Effect of Organics and their hygroscopicity on cloud condensation nuclei (CCN) activity

Deepika Bhattu1 and Sachchida Nand Tripathi1,2

1Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, India 208016
2Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India 208016

Corresponding Author: snt@iitk.ac.in

Introduction

• Atmospheric particles play a significant role in the Earth climate system indirectly by acting as cloud condensation nuclei (CCN) depending on their size and chemical composition.
• Sensitivity of CCN closure to various parameters like, size distribution, chemical composition or hygroscopicity in CCN activity considering bulk/ size-resolved chemical composition from filters/AMS and different mixing states has been studied.
• Several closure studies have been performed in the past but a very few studies have predicted CCN concentration within uncertainty levels (± 20%).

Objectives

• To examine the effect of organics and their hygroscopicity on CCN activity of ambient aerosols.
• To study the sensitivity of CCN closure to aerosol mixing state and AMS-PMF derived soluble organic fraction.
• To explore the effect of degree of oxygenation on hygroscopicity of organics.

Methodology

• Measurements were conducted from Nov 7- 27, 2012 at the IIT Kanpur (80° 20'E, 26° 26'N), India using set of instruments given in Table 1.
• Chemical composition from AMS is used in Köhler theory to calculate critical diameter, Dc, assuming different mixing states (external/ internal). Soluble organic fraction (OOA, LVOOA, SVOOA, BBOA and their combinations) obtained from AMS-PMF analysis are used.
• CCN derived hygroscopicity parameter is calculated using κ-Köhler theory (Petters and Kreidenweis, 2007) and its correlation with O:C ratio is studied.

Table 1 : List of instruments used and the measured property

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Measured property</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPS</td>
<td>Size distribution (14.6 < D< 685 nm)</td>
</tr>
<tr>
<td>CPC</td>
<td>Total particle number concentration (#/cc)</td>
</tr>
<tr>
<td>Aerodyne-HR-ToF-AMS</td>
<td>Chemical composition (bulk & size-resolved)</td>
</tr>
<tr>
<td>CCNc</td>
<td>CCN concentration (#/cc) (SS=0.2-1%)</td>
</tr>
</tbody>
</table>

Results and Discussion

Figure 1: Time series of bulk chemical composition from HR-ToF-AMS using CE as unity (Most of the time εorg is greater than 50% with maxima at night time(b) SMPS size distribution during the measurement period.

Figure 2: Times series of CCN and CN concentration(#/cc). Maximum activation fraction (CCN/CN) observed at daytime due to enhanced photochemical activity is in accordance with O:C ratio. Few exceptions have been observed at the end of the sampling period when fraction of SVOOA is comparable to LVOOA.

Figure 3: Predicted Vs measured CCN concentration at SS=0.2-1%. Assumptions involved are: Internally mixed aerosols; bulk chemical composition; surface tension same as of pure water. Real-time volume fraction of soluble organics is taken as OOA (Nov 8 - 18) and LVOOA (Nov 18-27) conc.. Closure ratio improves as the SS increases showing less sensitivity to chemical composition.

Figure 4: Predicted Vs measured CCN concentration at SS=0.2-1%. Colorbar shows volume fraction of soluble organics. Closure is best achieved when volume fraction is ~ 0.4-0.5.

Figure 5: Correlation between hygroscopicity parameter, κ (CCN derived) at different supersaturation (0.2%-1%) and O:C ratio (AMS) shows increase in hygroscopicity with the degree of oxygenation.

• O:C ratio ranges from 0.2-0.8 with maxima at noon while κ value varies from 0.07 - 0.37
• Further, sensitivity test to oxygenated factors is in progress.

References

Acknowledgements

This work is supported through a grant from Changing Water Cycle Programme of MoES, Govt. of India, and NERC, Govt. of U K.