zero lift coefficient; the second and fourth frames correspond to the
trough and crest of the lift coefficient, respectively. As expected, in each of the figures, the first
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Figure 2. Flow past a fixed cylinder at Re = 100: time history of the lift, drag and torque coefficients

the figures, the first and the last frames are very similar, while the first and third and the second
and fourth frames are mirror images of each other.

5.2. Cylinder with forced horizontal oscillations at Reynolds number 100

It is well known that at Reynolds number 100, the flow past a fixed circular cylinder leads
to classical asymmetrical vortex shedding. In such a case the lift and torque coefficients
oscillate with a frequency corresponding to the related Strouhal number, while the drag

oscillates with twice that frequency.
The case in which the cylinder is subjected to forced horizontal oscillations shows some very

interesting features. Depending on the amplitude and the frequency (fr) of the forced
oscillations of the cylinder, two modes of vortex shedding are possible. This phenomenon of
vortex-induced oscillations has been discussed in review papers by King 12 and Sarpkaya. 13

Oscillations with a low reduced frequency (Fr = 2lra! U~, where a is the radius of the cylinder
and U~ is the free-stream velocity) lead to asymmetric modes of vortex shedding. For higher
values of Fr, on the other hand, symmetric vortex shedding is observed. However, such a
symmetric arrangement of vortices is unstable, and consequently the vortices coalesce and

eventually become asymmetrical downstream.
We simulate the flow with symmetrical shedding by forcing the cylinder to oscillate

horizontally with the following prescribed displacement (normalized by the cylinder radius):

X = 1 - cos("'rt) (35)

...
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Figure 3. Flow past a horizontally oscillating cylinder at Re = 100: time history of the lift, drag and torque coefficients
and the normalized displacement and velocity of the cylinder

where "'r = 211"1r. For this case, the value of fr corresponds to a reduced frequency of 0.35. The
initial condition for this simulation is prescribed as the unsteady solution for flow past a fixed
cylinder at Re = 100 (from the previous example). Figure 3 shows the time history of the drag,
lift and torque coefficients and the normalized horizontal displacement and velocity
(normalized by the free-stream velocity) of the cylinder. We observe that the drag coefficient
for the horizontally oscillating cylinder is significantly larger than that for a fixed cylinder.
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Furthermore, the drag coefficient oscillates with a reduced frequency of O. 3S whereas the lift
and torque coefficients approach zero. The fact that we start from an asymmetric solution and
still obtain a symmetric mode of shedding demonstrates that this mode is a stable one. Plates
III and IV show a sequence of frames for the vorticity and stationary stream function during
one period of the cylinder motion. In both figures, the first, third and last frames correspond
to the mean cylinder location, while the second and fourth frames correspond, respectively,
to the left and right extreme positions of the cylinder.

The animations show the transient behaviour of the flow field as the cylinder goes from the
asymmetrical vortex shedding mode to the symmetric one. It can be observed that during each
period of cylinder motion, two symmetrical pairs of vortices are shed from the cylinder's lower
and upper surfaces. One of the pairs of vortices is shed when the cylinder moves in the
direction of the flow (the relative Reynolds number for the cylinder is less than 100) while the
other is shed when the cylinder motion opposes the free stream flow (the relative Reynolds
number for the cylinder is greater than 100). The former pair is much weaker than the latter
and diffuses out very quickly.

5.3. Cylinder with vortex-induced vertical oscillations at Reynolds number 324

In the first numerical example we observed that for sufficiently high Reynolds number (> 40)
flow past a fixed cylinder leads to asymmetric vortex shedding. This causes the cylinder to
experience alternating lift force at a frequency corresponding to the Strouhal number for that
Reynolds number. Now, if the cylinder is mounted on a flexible support, then under certain
conditions it can undergo sustained oscillations with a frequency close to, or coincident with,
its natural frequency. These oscillations can alter the vortex shedding mechanism which in turn
can change the cylinder respor~e and so on. This leads to a complex non-linear fluid-structure
interaction phenomenon and has been the subject of previous research 12 -13. We simulate this

phenomenon for a cylinder which is allowed to move only in the vertical direction. The motion
of the cylinder is governed by the following equation:

CL
Y+ 271"Fn>-Y + (rFn )2y =

) M ' ,

Here Y, Yand Yare, respectively, the normalized vertical acceleration, and the velocity and
displacement of the cylinder. The displacement and velocity of the cylinder are normalized by
its radius and the free-stream velocity, respectively. M is the non-dimensional mass per unit
length of the cylinder, r is the structural damping coefficient associated with the system,
and CL denotes the lift coefficient for the cylinder. Fn, the reduced natural frequency of the
spring-mass system, is defined as

(36)

F,,=~ (37)
U~

where I" is the actual natural frequency of the system. For our problem F" = 0.204,
M= 472.74 and r = 3.3 x 10-4.

At Reynolds number 324 the reduced natural frequency of the spring mass system and the
Strouhal number for flow past a fixed cylinder have very close values. Therefore, we decided
to carry out this simulation for Reynolds number 324. The periodic solution for flow past a
fixed cylinder at the same Reynolds number is used as the initial condition. Figure 4 shows,
for the initial stages of the simulation, the time history of the lift, drag and torque coefficients
and the normalized vertical displacement and velocity of the cylinder. We observe that the

L
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cylinder oscillates with an increasing amplitude. The drag and torque coefficients for the
cylinder also increase while the lift coefficient shows a decreasing amplitude. It is interesting
to note that both the mean and peak values of the drag coefficient increase with time, but the
trough value remains almost constant. The quantities displayed in Figure 4 are shown in Figure
5 for a later stretch of time when the cylinder reaches a periodic oscillation amplitude of about
one radius. The cylinder oscillates with its natural frequency, and so does the torque



S. MITTAL, A. RATNER, D. HASTREITER AND T. E. TEZDUYAR94

,-
100.0

.--~.o
-,
1800.0

-.
2000.0-,-

0.0 200.0 .00.0
-,
100.0 1000.0

thle

,-
1200.0

r--
WOO.O

.>-

Figure S. Flow past a vertically oscillating cylinder at Re = 324: later time history of the lift, drag and torque
coefficients and the normalized displacement and velocity of the cylinder

coefficient; the drag coefficient oscillates with twice the natural frequency of the cylinder. The
dominant frequency for the lift coefficient corresponds to the natural frequency of the
cylinder. In addition, there is a very small component of the lift coefficient with thrice the
frequency of the dominant one. Plates V and VI show a sequence of frames for the vorticity
and stationary stream function during one period of the cylinder motion. In both figures, the
first, third and last frames correspond to mean cylinder location, while the second and fourth
frames correspond, respectively, to the lower and upper extreme positions of the cylinder.
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For this case, in both parts of the animation (vorticity and stationary stream function), the
first 500 time units show the unsteady flow past a fixed cylinder at Re 324. At the end of 500
time units the cylinder is released free in the vertical direction. In the animations, we can
observe the classical Karman vortex street. During each cycle of cylinder motion two vortices
are shed from the cylinder surface. The shedding alternates between the lower and the upper
surfaces of the cylinder. It is also noticeable that the vortices shed from the upper surface
of the cylinder rotate clockwise, while the vortices shed from the lower surface rotate
counter-clockwise.

6. CONCLUDING REMARKS

The stabilized space-time formulation with Galerkin/least-squares stabilization has been
reviewed for incompressible flows. Galerkin/least-squares stabilization leads to a formulation
which is consistent. That is, the stabilization terms added to the Galerkin formulation of the
problem vanish when an exact solution is substituted into the stabilized formulation.
Consequently, this stabilization method introduces minimal excess diffusion, and therefore
results in solutions with minimal loss of accuracy.

The formulation has been applied to certain unsteady, incompressible flow problems
involving fixed and oscillating cylinders. To minimize the computational cost associated with
these fairly large-scale problems, the CERE iteration technique was employed to solve the
equation systems resulting from the space-time finite element discretization.

Some interesting physical phenomena were observed as a result of these computations.
While for flow past a fixed cylinder, the usual, asymmetric vortex shedding was observed, when
the cylinder was subjected to horizontal oscillations of prescribed frequency and amplitude,
symmetrical vortex shedding was observed instead. The case of vortex-induced vertical
oscillations was also simulated. These oscillations result in an increase in the drag and torque
coefficients and a decrease in the lift coefficient.
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Plate I (Mittal el a/.). Flow past a fi~ed cylinder at Re= 100: vorticity at various instants during one period of the lift
coefficient
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Plate II (Mittal et a/.). Flow past a fixed cylinder at Re = 100: stationary stream function at various instants during one
period of the lift coefficient



Plate III (Mittal el al.). Flow past a horizontally oscillating cylinder at Re= 100: vorticity at various instants during one
period of the cylinder motion
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Plate IV (Mitta! et al.). Flow past a horizontally oscillating cylinder at Re= 100: stationary stream function at various
instants during one period of the cylinder motion



Plate V (Mittal el a/.). Flow past a vertically oscillating cylinder at Re= 324: vorticity at various instants during one period

of the cylinder motion



Plate VI (Mitta! et a/.). Flow past a vertically oscillating cylinder at Re= 324: stationary stream function at various instants
during one period of the cylinder motion
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