Comparison of CALIOP Level 2, Version 3 Backscatter and Extinction products with MPLNET data at Kanpur, India

Amit Misra1, S. N. Tripathi**, Daya Shankar Kaul3, and Ellsworth J. Welton2
1Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
2NASA/Goddard Space Flight Center, Greenbelt, MD, USA

*Email: snt@iitk.ac.in

Background

• Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), launched aboard the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) in April 2006, provides vertical profiles of backscatter, extinction, optical depth, layer height and thickness.
• The Micro Pulse Lidar Network (MPLNET) is a worldwide network of LIDAR co-located with Aerosol Robotic Network (AERONET) sun/sky photometers. Regular observations from IIT Kanpur site available since May 2009.

Data Analysis

• Comparison of CALIOP derived backscatter and extinction coefficients made with corresponding quantities from Micro Pulse Lidar Network (MPLNET) over Kanpur, India, for May 2009 to September 2010.
• Constraints: Difference between CALIOP and MPLNET observation time should be less than 3 hours.
• 24-hour HYSPLIT Backtrajectory analysis performed to make sure that both the instruments are measuring the same air parcel.
• The 400 m to 6 Km altitude range is divided into 100 m bins, and mean backscatter in each bin calculated. Linear regression of mean backscatters from the two instruments is performed to calculate R^2 and slope.
• CALIPSO Vertical Feature Mask, Lidar Ratios used by CALIOP and MPLNET for retrieval, and AERONET Size Distribution are used for detailed examination of the comparisons.
• Under the constraints, 16 cases are obtained, with 4 cases having good comparison ($R^2 > 0.7$).

Conclusions

• 4 out of 16 available collocated CALIOP and MPLNET profiles compare well above 400 m with R^2 greater than 0.7.
• Cases of poor comparison indicate possible confusion between cloud and dust aerosol by CALIOP.
• Extinction coefficient comparison mostly follows the same pattern as backscatter comparison.
• Further differences due to different backscatter-to-extinction ratios used by CALIOP and MPLNET.
• AERONET Size Distribution and Angstrom Exponent corroborate aerosol type identification by CALIOP.

References

Acknowledgement

We acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport model and READY website (http://www.arl.noaa.gov/ready.php). We are thankful to Atmospheric Science Data Center for providing the CALIOP Level 2 data used in this study. We are grateful to Raymond R. Rogers (LARC) and Lucia Mona (CNR-IMAA) for useful suggestions regarding CALIPSO and EARLINET respectively. This work is financially supported by DST and MoES, respectively. This work is financially supported by DST and MoES.

Monthly averaged profiles of MPLNET derived extinction coefficients for May 2009 to September 2010. No Level 2 MPLNET profiles were obtained for December 2009. Higher values of extinction are noticed at 2 to 4 Km during April and May, a period marked by heavy dust episodes. October to March are accompanied by high values of extinction near the surface (Misra et al, 2012).