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Health implications
The rapid increase of aerosols over the Indian Subcontinent over the last decade has the potential for severe
health implications. However, the lack of a dense network to measure PM2.5 (particles with aerodynamic
diameterb2.5 μm) hinders health risk assessments at regional scale. Here, we utilize Multiangle Imaging
SpectroRadiometer (MISR)-retrieved columnar aerosol optical depths to estimate surface PM2.5 based on re-
cently published conversion factors that account for the composition and vertical distribution of aerosols. We
examine the space–time variability of bias-corrected (utilizing coincident in-situ observations) PM2.5 over the
Indian Subcontinent for the period Mar 2000–Feb 2010. We show that 51% of the subcontinent's 1.4 billion
people are exposed to pollution that exceed the World Health Organization's highest annual air quality
threshold of 35 μg m−3, while another 13% and 18% are exposed in the ranges 25–35 and 15–25 μg m−3 re-
spectively. Of the remaining population who breathe clean air, only 25% live in urban areas. In many regions,
the high-levels of pollution are persistent rather than episodic. PM2.5 concentrations in the rural areas of the
Indo-Gangetic Basin are higher than many urban centers in peninsular India. Five hotspots (where PM2.5 in-
creases by >15 μg m−3 over the ten-year period) are identified, which cover parts of the eleven Indian states
and Bangladesh affecting ~23% of the population. Our results highlight the urgent need to carry out local co-
hort studies at these hotspots to better understand the health impacts under local conditions.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The acute and chronic health impacts from short and long-term
exposures to particulate matter are well established in the literature
(e.g. Balakrishnan et al., 2002a, 2002b; Cohen et al., 2005; Zanobetti &
Schwartz, 2009; Pope et al., 2009; Pope, 2000; Pope et al., 2011a,
2011b;Anenberg et al., 2010, 2011; Brauer et al., 2012). Epidemiological
studies examining these impacts rely on long-term ambient (both in-
door and outdoor) measurements of particulate matter concentration.
In the Indian Subcontinent, home to ~1.4 billion people, high aerosol
loading (Dey & Di Girolamo, 2010) and its continuing rapid increase
over the last decade (Dey & Di Girolamo, 2011) is a major concern for
the potential impacts on health.

Annually, 400–550 thousand premature deaths have been attributed
to indoor air pollution in India (Smith, 2000). The epidemiological stud-
ies focusing on outdoor air pollution in this region (e.g. Balakrishnan
et al., 2011; Rajarathnam et al., 2011) mostly utilize PM10 (particles
with aerodynamic diameter smaller than 10 µm) that is routinely
: +91 11 2659 1386.
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monitored by the Central Pollution Control Board (CPCB) of
India through a network of 342 sites under the National Air Quality
Monitoring Programme. These data suggest that PM10 concentration
has increased at some sites, while it also decreased at some sites in
the last few years (CPCB, 2008). PM10 enters our respiratory tract, but
PM2.5 reaches the alveoli region; hence PM2.5 is considered as a better
exposure indicator than PM10 for health impact assessments (WHO,
2006). Recently, CPCB initiated monitoring of PM2.5 in six major cities,
while other efforts include air quality monitoring and forecasting dur-
ing Commonwealth Games 2010 (e.g. Sahu et al., 2011). While this is
an excellent start, the numbers of monitoring stations are too few for
a complete and accurate assessment of regional health risks given the
very high spatial and seasonal variability of aerosol loading (Dey & Di
Girolamo, 2010). Moreover, most of the CPCB sites are concentrated in
the urban areas, leaving the large rural population unchecked. Lack of
integrated regional scale analysis of exposures to PM2.5 and lack of com-
prehensive long-term PM2.5 monitors in the Indian Subcontinent moti-
vated us to carry out the present exposure analysis using satellite data.

Satellite data can be useful for examining global air quality in the
absence of a robust database of in-situ PM2.5 (hereafter denoted as
[PM2.5]I) (e.g. van Donkelaar et al., 2010; Liu et al., 2009; Gupta et
al., 2006). While there are numerous factors that contribute to the
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uncertainties in using satellite data to retrieve PM2.5 concentrations
(e.g. Hoff & Christopher, 2009), these studies have found reasonable
agreements with [PM2.5]I measured at many locations across the
globe— particularly when additional chemical and meteorological in-
formation from other sources was added to the analysis. Here we
present a climatology of the spatial and temporal variability of PM2.5

in the last decade (Mar 2000–Feb 2010) over the Indian Subcontinent
by applying information from a global chemical transport model and
[PM2.5]I measurements to the MISR aerosol retrieval (hereafter denot-
ed as [PM2.5]MISR). The health implications of the decadal exposure to
PM2.5 are discussed along with the potential sources of uncertainties
at a regional scale based on the World Health Organization (WHO)
air quality guidelines (WHO, 2006), as well as more recent epidemio-
logical studies (Pope et al., 2009; Pope et al., 2011a, 2011b; Anenberg
et al., 2011; Balakrishnan et al., 2011).

2. Satellite data analysis

The MISR Level 2 (Version 22) aerosol product includes columnar
aerosol optical depth (AOD) at four wavelengths, segregated by size
and shape of the particles and the single scattering albedo (Kahn et
al., 2010). Global evaluations of MISR data quality have been reported
in detail elsewhere (Kahn et al., 2009, 2010) and include detailed
comparisons with the Aerosol Robotic Network (Holben et al.,
1998). MISR–AOD is well correlated with AERONET (correlation coef-
ficient, R=0.83) over the Indian Subcontinent, but is biased low and
this bias (e.g. the bias is 30% for AOD=0.5) increases linearly with
increasing AOD (Dey & Di Girolamo, 2010). The climatological distri-
bution of MISR–AOD over the Indian Subcontinent has been success-
fully explained by emission factors, synoptic scale meteorology and
topography (Dey & Di Girolamo, 2010; 2011).

Our region of interest (40°N–EQ and 65°–99°E longitude) is
subdivided into a 0.5°×0.5° grid, as this grid size provides a robust
sample size beyond a grid at the original Level 2 17.6 km×17.6 km
resolution, while remaining small enough to capture the spatial vari-
ability in aerosol characteristics (Dey & Di Girolamo, 2010). Median
AOD is derived for each 0.5°×0.5° grid from all Level 2 pixels whose
central coordinates fall within a single 0.5°×0.5° grid for each day.
The grids with zero population (i.e. over the oceans) have not been
considered for PM2.5 statistics shown in Figs. 3 and 4 because of our
focus on exposure analysis.

We calculate annual mean [PM2.5]MISR from daily estimates for the
10-year period using spatially varying monthly climatological conver-
sion factors (η, the ratio of PM2.5 to columnar AOD) calculated from
the GEOS-Chem chemical transport model (v8-01-04; http://www.
geos-chem.org) at MISR overpass times. Complete details on the der-
ivation of η are provided in van Donkelaar et al. (2010). In brief,
GEOS-Chem solves for the temporal and spatial evolution of aerosol
and trace gases using meteorological data sets, emission inventories,
and equations that represent the physics and chemistry of atmo-
spheric composition. Daily η values for 2001–2006 were interpolated
from the 2°×2.5° resolution used for GEOS-Chem in van Donkelaar et
al. (2010) to 0.5°×0.5° resolution used here and averaged to a
monthly climatology for application to MISR–AOD values. The simu-
lated aerosol relative vertical structure accounts for the effect of
elevated aerosol layers that are observed frequently during pre-
monsoon to monsoon seasons (e.g. Lau & Kim, 2006; Jaidevi et al.,
2012) and may potentially impact the AOD–PM2.5 relationship. The
simulated relative aerosol vertical structure showed good agreement
in central Asia with CALIPSO (Cloud-Aerosol Lidar Infrared Pathfinder
Satellite Observations) observations during June–December 2006.
Uncertainties in η and in a combined MISR-MODIS AOD resulted in
a global, population-weighted [PM2.5]MISR-MODIS uncertainty (1σ) of
25% with a reasonable degree (R>0.75 at 2°×2.5°) of regional corre-
lations with [PM2.5]I measurements over many parts of the globe (van
Donkelaar et al., 2010).
We compared [PM2.5]MISR with available coincident [PM2.5]I in
India (Fig. 1) to quantify the bias over our study area. The present val-
idation effort, as an extension of van Donkelaar et al. study (2010),
was carried out to understand the applicability of η values derived
for the period 2001–2006 fromMODIS-MISR combined AOD to deter-
mine PM2.5 fromMISR–AOD for 10-year period. Two kinds of datasets
were used. Daily mean PM2.5 values were measured at Delhi during
Dec 3, 2007–May 31, 2008 using a 15-channel aerosol spectrometer
(Mohan & Payra, 2008) and at Kanpur during Nov 4, 2009–Feb 26,
2010 using a PM2.5 sampler (Gupta et al., 2011). These in-situ mea-
surements were taken on the residential academic campuses of IIT
Delhi and IIT Kanpur, thus they may be considered to be more repre-
sentative of regional pollution levels compared to sites in vicinity of
local, intense sources.

[PM2.5]MISR at 17.6 km×17.6 km resolution (Level 2) surrounding
these two measurement sites have been compared with [PM2.5]I
(Fig. 1a). [PM2.5]MISR shows a statistically significant linear relation
(R=0.71) with [PM2.5]I, but with a low bias. The low bias may have
its roots in several places. In heavily polluted environments containing
a large fraction of absorbing aerosols, MISR has a low bias in AOD of
20–30% (Kahn et al., 2009). This may partly account for the bias ob-
served in Fig. 1a. Comparison of [PM2.5]I with PM2.5 derived from
AERONET–AOD using the same η at Kanpur (Fig. 2a) reveals a higher
slope (0.39) of the best fit line relative to Fig. 1a, which is consistent
with the low bias of MISR–AOD relative to AERONET–AOD observed in
previous studies (Dey & Di Girolamo, 2010; Kahn et al., 2009, 2010).
The low bias of MISR–AOD over India was previously quantified by
Dey and Di Girolamo (2010), where the bias increases with an increase
in AOD. Themodel used in vanDonkelaar et al. (2010), aswith all global
models used in aerosol studies to date, are known to produce a low bias
in AODover the Indian Subcontinent (e.g. Ganguly et al., 2009),which if
not proportionally represented by a decrease in simulated PM2.5 would
impact the accuracy of η. Despite the good overall global agreement of
satellite-derived PM2.5 (slope=0.86; R=0.83), van Donkelaar et al.
found a large underestimation in values over India (supplementaryma-
terial in van Donkelaar et al., 2010), consistent with our findings. The
reasons for the bias in AOD in these models are not well understood,
but could result if the lowest vertical layer of themodel is too coarse rel-
ative to the injection heights of emissions, vertical mixing is too fast,
and/or emission inventories are too low. While model chemistry and
dynamics do account for the diurnal cycle in deriving η, the model's
emission inventory is not diurnal. A recent study (Rehman et al.,
2011) suggests a strong multi-modal diurnal variability in aerosol con-
centration in a village near Kanpur, with a minimum at the time of the
MISR mid-morning overpass time. This could also contribute to the low
bias in [PM2.5]MISR relative to [PM2.5]I. Lower correlation (R=0.65) be-
tween MISR–AOD and [PM2.5]I (Fig. 2b) relative to the correlation be-
tween [PM2.5]MISR and [PM2.5]I shown in Fig. 1a (R=0.71) suggests
that using η improves this analysis. Despite the low bias, the correlation
shown in Fig. 1a is indicative that large scale spatial and temporal influ-
ences on the aerosol field are being captured in deriving [PM2.5]MISR.

We further compared monthly averaged [PM2.5]I that were
reported at Hyderabad (Latha & Badarinath, 2010) during Jan–
Dec 2003, Anantpur (Balakrishnaiah et al., 2011) during May
2006–Apr 2007, Agra (Kulshrestha et al., 2009) during May 2006–Mar
2008, Kaikhali in Sunderban (Mukherjee et al., 2010) during Dec
2003–Nov 2006, Kanpur and Delhi (locations shown in Fig. 3a) with
monthly mean [PM2.5]MISR (Fig. 1b). Again, a good correlation exists be-
tween the two datasets, with a low bias in monthly-mean [PM2.5]MISR

relative tomonthly-mean [PM2.5]I. Note that the low-bias in themonth-
ly comparison is greater (slope of Fig. 1b is smaller than that of Fig. 1a)
relative to the daily comparison.We suspect that the key reason for this
difference in bias is that theMISR–AOD retrievals, hence [PM2.5]MISR, are
only done when skies are clear; while monthly [PM2.5]I includes both
clear and cloudy days. Based on themeteorological controls of air pollu-
tion alone, there is no reason to expect PM2.5 to be the same for clear

http://www.geos-chem.org
http://www.geos-chem.org
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Fig. 1. A Scatter-plot between (a) daily [PM2.5]MISR and [PM2.5]I at Kanpur (red circles) and Delhi (blue circles), (b) monthly [PM2.5]MISR and [PM2.5]I at Delhi, Kanpur, Hyderabad,
Anantpur, Agra and Sunderban, (c) bias in daily [PM2.5]MISR and [PM2.5]I and (d) bias-corrected [PM2.5]MISR (using Eq. (1)) and [PM2.5]I. Both daily (representative of clear days) and
monthly (in-situ measurements consider both clear and cloudy days, while MISR-retrievals cover only clear days) comparisons show statistically significant (at 99% confidence
level, CI) linear relationships with a low bias at high-PM2.5 condition. The error bars in 1a and 1c indicate the uncertainties of in-situ measurements, while they represent ±1 stan-
dard deviation (σ) in 1b around the mean values. The dotted line in 1a represents 1:1 line. The bias in [PM2.5]MISR increases linearly with an increase in [PM2.5]I (statistically sig-
nificant at 99% CI). The relation has been used to produce the PM2:5 statistics displayed in Table 2 and used for exposure study (Figs. 3 and 4). Locations of the in-situ observations
are shown in Fig. 3a. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and cloudy days. In addition, the MISR and in-situmeasurements likely
have not sampled the same dayswithin a specificmonth to calculate the
monthly average which may lead to increased uncertainty.

We quantify the MISR-bias (ΔPM2.5=[PM2.5]I–[PM2.5]MISR) based
on coincidently sampled daily values at Kanpur and Delhi, which lin-
early increases with increasing [PM2.5]I (Fig. 1c) and can be represent-
ed by the relation (R=0.93 and pb0.01, significant at 99% CI)

ΔPM2:5 ¼ 0:71 PM2:5½ �I–12:38 ð1Þ

We corrected this bias for [PM2.5]MISR>12.38 μg m−3, so as to not
allow negative PM2.5 values and use the bias-corrected [PM2.5]MISR

(hereafter referred to as PM2:5 ) for the exposure analysis and the sta-
tistics presented in Fig. 3 and Table 2. The error (±0.07) in the slope
of the linear fit of the bias translates to an uncertainty of ±3% in esti-
mated PM2:5 , in addition to any uncertainty due to η and MISR–AOD.
For example, an uncertainty of ±10% in η leads to an uncertainty of ±
8% in the threshold value (12.38 μg m−3) of bias correction in our es-
timates. We stress that in correcting for bias, there is an assumption
that the bias remains the same over our entire study domain and
over all seasons. The application of this correction, however, should
allow quantitative interpretation of these PM2.5 estimates by calibrat-
ing against bias in both η and MISR–AOD. The degree to which the as-
sumption of a constant calibration holds will require further [PM2.5]I
measurements coincident with the MISR overpass from different loca-
tions characterized by different emission sources. The spatial and tem-
poral analysis of aerosol properties presented in Dey and Di Girolamo
(2010, 2011) can be used as a guide in choosing these locations. We
have applied the bias correction tomeanmonthly [PM2.5]MISR from var-
ious sites (shown in Fig. 1b) and compared with [PM2.5]I (Fig. 1d) to ex-
amine this issue. The slope of the best-fit line increases from 0.19 (in
Fig. 1b) to 0.88 (in Fig. 1d) with R=0.98. This supports the fact that
the bias correction significantly improves estimation of satellite-based
PM2.5 and strengthens our approach to establish bias-corrected PM2.5

climatology assuming uniform bias over the subcontinent in absence
of any further in-situ measurements. Until such measurements are
made, bias correction using data presented in Fig. 1b may be used as a
guide to theuncertainty caused by this assumption – assuming the sam-
pling differences of this data set and MISR (as discussed above) are ig-
nored. By ignoring this, an upper bound on this error is reached, since
coincident sampling at these locations with MISR overpasses on clear
days would lead to a smaller error. In doing so, the difference between
the bias-corrected PM2:5 from Eq. (1) and that derived from Fig. 1b is
~8%. A better constraint on the uncertainty in PM2:5 from MISR using
our approach can only be achieved with more long term in-situ
data coincident with MISR overpasses, as well as further improve-
ments to the GEOS-Chemmodel (including resolution) and associat-
ed assimilated data. Until then, we proceed with the present
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uncertainty analysis to study the spatio-temporal distributions of
PM2.5 in the last decade.

3. Spatio-temporal variability of PM2:5

Population data were collected from ‘Socioeconomic data and ap-
plication center' website (http://sedac.ciesin.columbia.edu/gpw/
global.jsp#) for the year 2000 and 2010 at ~5 km×5 km resolution
and have been projected onto our 0.5°×0.5° grid following Tobler et
al. (1997). The urban extent data are used to distinguish between
the ‘urban’ and ‘semi-urban and rural’ population within each
0.5°×0.5° grid. Population data of the year 2000 is considered for
the exposure analysis because this is the population that has been ex-
posed to decadal changes in pollution. The exposure of the population
distribution to annual and daily PM2:5 is examined based on WHO air
quality guidelines, which were guided by epidemiological studies
prior to 2006, including Cohen et al. (2005), Dockery et al. (1993),
Jerrett et al. (2005), Katsouyanni et al. (2001), Pope et al. (1995,
2002), and Samet et al. (2000).

The ten-year mean annual PM2:5(Fig. 3a) exceeds WHO standard
of 10 μg m−3 (see Table 1 for WHO standards and interim targets,
IT) over 70% (49% of the inhabited area) of the subcontinent's area,
of which the heavily populated Indo-Gangetic Basin (IGB) and the
largely uninhabited Taklamakan Desert stand out with the largest
values. 255, 181 and 720 million people (~18%, ~13% and ~51% of
the total ~1.4 billion population respectively) are exposed to annual
PM2:5 in the range WHO IT-2 to IT-3, IT-1 to IT-2 and >IT-1, respec-
tively. Out of these 255, 181 and 720 million populations, ~24%,
~18% and ~21% respectively are urban populations. Only ~18% popu-
lation in the subcontinent is breathing clean air, of which, 25% live in
urban area. Our results suggest that not only the urban population,
but a large semi-urban and rural population is also at health risk
due to this enormous particulate concentration. It must be noted
that the magnitude of such impacts on morbidity and mortality may
differ from place to place depending on the seasonal variability of
PM2.5 composition, outdoor exposure time, and other demographic
variables (Pope et al., 2011a). For example, larger fraction of dust par-
ticles in rural areas may have different impact on human health com-
pared to urban areas dominated by combustion-generated particles.
It is not possible to examine this issue here because of the lack of ro-
bust chemical composition data fromMISR. Qualitatively, exposure at
the PM2.5 hotspots in Fig. 3a that are characterized by dominant an-
thropogenic particles as shown in Dey and Di Girolamo (2010) have
higher health risks than any other places.

We further focus on the 46 large urban centers with population
>1 million (Table 2), because the air quality may be severely affected
due to the rapid migration of the population into urban centers for
socio-economic reasons. Previously, India did not have any air quality
standard for PM2.5 and only recently in 2009, the Indian air
quality standard for PM2.5 was determined as 60 μg m−3 for 24-hr
average and 40 μg m−3 for annual average (www.cpcb.nic.in/National_
Ambient_Air_Quality_Standards.php). The annual average Indian PM2.5

standard (Table 1) is close to WHO IT-3. Three key points emerge from
the statistics summarized in Table 2:

(i) Mean annual PM2:5 exceeds WHO IT-1 at 29 urban centers, lies
in between IT-1 and IT-2 at 10 centers and between IT-2 and
IT-3 at 5 centers, whereas it is less than 15 μg m−3 at only
two urban centers (Bangalore and Coimbatore). Delhi has the
highest mean (±1σ, σ is the standard deviation representing
the temporal variability) annual PM2:5 (148.4±67 μg m−3)
followed by Meerut (96.4±48 μg m−3). PM2:5 is more than
double of IT-1 at other metro areas in the IGB and Mumbai.
PM2:5 concentrations exceed the annual Indian standard in 18
urban centers.

(ii) The inter-annual variability of PM2:5 in these centers is not uni-
form because of the large heterogeneity in seasonal cycles of
pollutant emission (Dey & Di Girolamo, 2011).

(iii) Mean annualPM2:5 does not correlatewith theurban centers’pop-
ulation, a proxy for anthropogenic activities (e.g. mean (±1σ)
PM2:5 of 88.7±53 μg m−3 at Agrawith a population of 1.3 million
ismore than six times ofmeanPM2:5 of 14.4±9 μg m−3 at Banga-
lorewith a population of 5.7 million). Since there arenomajor pol-
icy or cultural differences in emission factors across India, the
climatology in Table 2 points to the important roles ofmeteorology
in redistributing the pollutants (Dey & Di Girolamo, 2010) based
on the broader scale PM emissions (Streets et al., 2003;
Venkataraman et al., 2005).

The episodic nature of such high annualPM2:5 has also been exam-
ined. Figs. 3b–d show the percent of days per year when daily PM2:5

exceeds the three WHO daily interim targets mentioned in Table 1.
It is again of note that the daily exposure statistics represent percent
of clear days in a year, because MISR aerosol retrievals are not possi-
ble on cloudy days (hence our results may vary with [PM2.5]I statistics
that use both clear and cloudy days). Daily PM2:5 exceeds IT-1 in 40–
50% of days in the western to central IGB and Mumbai. The frequency
increases to 60–75% for IT-2 and >75% for IT-3 in these regions. This
clearly suggests that high annualPM2:5 is not episodic; rather the high
pollution level persists throughout a substantial period of the year,
particularly in the heavily populated and industrialized IGB and
Mumbai regions (Table 2).

Next we calculate the rate of change of PM2:5 per month through
linear trend analysis of deseasonalized PM2:5 over the 120 months
period. The total changes of PM2:5 per 0.5°×0.5° grid (ΔPM2:5) in

http://sedac.ciesin.columbia.edu/gpw/global.jsp
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http://www.cpcb.nic.in/National_Ambient_Air_Quality_Standards.php
http://www.cpcb.nic.in/National_Ambient_Air_Quality_Standards.php


(a) 6515 25 5035

(b-d) 7515 30 6045

(µg m-3)

(%)

>80

90

bTD a

c d

IGB 

Fig. 3. Spatial distributions of (a) mean annual PM2:5 concentration (in μg m−3) and percentage of clear days per year with mean daily PM2:5 exceeding (b) 37.5 μg m−3 (WHO
IT-3), (c) 50 μg m−3 (WHO IT-2) and (d) 75 μg m−3 (WHO IT-1) during Mar 2000–Feb 2010 over the Indian Subcontinent. ‘IGB’ and ‘TD’ are acronyms of Indo-Gangetic Basin
and Taklamakan Desert. 'White' regions represent ‘water’ or ‘no data’. Note different scales for Figs. 3a and b-d. Locations of Delhi, Kanpur, Agra, Hyderabad, Anantpur and
Sunderban are shown by ‘star’, ‘circle’, ‘triangle’, ‘square’, ‘hexagon’ and ‘diamond’ respectively. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

157S. Dey et al. / Remote Sensing of Environment 127 (2012) 153–161
the last decade are then estimated (Fig. 4) by multiplying the rate
of change of PM2:5 per month by 120 (i.e. total number of
months). Most of the regions do not show statistically significant
rate of increase (p>0.05, i.e. at 95% CI, which roughly corresponds
to Δ PM2:5b15 μg m−3; although Δ PM2:5b15 μg m−3 is also ob-
served at few sites for significant rate of increase per month) or
decrease of PM2:5 per month. The statistics have been compiled
for all major urban areas with population>1 million in the sub-
continent (last column in Table 2), where bold numbers indicate
ΔPM2:5 that are estimated based on statistically significant rate
Table 1
WHO and Indian standards for annual (1st row) and 24-hr (2nd row) average PM2.5

concentration and the three interim targets of WHO (WHO, 2006). All PM2.5 concentra-
tions are in μg m−3 (‘N/A’ means ‘not available’).

Annual
24-hr

Interim Target 3 Interim Target 2 Interim Target 1

WHO standard 10
25

15
37.5

25
50

35
75

Indian standard 40
60

N/A
N/A

N/A
N/A

N/A
N/A
of increase of PM2:5 per month (at 95% CI). The regions where PM2:5

has increased bymore than 15 μg m−3 in the last decade are character-
ized as hotspots. The largest hotspot (marked as H1 in Fig. 4) stretches
from Punjab and Haryana in the western IGB to eastern Uttar Pradesh.
The second hotspot (H2 in Fig. 4) covers the rural areas of Bihar, West
Bengal and northern Bangladesh. The third hotspot (H3) covers parts
of Orissa and Chhattisgarh, while the fourth (H4) and fifth (H5)
hotspots cover parts of Gujarat and Maharashtra, and Andhra Pradesh
respectively. Nearly 23% of the total population in the subcontinent is
living under these five hotspots.

It must be noted that the statistics has been presented here at
0.5°×0.5° spatial resolution, whereas significant sub-pixel variability
in PM2.5 likely exists in megacities like Delhi (Kumar et al., 2007).
Such sub-pixel variability should be accounted for in more detailed
analysis of health effects using a dense local network of [PM2.5]I. As-
sumption of climatological η over the years may induce a bias in esti-
mated changes of PM2:5 , because η may also change over the years in
this region due to a change in emissions at the source that are not
accounted for by our model and due to change in meteorology that
influences aerosol vertical distribution. However, since the η values
are considered to be constant over the period of study, PM2:5 trends



Table 2
Mean (±1σ) monthly statistics of PM2:5 (in μg m−3) over the urban centers (arranged in decreasing order of population) with population greater than 1 million based on the pop-
ulation data of the year 2000. Total changes in PM2:5 concentration in a 10 year period (ΔPM2:5 ) are given in the last column, where the bold numbers indicate total changes based
on statistically significant rate of increase per month at 95% CI. The names of the urban areas in India where mean annual PM2:5 exceeds the Indian annual standard (Table 1) are
written in ‘bold’ font.

Sr.
No.

Urban Center
(Country)

Latitude
(N)
Longitude
(E)

Population
(million)

Annual PM2:5

(μg m−3)
# Clear days (in %)
for daily PM2:5>
WHO IT-3

# Clear days (in %)
for daily PM2:5>
WHO IT-2

# Clear days (in %)
for daily PM2:5>
WHO IT-1

ΔPM2:5 in
10 years
(in μg−3)

1 Mumbai
(India)

18.9
72.8

17.66 78.8±42 54.0 44.0 23.2 24.6

2 Delhi
(India)

28.5
77.2

16.39 148.4±67 80.0 70.6 42.1 31.1

3 Kolkata
(India)

22.5
88.3

13.55 88.0±45 63.8 54.8 17.2 23.0

4 Karachi
(Pakistan)

24.8
67.0

9.33 76.6±53 63.5 47 36.5 8.2

5 Dhaka
(Bangladesh)

23.7
90.3

7.67 46.6±28 57.9 48.8 13.1 4.1

6 Chennai
(India)

13.1
80.3

6.42 21.3±12 9.1 5.8 1.9 3.6

7 Lahore
(Pakistan)

31.5
74.3

5.14 79.5±42 71.8 63.1 42.2 11.5

8 Bangalore
(India)

12.9
77.6

5.68 14.4±9 9.8 5.3 2.3 0.01

9 Hyderabad
(India)

17.4
78.4

5.53 22.9±13 15.5 11.8 3.9 14.1

10 Ahmadabad
(India)

23.0
72.5

4.69 36.5±26 34.3 24.2 13.2 16.2

11 Pune
(India)

18.4
73.8

3.81 19.4±15 38.3 27.9 10.0 3.9

12 Chittagong
(Bangladesh)

22.4
91.8

2.94 29.9±24 50.7 39.8 8.1 7.9

13 Kanpur
(India)

26.4
80.2

2.84 82.0±45 77.9 68.4 33.1 33.3

14 Surat
(India)

21.2
72.8

2.81 43.3±27 41.0 27.6 14.2 4.6

15 Lucknow
(India)

26.8
80.8

2.42 84.6±47 77.7 70.1 35.2 23.1

16 Jaipur
(India)

26.9
75.8

2.32 64.0±42 49.9 38.0 25.6 8.5

17 Nagpur
(India)

21.1
79.3

2.26 33.9±20 29.5 14.6 5.2 14.9

18 Faisalabad
(Pakistan)

31.2
73.2

2.00 84.1±46 76.5 67.9 48.4 −2.3

19 Patna
(India)

25.6
85.1

1.71 86.6±48 78.1 71.7 33.1 12.5

20 Indore
(India)

22.4
75.5

1.64 27.9±14 25.4 17.1 8.8 6.4

21 Vadodara
(India)

22.3
73.2

1.49 37.7±31 36.7 21.5 11.1 9.0

22 Bhopal
(India)

23.2
77.4

1.45 25.5±15 34.6 23.9 10.9 3.4

23 Coimbatore
(India)

11.0
76.9

1.44 10.7±4 7.7 5.0 2.3 0.5

24 Bhubaneswar
(India)

20.3
85.8

1.43 41.0±29 34.7 22.8 8.1 14.8

25 Rawalpindi
(Pakistan)

33.6
73.1

1.41 33.5±22 42.2 33.4 23.4 0.3

26 Ludhiana
(India)

30.9
75.8

1.39 95.3±50 81.0 74.5 47.9 9.2

27 Kochi
(India)

9.9
76.2

1.36 25.5±19 32.7 21.1 11.7 13.0

28 Visakhapatnam
(India)

17.7
83.2

1.33 22.2±17 2.5 2.1 0.4 12.1

29 Varanasi
(India)

25.2
82.9

1.32 71.1±44 76.1 65.5 30.3 16.1

30 Agra
(India)

27.2
78.1

1.32 88.7±53 81.4 71.5 40.8 21.5

31 Multan
(Pakistan)

30.2
71.4

1.19 91.4±44 76.8 68.5 47.6 −3.3

32 Madurai
(India)

9.8
78.1

1.19 20.2±16 10.2 5.3 3.1 5.7

33 Meerut
(India)

28.9
77.7

1.17 96.4±48 75.9 67.7 38.5 4.1

34 Hyderabad (Pakistan) 25.4
68.4

1.17 94.6±66 68.9 59.0 38.6 −1.3

35 Khulna
(Bangladesh)

22.8
89.6

1.17 44.3±29 59.4 47.4 12.8 11.8
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Fig. 4. Spatial distribution of total changes in PM2:5 concentration (in μg m−3) during
Mar 2000-Feb 2010 over the Indian subcontinent. Increase ofPM2:5 by >15 μg m−3 are
characterized as hotspots. Five hotspots (marked as H1 to H5) are identified across
India and Bangladesh. Locations of some of the large urban centers are also shown
(by open star) for a better reference. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 2 (continued)

Sr.
No.

Urban Center
(Country)

Latitude
(N)
Longitude
(E)

Population
(million)

Annual PM2:5

(μg m−3)
# Clear days (in %)
for daily PM2:5>
WHO IT-3

# Clear days (in %)
for daily PM2:5>
WHO IT-2

# Clear days (in %)
for daily PM2:5>
WHO IT-1

ΔPM2:5 in
10 years
(in μg−3)

36 Gujranwala
(Pakistan)

32.1
74.2

1.13 72.1±40 66.8 57.4 40.5 3.9

37 Narayanganj
(Bangladesh)

23.6
90.5

1.13 42.6±28 55.4 46.1 11.5 10.7

38 Jabalpur
(India)

23.1
79.9

1.12 32.2±20 36.5 24.6 12.7 9.7

39 Jamshedpur
(India)

22.8
86.2

1.10 56.2±39 56.6 40.2 15.3 17.0

40 Asansol
(India)

23.7
86.9

1.09 75.2±37 69.9 58.1 22.6 13.6

41 Nasik
(India)

20.0
73.5

1.08 26.4±21 29.5 21.1 10.7 12.8

42 Dhanbad
(India)

23.8
86.4

1.06 68.6±34 57.9 45.8 17.9 4.4

43 Allahabad
(India)

25.4
81.5

1.05 74.9±42 73.3 62.8 27.6 19.0

44 Amritsar
(India)

31.6
74.9

1.01 73.5±41 70.0 62.1 40.5 22.6

45 Vijaywada
(India)

16.5
80.6

1.01 22.1±15 18.7 5.7 3.3 9.0

46 Rajkot
(India)

22.3
70.8

1.00 28.3±22 41.4 29.9 18.9 3.0
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are essentially controlled by MISR–AOD trends. Although trending
analysis of AOD using satellite data must be approached with caution
due to numerous potential sources of errors in aerosol retrievals, in-
cluding changes in surface reflectance and in radiometric calibration,
as discussed in Li et al. (2009), they have been accounted for here in
using MISR following Dey and Di Girolamo (2011). Other recent stud-
ies (e.g. Porch et al., 2007; Streets et al., 2009; Zhang & Reid, 2010;
Kaskaoutis et al., 2011) have also found increases in AOD at various
regions across the subcontinent. Using data from multiple sources,
Brauer et al. (2012) have also shown an increase in PM2.5 during
the period 1990–2005 over the Indian Subcontinent. Decreasing
trend in surface-reaching solar radiation (Wild et al., 2005) and visi-
bility (Wang et al., 2009) over this region further provide indirect ev-
idences of increasing aerosol concentration. As pointed out by Dey
and Di Girolamo (2011), H1, H3 and H5 are characterized by an in-
crease in aerosols of mostly anthropogenic origin in the post-
monsoon to winter seasons, while H2 and H4 are characterized by in-
crease of aerosols from both anthropogenic and natural sources. In
contrast, the large decrease (by more than 10 μg m−3) in PM2:5

over southwestern Pakistan (Fig. 4) is attributed to a decrease in
AOD, possibly due to an increase in vertical air motion observed in
the region over the past decade (Dey & Di Girolamo, 2011).

4. Implications for human health impacts

Discussion is warranted about the uncertainties in interpreting the
exposure analysis for health impacts. According to WHO guideline
(WHO, 2006), long-term exposure to mean annual PM2.5>IT-1,
>IT-2 and >IT-3 has 15%, 9% and 3% higher mortality risks,
respectively, relative to long-term exposure to annual standard. The
corresponding daily standards are 75 μg m−3, 50 μg m−3 and
37.5 μg m−3 (Table 1). Daily PM2.5 exceeding these three standards
for ≥3 days in a year has 5%, 2.5% and 1.2% higher short-term mortal-
ity risks relative to exposure to daily PM2.5b25 μg m−3. These interim
targets have been determined based on the epidemiological studies
done in developed countries, where PM2.5 concentration greater
than 35 μg m−3 was considered to be very high (e.g. Jerrett et al.,
2005; Pope et al., 2002). PM2.5 concentration is twice as large as
that of IT-1 at many places in the subcontinent throughout a substan-
tial fraction of the year. The mortality risks from exposure to this high
persistent PM2.5 needs to be better quantified.
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Recently, Pope et al. (2011a) suggested that a 10-year exposure
carries only a slightly larger (~2%) relative mortality risk compared to
an annual exposure based on evidence of a non-linearity between risk
and time scale of the exposure. However, the exposure-response rela-
tion is highly variable depending on various socio-economic and demo-
graphic factors viz. indoor vs. outdoor exposure duration, lifestyle,
nutrition level, smoking habit etc. (e.g. Brauer et al., 2012; Pope et al.,
2011a, 2011b; Pope & Dockery, 2006; Cohen et al., 2005; Mohan et al.,
2010). For example, Balakrishnan et al. (2011) has not found any strong
evidence of non-linearity in the exposure-mortality relation in Chennai
city in India based on the analysis of PM10. Another study conducted in
Delhi (Rajarathnam et al., 2011) has found evidence of flattening of
mortality-exposure curve at PM10>400 μg m−3. Based on the analysis
of health data (mortality from cardiopulmonary causes in adults, lung
cancer and acute respiratory infections in children) from major urban
areas in the world, Cohen et al. (2005) concluded that risk of death lin-
early increases with an increase in annual PM2.5 in the range 7.5–
50 μg m−3 and the risk does not increase significantly in response to
further increase in PM2.5 beyond 50 μg m−3. Such thresholds in PM2.5

are not well-defined for India, particularly at the hotspots shown here
where high PM2.5 concentration is persistent throughout the year.

Personal exposure time may be longer in view of the fact that our
PM2:5 estimates are representative of outdoor conditions only and
representative of broad (0.5°×0.5°) areas. Estimated burden of dis-
eases for cardiopulmonary and lung cancer mortality due to outdoor
PM2.5 is quite high in the subcontinent, but the uncertainties may
be as high as 50% due to uncertainties in exposure-response relations
and varying concentration thresholds (Anenberg et al., 2010). In the
future, stricter Indian standard may be adopted based on epidemio-
logical studies. Improved assessment of the uncertainties in estimat-
ing health impacts of outdoor PM2.5 in the subcontinent due to all
these factors and justification of the above standard are only possible
with detailed cohort studies within the hotspots identified in this
study. The exposure-response relation at this persistently high ambi-
ent PM2.5 concentration needs to be re-examined to better quantify
the health effects of this enormous pollution level. The robust
long-term PM2.5 database presented here may guide future studies
in that direction.

5. Summary and conclusions

We present ten-year statistics of the spatial patterns of outdoor
PM2.5 in the Indian Subcontinent for the first time based on satellite
data. Our primary focus is on the exposure analysis in view of the
WHO air quality guidelines. The present study utilizes the methodol-
ogy discussed in van Donkelaar et al.'s (2010) and Brauer et al.'s
(2012) study, but reports many additional contributions. Our focus
is on the Indian Subcontinent, where a synoptic view of space–time
variability of PM2:5 is lacking. We have carried out detailed compari-
son with in-situ data to quantify the bias in the remote-sensing based
methodology at regional scale, which suggests the initial space-based
PM2:5 estimates may be regionally underestimated and that a more
detailed analysis of local AOD–PM2.5 relationships over India is need-
ed. The statistics of space–time distribution of PM2:5 has been gener-
ated for the full decade. Moreover, the persistency of the pollution
level has been examined in view of the WHO interim targets. The
changes in PM2:5 during the last decade have also been estimated.
The major conclusions of the present study are as follows:

1. We show that nearly 1.1 billion people (~82% of the total popula-
tion) from the eight developing countries in the subcontinent are
breathing air with PM2.5 concentration in excess of the WHO-air
quality guidelines (of 10 μg m−3) for a substantial period of the
year. This has significantly worsened over the past decade.

2. PM2.5 concentration in the populated rural areas of the IGB is larger
than many urban centers in peninsular India. Mean annual PM2:5 is
persistently greater than 50 μg m−3 in the IGB and Mumbai met-
ropolitan area.

3. Five hotspots covering parts of eleven Indian states and parts
of Bangladesh are identified, where PM2.5 has increased by
>15 μg m−3 (interim target 3 of WHO) over the past decade.
23% population of the subcontinent is at risk due to exposure
to this enormous rise of pollution at these five hotspots.

Our results demonstrate first regional scale synoptic viewof outdoor
air particulate pollution over the Indian Subcontinent for an entire de-
cade. The background concentration and rise in magnitude of aerosol
loading over the past decade are alarming.We call for more focused co-
hort studies at local scales using in situ observations. In the Indian Sub-
continent, emphasis so far has been on indoor air pollution (e.g. Smith,
2000; Balakrishnan et al., 2002a, 2002b; Hu & Balakrishnan, 2005). The
effect of outdoor particulatematter concentration onmortality has only
been examined in few urban centers (e.g. Balakrishnan et al., 2011;
Rajarathnam et al., 2011), and has only been based on PM10 concentra-
tion. Future expansion of ground-based monitoring networks to moni-
tor PM2.5 should consider the hotspots identified in this study. In
addition, future satellite aerosol retrievals should be done at scales
much smaller than that of MISR's 17.6 km retrieval. This will enable
us to carry out better scale-matching with [PM2.5]I in the context of
highly variable aerosol concentration typically found within urban set-
tings and map the variability (e.g., Kumar et al., 2007). We recommend
further actions to improve the risk assessments of health impacts of the
large pollution over the Indian Subcontinent, namely:

(i) Generate a national health database and carry out cohort stud-
ies at both urban and rural hotspots.

(ii) Establish spatially-varying exposure-response relationships as
function of the social and demographic variables appropriate
for the Indian subcontinent.

(iii) Examine the composition of PM2.5 at these hotspots, because
varying levels of toxicity in PM2.5 may have different exposure-
mortality and exposure-morbidity relations.
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