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HIGHLIGHTS

o Studying the seasonal and inter-annual variation of the aerosol episodes (AE) over Kanpur, central IGP, India.

e The AE days are associated with accumulation of anthropogenic aerosols and biomass burning during post-monsoon and winter.
e The AE days are strongly related to dust presence during pre-monsoon and monsoon.

o The optical and physical properties of aerosols significantly are modifying during the AE days, also depending on season.

o The aerosol radiative forcing at surface, TOA and within the atmosphere is considered very high during the AE days.
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Article history: The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol
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defined as the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD
(standard deviation); the threshold value is defined at 0.93. The analysis identifies 277 out of 2095 days
(13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%)
and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On
Severe aerosol the other hand, the AEs during winter and pre-monsoon are lesser in both absolute and percentage
Optical properties values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is
Radiative forcing strongly dependent on season; during post-monsoon and winter, the AEs are associated with enhanced
Kanpur AERONET presence of fine-mode aerosols from anthropogenic emissions and/or biomass burning, while during
pre-monsoon and monsoon seasons, they are mostly associated with dust. Aerosol radiative forcing (ARF)
calculated using SBDART shows much more surface (~—69 to —97 Wm~2) and Top of Atmosphere
cooling (—20 to —30 Wm™2) as well as atmospheric heating (~43 to 71 Wm~2) during the AE days as
compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the
modified aerosol characteristics (Angstrom Exponent «, single scattering albedo SSA) during the AE days
in each season. Furthermore, the vertical profiles of aerosols and atmospheric radiative heating exhibit
significant increase in lower and mid troposphere during the AE days. This may cause serious climate
implications over Ganges Basin and surrounding regions with further consequences on cloud micro-
physics, monsoon rainfall and melting of Himalayan glaciers.
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Indo-Gangetic Plains (IGP), that constitutes a major environmental
and climatic issue (Goloub et al, 2001; Menon et al., 2002;
Ramanathan et al., 2005; Dey and Tripathi, 2007, 2008; Gautam
et al., 2010). Aerosols over IGP exhibit a pronounced seasonal and
interannual variability (Kaskaoutis et al., 2011) strongly dependent
on anthropogenic and natural aerosol emissions, local and regional
meteorology and atmospheric dynamics (Reddy and
Venkataraman, 2002; Nair et al., 2007; Abish and Mohanakumar,
2011). During winter season, the whole IGP region is under the
influence of frequent foggy and hazy conditions that are source of
several problems e.g., being inimical to human health, deterioration
of air quality, poor visibility, delaying or even canceling of flights
and road accidents (Gautam et al, 2007; Das et al, 2008;
Badarinath et al.,, 2009a, 2011). Earlier studies (Srivastava et al,,
2012a; Misra et al., 2012) have shown a thick aerosol layer near
the surface composed of a large anthropogenic fraction during
winter, while in late pre-monsoon and early monsoon (April—June),
dust presence at higher altitudes increases the aerosol load in the
vertical, since the area is strongly affected by frequent and intense
dust storms originating from Thar desert and/or Arabian Peninsula
and Middle East (e.g. El-Askary et al., 2006; Prasad and Singh,
2007a; Gautam et al., 2009a; Guleria et al., 2011). The period
mid-June to September is the rainy season over IGP; the aerosol
loading is reduced due to rain washout (Dey and di Girolamo, 2010),
while significant variability in aerosol loading at different temporal
scales is observed due to changes in onset, intensity and duration of
monsoon (Gautam et al., 2009b; Bhawar and Devara, 2010; Manoj
et al., 2011). Post-monsoon season is well known for the crop res-
idue burning over northwestern IGP (Sharma et al., 2010; Mishra
and Shibata, 2012). These agriculture activities lead to a dense-
smoke environment and under favorable conditions smoke
plumes may cover the whole IGP or even affecting central-south
India (Badarinath et al., 2009b) and Arabian Sea (Badarinath
et al., 2009c).

The seasonally-changed meteorological patterns, air mass
trajectories and boundary layer dynamics are the main factors for
different atmospheric conditions and aerosol types over IGP. In
general, the aerosol optical depth (AOD) is higher during May—
June due to mixing of desert dust and anthropogenic aerosols
(Singh et al., 2004; Dey et al., 2005), while high AODs are also
observed during winter due to increased biomass burning and
bio-fuel combustions (Streets et al., 2003; Venkataraman et al.,
2006; Lu et al., 2011). Long-term satellite observations from
MODIS and MISR have shown that during winter season, high
AOD regions swing over the eastern IGP depending upon the
weather conditions, while in May—June the AOD gradient is
westward shifting (Prasad and Singh, 2007b; Kaskaoutis et al.,
2011).

Therefore, studying the severe aerosol episodes (AEs) over
northern India has a significant importance in the climatic, atmo-
spheric and human health points of view. These episodes lead to
high-AODs on specific days throughout the year, when the aerosol
loading and aerosol radiative forcing (ARF) are much higher than
the mean levels (Singh et al., 2010). Days with severe aerosol and
pollution conditions may be related to enhanced anthropogenic
emissions as on the days of Diwali festival (Barman et al., 2008),
intense dust outflows (Dey et al., 2004), increased biomass and
agriculture burning (Krishna Prasad et al., 2012), absence of pre-
cipitation and longer aerosol lifetime (Ghude et al., 2011), tem-
perature inversions and lower mixing height (Srivastava et al,,
2012a). Depending on local meteorological conditions, the pe-
riods of persistent high AOD over the region may be about 5-10
days, able to affect the atmospheric heating rate (Tripathi et al.,
2007; Jaidevi et al., 2011; Srivastava et al., 2012b) as well as hu-
man health (Jaidevi et al., 2009), since in the vast majority of the

cases the locally-emitted aerosols and pollutants are of fine size and
easily inhalable.

The present study focuses on analyzing the seasonality of the
AEs detected over Kanpur AERONET site (26.5°N, 80.2°E), located in
central IGP. Days with daily-mean AODspg above the decadal
(2001—2010) mean + 1STD (standard deviation) are considered as
AEs, on which the aerosol characteristics (AOD, Angstrom expo-
nent, columnar size distribution) are examined vis-a-vis the
decadal means. Such a comparison allows us to understand the
reasons and define the additional aerosol loading causing the epi-
sodes in the different seasons. Furthermore, the ARF at surface, top
of atmosphere (TOA) and within the atmosphere is examined for
the seasonal means and on the AE days in order to understand the
climatic response of the severe aerosol-laden atmospheres over
IGP. The present work is the first of its kind performed over Kanpur
examining the seasonal variation and the specific aerosol charac-
teristics on days with extreme AOD values.

2. Data and methodology

Due to global scientific interest in aerosol properties and their
climate implications in northern India, the first AERONET station
equipped with the Cimel (CE-318) sun/sky radiometer was estab-
lished at IIT Kanpur campus in 2001 (Singh et al., 2004). The Cimel
gives the spectral AOD at eight wavelengths (340—1640 nm),
Angstrom exponent « (440—870 nm) and the water vapor content
(WVC) at 940 nm using its internal calibration for direct-beam
irradiance recordings (Holben et al., 1998). Furthermore, the
Spectral Deconvolution Algorithm (SDA) retrieves the aerosol
columnar size distribution (CSD), single scattering albedo (SSA) and
asymmetry parameter (g) from the almucantar measurements
performed at large (above 50°) solar zenith angles and
AODy40 > 0.4 (Dubovik et al., 2000). The sun photometer recordings
are performed for clear skies, with limited observations during the
rainy season. The Level 2 (cloud screened and quality assured)
AERONET data over Kanpur were used in the present work,
considering the uncertainties in the retrievals described elsewhere
(Dubovik et al., 2000; Smirnov et al., 2000). Furthermore, Angstrém
exponent («) values defined at shorter (380—500 nm) and longer
(675—870 nm) wavelengths were also analyzed on the AE days and
compared with the seasonal mean (2001-2010) values. All the
aerosol properties are daily averaged and analyzed on monthly and
seasonal basis during the period January 2001 to December 2010.
From the whole data series (2095 daily AODs5gg values) a mean
AODs5q0 of 0.63 £ 0.30 was found. The AEs over Kanpur are defined
as the days with daily mean AODsgg above the critical threshold
AOD + 1STD = 0.93.

In addition to the study of aerosol optical and physical proper-
ties, shortwave (0.3—4.0 um) ARF calculations at surface, TOA and
within the atmosphere were also performed for two groups of data
(seasonal means and seasonal-averaged AEs) by combined use of
Optical Properties of Aerosols and Clouds (OPAC) (Hess et al., 1998)
and Santa Barbara Discrete ordinate Atmospheric Radiative Trans-
fer (SBDART) (Ricchiazzi et al., 1998) models. In order to perform
ARF calculations in the shortwave spectrum, aerosol properties in
the entire wavelength region (0.3—4.0 um) are necessary. Since the
measured AERONET aerosol optical properties are not available
beyond 1.64 pm, we run the OPAC model and reconstructed the
measured aerosol parameters (SSA, g) by varying the aerosol
components (water soluble, insoluble, sea salt, dust) that
contribute to the aerosol properties. The output parameters in
OPAC are the AOD, q, SSA, g; the WVC was obtained from AERONET
and columnar ozone from TOMS and OMI satellite sensors, sepa-
rately for the seasonal means and the AE-means for each season.
The measured BC mass concentration at Kanpur was used as input
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for the soot component (number concentration) in OPAC, and the
number concentrations for the other aerosol types, i.e. water sol-
uble, insoluble, sea salt and dust were adjusted iteratively until the
OPAC derived spectral AODs were consistent with the AERONET
retrievals (root mean square error lower than 0.03), and the AER-
ONET and OPAC-simulated values of «, SSA and g were similar (Das
and Jayaraman, 2011; Sinha et al., 2013a). In this way, new aerosol
mixtures have been defined from OPAC simulations to best fit the
observations and to derive the required optical properties, vis
spectral distribution of AOD, SSA, g and « values. An average rela-
tive humidity (RH) value (measurements from Kanpur meteoro-
logical station) was calculated in each season for the seasonal
means and AEs. It should be noted that higher RH values were
associated with intense foggy conditions in winter and dust storms
in late pre-monsoon/monsoon compared to the respective seasonal
means. The closest OPAC-fixed RH value to the means for each
group was used in the computations, since aerosol properties vary
as a function of RH (Ramachandran and Kedia, 2012).

The radiative transfer code SBDART is based on the discrete ordi-
nate (DISORT) approach for a vertically inhomogeneous, non-
isothermal, plane-parallel atmosphere, and is known for its reli-
ability and computational efficiency in solving the radiative transfer
equations. The surface albedo is an important parameter for the
radiative transfer calculations, since elevated absorbing aerosols
above highly-reflecting surfaces can heat more the lower atmosphere
and change the sign of forcing from cooling to heating (Satheesh etal.,
2010). The 8-day Terra-MODIS (Global 500m) surface reflectance
values over Kanpur at seven wavelengths from visible to IR (0.469,
0.555, 0.645, 0.859, 1.24,1.64 and 2.13 pm) have been used as input in
SBDART to model the spectral shortwave (0.3—4.0 um) surface
reflectance using a combination of water, sand and vegetation
(Pathak et al., 2010; Ramachandran and Kedia, 2011). The combina-
tion of vegetation, sand and water has been done in appropriate
proportions such that the resultant spectrum matches the MODIS-
derived surface reflectance. The ARF values were integrated for the
whole day in each season and AEs. The atmospheric heating rate due
to aerosol forcing is calculated following Liou (2002):

oT g AF
where 8T/at is the heating rate (K day~!), g is the acceleration due
to gravity, G, the specific heat capacity of the air, AF the resultant
atmospheric forcing and AP the atmospheric pressure difference
between surface and 3 km, considered to be 300 hPa. The atmo-
spheric heating rates were also calculated over Kanpur in each
season, for the decadal mean, and for the AE days.

3. Results and discussions
3.1. Identification of the aerosol episodes

Fig. 1 shows the daily variation of AOD5gg over Kanpur during the
period Jan 2001—Dec 2010. The mean AODsqg value of 0.63 is drawn
(red bold line) along with the mean + 1STD (0.93) line (dotted), while
an increasing trend of 7.69% was found during the measurement
period (Kaskaoutis et al., 2012a). From the whole dataset, 277 cases
(13.2%) were found to exceed the threshold value corresponding to
AE days, exhibiting significant seasonal and yearly variability
depending on atmospheric and meteorological conditions, anthro-
pogenic and natural aerosol emissions. The analysis shows that 65
AEs out of 519 daily AOD observations (12.5%) occurred in winter
(Dec—Feb), while during pre-monsoon (Mar—May), monsoon (Jun—
Sep) and post-monsoon (Oct—Nov) seasons, the corresponding
numbers are 58 (9.1%), 76 (14.7%) and 78 (18.6%), respectively.
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Fig. 1. Daily variation of the AODsgg at Kanpur AERONET station during the period
January 2001 to December 2010. The mean value (in bold red) and the upper threshold
(mean + stdev) for the identification of the aerosol episodes are also given. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1 summarizes the results about the frequency of AEs over
Kanpur in absolute and percent (%) values, revealing a considerable
seasonal and interannual variation. However, it should be noted
that due to the presence of clouds and calibration protocol, aerosol
observations are not equally distributed within the months and
years, and a large gap of data from December 2006 to February
2007, and from June 2007 to November 2007 exists. The main
finding from Table 1 is the large number (20 out of 31 cases, 64.5%)
of AEs in post-monsoon 2008 as well as during the monsoon sea-
sons of 2002 and 2003 and pre-monsoon of 2003. Several AEs also
occurred during winter 2008 with 16 peaks out of 44 daily AOD
observations (36.4%).

The frequency of occurrence of the AE days is further examined
on monthly basis along with the monthly-mean AODs5gq variation
(Fig. 2) revealing a co-variance between the two parameters.
Therefore, the highest frequency of AE days is observed during
May—June and November—January, which are the months with the
highest AODsq0. In absolute terms, November exhibits the highest
number (56) of AEs, whereas the % percentages are similar for June
and November. In contrast, the lowest monthly AODsqg is seen in
March, which exhibits only one AE.

The AEs over Kanpur occur either on specific days or periods of
2—5 consecutive days (Fig. 3) under favorable atmospheric and
meteorological conditions, i.e. surface or height inversions during
winter trapping the pollutants near the ground, enhanced subsi-
dence, absence or deficit of rainy washout, increased biomass and
bio-fuel combustion mainly during winter cold nights and persis-
tent transport of dust plumes from the west (Prasad and Singh,
2007a; Eck et al., 2010). The AEs usually last one day at the vast
majority of the cases; however, AEs are also persistent over Kanpur
for about a week (4—6 consecutive days). The most extreme cases
are the duration of AEs for 11 days during the period 4—14 June
2003 and for 12 days during the period 3—14 November 2008.
Table 2 summarizes the AOD5gp and Angstrom exponent («) values
for the AE days in each season. The AODsgg means are in the range
of ~1.15—~1.29, while the seasons (pre-monsoon/monsoon and
post-monsoon/winter) clearly differentiate based on « (much
higher values for the latters).

3.2. Changes in Angstrom exponent

This section examines the changes in Angstrom exponent values
on the AE days as compared to the seasonal means, which are
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Table 1
Number and percentage (in brackets) of aerosol-episode days over Kanpur for each season and year during the period 2001-2010.
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Winter 6 (9.52) 5(7.57) 6(12.77) 8 (14.29) 7(9.33) 0(0) 1(10) 16 (36.36) 9(15.79) 7(10.14)
Pre-monsoon 5(7.14) 6(8.57) 10 (22.73) 0(0) 5 (5.95) 12 (21.43) 2(3.92) 3 (4.54) 2 (2.29) 13 (19.12)
Monsoon 8(10.67) 14 (17.95) 18 (41.86) 0(0) 10 (13.69) 1(3.12) 0 (0) 2 (6.67) 12 (12.63) 11 (16.67)
Post-monsoon 10 (19.23) 5 (9.80) 7(12.28) 7(16.29) 9(15.25) 6(1935)  0(0) 20 (64.51) 5(10) 9(20)
Whole 29 (11.15)  30(11.32)  41(21.46) 15 (9.32) 31(10.65) 19 (12.58) 3(441)  41(23.98)  28(9.69) 40 (16.13)

strongly influenced by enhanced local emission or intense aerosol
plumes transported from long distances. Fig. 4 shows the distri-
bution of the « values for each season in box and whiskers charts
view. More specifically, the « values are examined in three spectral
bands, i) 440—870 nm (the standard wavelength region for AERO-
NET retrievals), ii) 380—500 nm and, iii) 675—870 nm. The boxes in
Fig. 4 correspond to 50% of the values distribution (from 25% to
75%), while the square and line within the boxes indicate the mean
and median values, respectively. The x and — symbols correspond
to 1%/99% and min/max values, respectively.

The results show that the four seasons can be divided in two
groups, i) post-monsoon/winter and, ii) pre-monsoon/monsoon.
The main difference between the two groups is the spreading of
« values, which is lower during post-monsoon and winter seasons
compared to the rest of the year. This indicates well-defined aerosol
sources concerning the particle size in winter and post-monsoon,
and multiplicity of sources in the rest of the year, as also shown
by Singh et al. (2004) and Eck et al. (2010). Besides this, a significant
finding is the different behavior of « values on the AE days. Thus,
the a440—870 and ag75-870 values increase during post-monsoon and
winter, suggesting enhanced presence of fine-mode aerosols and
fine-to-coarse mode ratio (Reid et al., 1999), respectively. Thus, it is
indicated that the severe AODs during post-monsoon and winter
seasons are associated with increasing emissions of anthropogenic
aerosols either from industries, coal thermal power plants, auto-
mobile exhausts, bio-fuel combustions and biomass burning of the
crop residue (Prasad et al., 2006; Kirpa et al., 2010, 2012; Singh,
2010; Prasad et al., 2012; Kaul et al., 2011). These urban/anthro-
pogenic aerosols are highly hygroscopic in nature and serve as the
condensation nuclei for the formation of fog and hazy conditions
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Fig. 2. Monthly variation of the absolute and percentage (%) occurrences of the
aerosol-episode days along with the monthly mean AODsgo over Kanpur during the
period 2001-2010.

during winter, favored by the lower temperatures decreasing the
super-saturation point (Ganguly et al., 2006; Patidar et al., 2012). In
contrast, during pre-monsoon and monsoon, the « values at all
wavelengths decrease significantly during the AE cases indicating
dominance of coarse-mode aerosols and increase in coarse-mode
fraction. This suggests that the sources for the high-AOD further
from the local background are natural in origin corresponding to
dust plumes transported from the west or re-suspension of mineral
dust in the urban environment during prolonged dry periods
(Srivastava et al., 2012c). Srivastava et al. (2012d) found dominance
of polluted dust aerosol type over Kanpur during pre-monsoon,
while the carbonaceous aerosols (mostly BC and organic carbon)
contributed only a few to the total AOD.

On the other hand, the a3gp—500 values seem to have decreased
in all seasons during the AE cases compared to the seasonal means.
According to Reid et al. (1999) this suggests increase in fine mode
particle size corresponding to coagulation process that is much
more favored under turbid atmospheres. This was also shown by
Gobbi et al. (2007) and Wang et al. (2011) using a specific identi-
fication scheme for examining the aerosol modification processes
over Kanpur via the relationship of « and de. More specifically, both
studies revealed a shift toward higher fine-mode radius for
increasing AOD during winter season. Further, Eck et al. (2012)
emphasized on the bimodality in the submicron range of the
aerosol size distribution caused by coagulation and/or hydration
processes during foggy/cloudy days. Recently, Kaskaoutis et al.
(2012a) showed a shift in the submicron size distribution toward
larger radius during the period 2006—2010 compared to 2001—
2005 under a more turbid environment (statistically significant
increase in AOD during November—December). This suggests that
the increased emissions of fine-mode aerosols over IGP are able to
produce a second aerosol generation of larger submicron size.
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Fig. 3. Seasonal variation of the consecutive aerosol-episode days at Kanpur AERONET
station.
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Table 2
Seasonal mean aerosol optical properties on the aerosol-episode days over Kanpur
during the period 2001—-2010.

AOD a (440-870)  « (380—-500) « (675—870)
Winter 120+£026 120+021 076+0.16  142+025
Pre-monsoon  1.15+021 0324035 037+035 030033
Monsoon 129+£037 036+041  036+033 037+ 042
Post-monsoon  1.16 +020 130+0.11  086+0131 1.52+0.14

3.3. Modification in columnar size distribution (CSD)

The aerosol optical properties strongly depend on the columnar
size distribution (CSD) that determines the scatter of incident solar
radiation, while Eck et al. (2005, 2010, 2012), Kaskaoutis et al.
(2012a,b) and Sinha et al. (2012) have shown that the CSD is
closely related to «, derivative of Angstrom exponent (&), fine-
mode fraction and their variations. Thus, the particle size and
fine-to-coarse mode ratio are interesting to be examined during the
AEs over Kanpur and for further understanding of the modification
of the CSD from the seasonal mean. Fig. 5 shows the seasonal means
of CSDs for the period 2001—2010 and for the AE days. The number
of available almucantar retrievals for obtaining the seasonal means
(see figure caption) is considered satisfactory, while the un-
certainties in the retrievals are about 15%; however, the available
CSDs are much lesser in number than the « values (Fig. 4.) Never-
theless, in all seasons the modification in CSDs on AEs is closely
related to the changes in « (Fig. 4). More specifically, during winter
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and post-monsoon seasons, the CSD on AEs shows a pronounced
increase in fine-mode fraction, which is consistent with the sta-
tistically significant increase in ag75-g70. This increase is more
intense during the winter season, while the higher CSDs for the AEs
are attributed to the more turbid atmospheres. Furthermore, an
increase in fine-mode radius is clearly shown in Fig. 5a, d, which
reflects decrease in azgo—500 (Fig. 4a, d) during the AEs. As discussed
above, such findings suggest coagulation of the fine mode under
severe turbid atmospheres and indicate that aerosols over IGP
during winter are classified as urban/industrial type with signifi-
cant influence of biomass burning either from fossil fuel or bio-fuel
combustion (Kar et al., 2010; Verma et al.,, 2012). In contrast, no
significant change is found in the coarse-mode radius. The results
in Fig. 4b, ¢ showed a decrease in a3gp_500 on the AE days during
pre-monsoon and monsoon. A near absence of fine-mode with
concurrent shift toward coarse-mode is shown in the respective
CSDs (Fig. 5b, c). The coarse mode in CSD during pre-monsoon and
monsoon is ~ 3 times larger than the seasonal mean indicating that
the additional AOD is composed by coarse-mode aerosols, i.e. dust
transported via long distances, or emitted and re-suspended
locally.

3.4. Modification in « vs da plot

The wavelength dependence of AOD as well as the curvature of
InAOD vs InA is closely associated with aerosol CSD (Eck et al., 1999,
2005, 2010; Schuster et al., 2006). The above-mentioned studies
have shown different wavelength dependence of « based on the
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Fig. 4. Seasonal box charts of Angstrom exponent values for different spectral bands at Kanpur AERONET station for the period 2001-2010 and for the aerosol-episode days (bold
borders). The statistical significant differences of the mean values between the two groups are defined by the filled boxes.



12 D.G. Kaskaoutis et al. / Atmospheric Environment 79 (2013) 7—19

0.18 N
. (a) Winter (Dec-Feb)
0.16 - T
L Mean 2001-2010
0.14 - —&— Aerosol Episodes|
0.12 +
L %
& 0.10F / \
= L
=
S oosf } \ B
S 1 /
0.06 - \
S /
0.04 } AN /! \
3 % gL L %
0.02
L/ N
0.00 L—==5 .11 P R P P Y P =
0.1 1 10
Radius (um)
1.0+ (¢) Monsoon (Jun-Sep)
Mean 2001-2010
0.8 -| —@— Aerosol Episodes
& 06} 2
e _ ¥\
>
T 04} / \
02 / 49 \l
L /§/§/§/ T\
0.0 a =/§T§’$’§’§/§ 1 Ta a
0.1 1 10
Radius (um)

| (b) Pre-monsoon (Mar-May)

1.0
Mean 2001-2010
08| —a— Acrosol Episodes
o . N
g o6r /
= L 3
; \
T 04}
02} / ]
- g "
0.0 L— a4aﬁi/|;\;\$‘§’§/§7§./.§. N N .\.i+;. a
0.1 1 10
Radius (um)
0.18
o6l (d) Post-monsoon (Oct-Nov)
L Mean 2001-2010 I
0.14 -/ —a— Aerosol Episodes
0.12 +

0.0
0.08 / \
0.06

- /
0.04 - \1 % / \%
002 Ny

. . .

0.1 1 10
Radius (um)

dV/dinR

0.00
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standard deviation from the mean. The number of available CSDs for the period 2001-2010 and for the aerosol-episode days is: 312, 32 for winter, 353, 27 for pre-monsoon, 185, 25

for monsoon and 225, 46 for post-monsoon.

aerosol particle size and coarse-to-fine mode ratio. Furthermore,
Figs. 4 and 5 reveal that the seasonally-changed atmospheric con-
ditions prevailing during the AE days influence the « values as well
as the CSDs.

Fig. 6 applies the aerosol identification scheme, first proposed
by Gobbi et al. (2007), in order to further examine the modifications
in several aerosol properties, such as fine-mode radii, fine-mode
fraction, Angstrom exponent, etc during the AE days for each
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Fig. 6. Correlation of « (440—870) with da (a440-675—0675-870) Values over Kanpur for
each season and separately for the AE days.

season. This scheme combines « and its spectral variation de (w440
675—Q675-870) With the radius of fine-mode particles (Rf) and the
fine-mode fraction () as the grid parameters in grouped AOD. The
scheme has been extensively used for aerosol type identification at
several AERONET sites (Gobbi et al., 2007; Basart et al., 2009; Yoon
et al.,, 2011) as well as in Kanpur (Wang et al., 2011). In the present
case, the AERONET retrievals are classified in two groups for each
season: a) the whole dataset in the period 2001-2010 and, b) the
AEs focusing on the changes in a vs da pattern between the two
groups. The results show that during post-monsoon and winter, the
AEs are associated with more negative da values and slightly lower
a440-870 than the decadal means. The AEs in these seasons are
associated with high n (>70%) and, as the AOD increases the Rf
shifts toward higher values. These findings suggest additional fine-
mode aerosol loading on the AE days and evidence of aerosol
coagulation under severe turbid atmospheres. On the other hand,
in pre-monsoon and monsoon, the vast majority of the cases
exhibit positive da, thus highlighting the coarse-mode dominance
associated with low 1 (<50%). The AEs in these seasons exhibit a
shift toward the origin (o, da = 0) along a nearly constant Ry of
~0.12—0.15 pm and continuously decreasing values of 7. These
findings suggest negligible variation in fine-mode radii and a sig-
nificant increase in coarse-mode fraction; these conditions are
characteristic of enhanced dust contribution at higher AODs
(Kaskaoutis et al., 2012b). The results obtained from the identifi-
cation scheme are in absolute agreement with those found from
CSDs and the variations in spectral «, thus highlighting the
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significance of its application for monitoring the modification of
aerosol properties under changing atmospheres.

The current results reveal different aerosol optical, physical
properties and types depending on season over central IGP. Mishra
and Shibata (2012) have classified the aerosol types (dust, biomass
burning and urban pollution) over Kanpur by examining the
absorbing Angstrom exponent (AAE) and extinction Angstrom
exponent (EAE) values along with CSD based on 5-year (2006—
2010) AERONET data. More specifically, they reported enhanced
presence of dust aerosols during the pre-monsoon and monsoon
seasons, dominance of urban/industrial pollution during winter
season and enhanced biomass burning along with urban pollution
during post-monsoon. Similarly, Giles et al. (2011) grouped the
aerosols over Kanpur in three categories in the framework of
TIGERZ experiment, viz. i) mostly dust, ii) mixed BC and dust and,
iii) mostly BC using AAE, EAE, fine-mode fraction and sphericity
fraction.

3.5. Aerosol radiative forcing

Using the methodology described in section 2, OPAC and
SBDART models were jointly utilized to calculate ARF over Kanpur
both for seasonal means (2001—2010) and for the season-averaged
AEs. The OPAC-estimated spectral AODs are, in general, close to the
measured ones (Fig. 7) and within the standard error of the mea-
surements (rms error <0.03) suggesting that the procedure adop-
ted for the estimation of aerosol mixing and ARF is quite robust. In
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this respect, a values from OPAC are close to those of AERONET at
both shorter and longer wavelengths. However, the inconsistency
seems to be higher for the AE days, especially during pre-monsoon.
On the other hand, the AERONET retrievals of SSA and g via SDA
depend on several assumptions (particle sphericity) that may cause
some discrepancy in the absolute values (Dubovik and King, 2000).
Nevertheless, OPAC-simulated and AERONET SSA exhibit a satis-
factory agreement (not shown) and similar spectral pattern, i.e.
increasing trend with wavelength during pre-monsoon/monsoon
and decreasing in post-monsoon/winter. It was found that OPAC
estimates lower SSA values compared to AERONET, with differences
lying in the range of 0.55% (for monsoon seasonal mean) to 10.4%
(for winter AEs), on spectral average.

Fig. 8 exhibits the volume mixing ratio (%) of the different
components that are used for the aerosol mixture in OPAC. Accurate
estimate of the aerosol mixing state is essential for an accurate
assessment of ARF, since rough assumptions can lead to large un-
certainties in aerosol climatic effects. In the current analysis, the
external mixing state of aerosols is considered. In addition to the
external mixing, recent studies over Kanpur (Dey et al., 2008;
Srivastava and Ramachandran, 2013) have shown that core-shell
mixing is also a probable scenario, in which BC and dust play a
crucial role during post-monsoon/winter and pre-monsoon/
monsoon seasons, respectively. The water-soluble aerosol compo-
nent, mainly consisting of anthropogenic aerosols (i.e. ammonium,
nitrate, chloride and sulfate), is the dominant type with contribu-
tion of ~50—65% during winter and post-monsoon (for both cases),
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Fig. 7. Spectral AOD variation as obtained from AERONET measurements and OPAC simulations for seasonal and AE means. The vertical bars correspond to one standard deviation
from the seasonal mean. The root mean square error (RMSE) corresponds to AODsqg values (bold for AEs), while « is defined at shorter (380—500 for AERONET and 350—500 for
OPAC) and longer (500—870 for AERONET and 500—800 for OPAC) wavelengths (after commas) for both seasonal means and AEs (bold).
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Fig. 8. Volume mixing ratios (%) of various aerosol components as obtained from OPAC simulations for the seasonal means and the AEs.

while it is lower during pre-monsoon and monsoon (<25%). The
insoluble aerosols (soil and fly ash, organics) present lower
contribution in monsoon and higher during winter, while the sea-
salt component (accumulation and coarse mode) exhibits larger
values in monsoon ( ~32%) and is nearly absent (<2%) in the rest of
the year (except of post-monsoon). This high marine-aerosol
component over central IGP has been simulated via the iterative
OPAC process trying for the best fit between OPAC and measured
spectral AODs; similar high (30%) sea-salt component over Kanpur
in monsoon was reported by Srivastava and Ramachandran (2013).
Organic aerosols, along with BC, are mainly released from biomass
burning and urban activities and are accounted for both water
soluble and insoluble components (Hess et al., 1998), thus
contributing the highest during post-monsoon and winter. During
pre-monsoon and monsoon the desert dust (min.tr) presents the
highest contribution, especially for the AE days. As far as the AE
days is concerned, the highest modifications from the seasonal-
mean volume mixing ratios are shown during pre-monsoon and
monsoon seasons, when the mineral-transported (dust) compo-
nent is sharply increased against water soluble and insoluble. Such
a result was expected from the CSD curves (Fig. 5), where the
coarse-mode fraction increased significantly. The differences are
much lower during post-monsoon and winter, mainly detected at a
slight higher soot component, a higher dust component in winter
and more abundant water-soluble aerosols during post-monsoon
on the AE days. This suggests that some of the AEs occurring dur-
ing winter season may be associated with desert-dust transport
(Badarinath et al., 2010), or re-suspension of urban dust due to dry
environment. The transported biomass smoke from extensive
agriculture burning on the AE days during post-monsoon is the
main reason for the increase in water-soluble component. The

aerosol volume mixing ratios are in general agreement (at least
concerning the seasonal variations) with those reported over
Kanpur by Srivastava and Ramachandran (2013). Chemical aerosol
characteristics were also analyzed by many over Kanpur (Chinnam
et al.,, 2006; Dey et al., 2008; Dey and Tripathi, 2007, 2008), which
are more or less similar to the present findings.

ARF calculations were performed using SBDART model and the
results are summarized in Table 3. ARF at TOA is negative (~—12
to —17 Wm™2) in all seasons suggesting cooling effect over central
IGP. The attenuation of radiation at surface seems to be large on
seasonal basis (—42 to —57 Wm™2), comparable to that found from
previous works over Kanpur (Table 3). On the other hand, the at-
mospheric heating (25—44 Wm™2) contributes to significant
warming of the lower-to-middle troposphere. Such a heating,
which becomes 70—95% higher during the AE days, causes serious
climatic effects over the region and the Himalayan range as dis-
cussed by Gautam et al. (2010).

The ARF values are strongly related to higher AODs and modified
aerosol properties during the AE days and, therefore, differentiate
significantly from the seasonal means. Thus, in winter the seasonal
mean ARF values of —49.1, —14.5 and 34.6 Wm~?2 at surface, TOA
and atmosphere change to —88.7, —20.0 and 68.7 Wm ™2 during the
AE days. The enhanced presence of BC in winter, associated with the
lower boundary layer height and the absence of precipitation, plays
an important role in the large atmospheric forcing values found
over IGP (e.g. Ganguly et al., 2005). Furthermore, the atmospheric
absorption during major dust storms over Kanpur is strongly
depended on dust mineralogy and the Fe mass fraction, while
previous studies (Deepshikha et al.,, 2005; Chinnam et al., 2006)
have shown that transported dust over the region is moderately
absorbing. Since IGP experiences frequent dust storms during
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Table 3

15

ARF and heating rate values over Kanpur from the present and previous studies. The ARF values during AEs are given in parenthesis. ARF values over whole continental India for
further comparison with the present ones can be seen in Dey and Tripathi (2007), Das and Jayaraman (2011, 2012), Sinha et al. (2013a) and many references therein.

Period Surface (Wm™2) TOA (Wm™2) Atmosphere Heating Reference

(Wm~2) Rate (K day~ ')
Winter (AE) —49.1 (-88.7) -14.5 (-20.1) 34.6 (68.7) 1.0 (2.0) Present study
Pre-monsoon (AE) —57.0 (—96.6) —-12.8 (-25.6) 44.2 (71.0) 1.2(2.1) Present study
Monsoon (AE) —-42.5 (-81.1) —-17.1(-30.9) 25.4 (50.3) 0.8 (1.6) Present study
Post-monsoon (AE) —47.0 (—-68.8) -17.6 (-25.4) 29.5 (43.4) 0.9 (1.5) Present study
Winter (2006—08) -33.6 -9.9 23.7 0.44 Ramachandran and Kedia, 2012
Pre-monsoon (2006—08) —40.7 —4.6 36.2 0.67 Ramachandran and Kedia, 2012
Monsoon (2006—08) -30.9 -6.3 24.6 0.46 Ramachandran and Kedia, 2012
Post-monsoon (2006—08) -36.5 -12.0 24.5 0.45 Ramachandran and Kedia, 2012
December 2004 —62 9 71 1.8 Tripathi et al., 2007
May 2004 -26 11 37 ~1.02 Chinnam et al., 2006
Dec 2004—]Jan 2005 —43 -13 30 0.9 Dey and Tripathi 2007
2001-2005 (annual) -31.8 —4.1 27.7 0.84 Dey and Tripathi 2008
Apr—June 2006—-07 —44 6.8 50.8 - Gautam et al,, 2010

April—June, when the surface albedo also maximizes (Srivastava
and Ramachandran, 2013), the dust radiative impact could be sig-
nificant in view of the climate change over south Asia (Gautam
et al,, 2011). Srivastava et al. (2012b) examined the ARF and heat-
ing rates over Delhi and found much larger anthropogenic contri-
bution during the winter period compared to summer. These
findings are in close agreement to the present ones and, in general,
to all studies performed over IGP. The difference between surface
and TOA ARF suggests the presence of light-absorbing aerosols;
thus, the ratio (F) of the surface to the TOA ARF renders as indicator
of the aerosol type with F > 3 corresponding to strong influence of
absorbing aerosols, while values <2 indicate scattering particles
(Podgorny et al., 2000). In the current analysis the F values were
found to lie between 2.5 (monsoon) and 4.5 (pre-monsoon) for the
seasonal means and 2.6 (monsoon) and 4.4 (winter) for the AEs
indicating significant contribution of absorbing aerosols and,
therefore, atmospheric heating. The heating rate follows the sea-
sonal variation of atmospheric forcing being as high as 1.2 and 2.1
for seasonal mean and AEs, respectively during pre-monsoon. The
seasonal-mean values of heating rate are comparable to those
found from previous studies over Kanpur, while those during the
AE days are almost double. However, the radiative heating rate may
be influenced by the vertical distribution and the amount of light-
absorbing aerosols above the boundary layer (Moorthy et al., 2009;
Lemaitre et al., 2010), while in the present study a vertically ho-
mogeneous SSA was used.
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3.6. Vertical profiles of aerosol and radiative forcing

ARF depends on the aerosol vertical distribution, especially in
the presence of absorbing aerosols (Satheesh et al., 2010). Thus, ARF
and heating rates in the atmosphere are estimated on the basis of
the measured vertical profiles of the extinction coefficient over
Kanpur using the NASA Micro Pulse Lidar Network (MPLNET) data
(Welton et al., 2001; Misra et al., 2012) during the period May
2009—September 2010. The NASA MPLNET provides standardized
observations of aerosol vertical distribution from a MPL network
collocated with AERONET (Welton et al., 2002; Wang et al., 2010).
Since the lidar profiles cover only a small part of the study period,
the seasonal mean extinction coefficient profiles have been
normalized in the vertical using the columnar AODs for the sea-
sonal mean and AE days. Therefore, we achieve mean profiles
related to seasonal means and averages of AEs in each season
(Fig. 9). The extinction coefficient profiles present extreme values
(>1.0 km™!) near the surface during winter and post-monsoon for
the AE days, while the seasonal means are comparable to those
observed over other urban environments in India (Komppula et al.,
2012; Sinha et al., 2013b and references therein). In contrast, in the
pre-monsoon and monsoon seasons the extinction coefficient re-
duces near the surface, while elevated aerosol layers are evident
between 2 and 4.5 km. Detailed analysis of the seasonal variation of
the MPLNET profiles over Kanpur is given in Misra et al. (2012); so it
is beyond the scope of the present work.
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Fig. 9. Normalized profiles of aerosol extinction coefficient for seasonal means (a) and AE days (b). The horizontal bars express one standard deviation. The measured profiles were
taken over Kanpur during the period May 2009—September 2010, which have been normalized using the columnar AODs for seasonal means and aerosol episodes during the period

2001-2010.
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Fig. 10. Vertical profiles of atmospheric forcing estimated using normalized MPLNET lidar profiles of extinction coefficient over Kanpur for seasonal means (a) and AE days (b). The

horizontal bars correspond to one standard deviation.

Based on the season-averaged profiles of extinction coefficient,
and assuming vertically homogeneous SSA and g values (as ob-
tained from Kanpur-AERONET station), the vertical profiles of at-
mospheric forcing (Fig. 10a, b) and heating rate (Fig. 11a, b) are
estimated. As expected, the atmospheric ARF is high (>17 Wm™2)
for levels below 2 km during post-monsoon and winter AE days. In
contrast, monsoon and mainly pre-monsoon atmospheric forcing
for altitudes between 2 and 4.5 km can be considered significant
causing serious climate implications on the sea-land temperature
gradients, onset, duration and intensity of the monsoon and re-
distribution of rainfall (e.g. Ramanathan et al., 2005; Gautam
et al.,, 2009b). The vertical profiles of heating rate are propor-
tional to those of atmospheric forcing highlighting the significant
contribution of anthropogenic forcing and BC near the surface
during post-monsoon and winter, and the influence of dust at
elevated layers in late pre-monsoon and monsoon. The vertical
profiles of heating rate are much higher than those observed over
BoB (Moorthy et al., 2009) and Taiwan (Wang et al., 2010), but the
heating rate over Kanpur is slightly lower than that found over
Delhi (Srivastava et al., 2012b). Earlier studies have shown that the
anthropogenic contribution to radiative forcing and heating rate
was 73% over Delhi (Srivastava et al., 2012b) and 65% over Kanpur
(Dey and Tripathi, 2008). However, the radiative forcing and
heating-rate profiles may be very uncertain, as shown via the
standard deviations, since they are very much sensitive on the
vertical distribution of aerosols.
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Satheesh et al. (2010) carried out a sensitivity analysis exam-
ining the role of SSA, surface albedo, aerosol vertical distribution
and RH in ARF calculations showing that for highly absorbing
aerosols a moderate change in surface albedo can change the TOA
forcing even at 50% and the surface forcing at 3%. The sensitivity
analysis of the effects of extinction coefficient and SSA profiles on
calculated ARF (Moorthy et al., 2009) showed that the realistic SSA
profile led to 6% decrease of TOA forcing and 9% increase in surface
forcing, resulting to 18% increase in atmospheric heating compared
to the case assuming a homogeneous columnar SSA. Similarly, Guan
et al. (2010) found that the vertical distribution of aerosol absorp-
tion strongly influence the forcing and heating rate profiles, while it
has little impact on TOA and surface ARF. This suggests un-
certainties in the ARF calculations and heating rate profiles, due to
some errors in estimates of the aerosol mixing ratio, surface albedo,
vertical aerosol profiles, seasonal mean RH values and assumptions
of vertically homogeneous SSA and g. The seasonally-averaged lidar
profiles used in the present work smooth the heating vertical dis-
tribution, which may differentiate in cases when thick elevated
aerosol layers of different origin exist. As far as the influence of RH
is concerned, sensitivity analysis (Ramachandran and Kedia, 2012)
showed that a change in RH as high as 10% (i.e. from 70% to 80%)
may affect the computed ARF values at TOA by ~11-57% and those
at surface by ~3.1-6.3%, strongly dependent on aerosol type, sur-
face albedo as well as humidity levels. However, in our study the
difference between the OPAC-fixed RH values used for the ARF
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Fig. 11. Same as in Fig. 10, but for the heating rate profiles.
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computations and the seasonal-averaged ones measured in Kanpur
as much lesser that 10% and, therefore, the ARF values and heating
rates are not so significantly affected.

The aerosol optical properties and ARF depend on size, shape
and composition of the particles, as well as on RH that determines
the growth rate of aerosols. The uncertainty in AERONET spectral
AOD is about +0.02, while that in MODIS-derived surface reflec-
tance +2%. The uncertainty in the AERONET SSA is within 4-0.03 for
AOD449 >0.5 and increases to 0.05—0.07 for lower AOD (Dubovik
and King, 2000), while is in the range of 3—5% for g (Andrews
et al., 2006), which, however, causes negligible variation in sur-
face, TOA and atmospheric ARF (Mishchenko et al, 1997;
McComiskey et al., 2008). Implementing all the above, the overall
uncertainty in the calculated ARF values was found to be ~10—15%,
similar to that reported by other studies (Dey and Tripathi, 2008;
Moorthy et al., 2009). Furthermore, the diurnal variation of ARF
and radiative heating rate may be significant (depending on daily
variability of aerosols, BC and solar radiation) (Das and Jayaraman,
2011), thus contributing to the uncertainties in the estimated sea-
sonal mean values. In the present work, the daily-mean AERONET
retrievals were used in the calculations and the daily-averaged ARF
was considered as the half of the estimated value in order to
correspond to daytime observations. Taking into account that
AERONET retrievals may not cover the whole daytime, this incon-
sistency provides some uncertainties in the seasonal mean values.

4. Conclusions

Severe aerosol loading over Ganges basin has been recognized
as a serious environmental, climatic and health concern and has
been the subject of systematic measurements from ground-based
instruments and experimental campaigns. This study focuses on
examining the occurrence, temporal variation and the influence on
aerosol properties and radiative forcing that the aerosol episodes
(AEs) have over central Ganges basin. The Kanpur-AERONET data
was used covering the period 2001—2010, while the threshold for
the determination of AEs was AODsqg = 0.93, which corresponds to
daily AODsgg observations above the decadal mean AOD + 1 STD.
The analysis revealed the occurrence of 277 AEs out of 2095 daily
AOD observations (13.2%), with the majority of them observed
during the post-monsoon season, followed by monsoon and winter.
It is characteristic that for two periods consisted of 12 days (3—14
November 2008) and 11 days (4—14 June 2003) the AODs5gg over
Kanpur was >0.93. The first case corresponded to a persistent
smoke plume from crop-residue burning, while the second was
associated with intense dust storms. Furthermore, the aerosol op-
tical properties (AOD, Angstrom exponent, columnar size distri-
bution) were analyzed for each season, and separately for the AE
days, in order to reveal any modification on them caused by the
severe aerosol-laden atmospheres. Synoptically, the analysis
showed that except of the seasonality in aerosol optical properties
over Kanpur, i.e. dominance of fine-mode aerosols during post-
monsoon and winter, and coarse mode during the rest of the
year, the AE days were associated with enhanced presence of fine
anthropogenic aerosols and/or biomass burning in post-monsoon
and winter and coarse dust aerosols in pre-monsoon and
monsoon. Similar to observations, OPAC simulations revealed
enhanced presence of anthropogenic aerosols and dust in post-
monsoon/winter and pre-monsoon/monsoon seasons, respec-
tively, on the AE days compared to the seasonal means. Further-
more, the radiative forcing at surface and TOA was found to be more
negative (cooling effect) during the AE days compared to seasonal
means, and values as high as —69 to —97 Wm 2 at surface and —20
to —30 at TOA were estimated by means of SBDART model. Such
forcing values associated with significant atmospheric heating

cause serious climate implications over the region, such as modi-
fication in the sea-land temperature gradient, influence on the
onset, duration and intensity of the monsoon, acceleration in
melting of Himalayan glaciers, modification in temperature profile
and atmospheric stability and re-distribution of rainfall. Using
normalized extinction coefficient profiles obtained from MPLNET
over Kanpur, the vertical profiles of atmospheric forcing and
heating rate were also estimated. The impact of aerosols on the
vertical profiles of solar heating was much larger near the surface in
winter and post-monsoon, while in pre-monsoon the heating rate
was high (1.2 + 0.2 Wm™2) between 2 and 4 km.
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