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One dimensional numerical model has been developed to predict the production of space charge
and variations in other electrical parameters within the low level stratiform type of cloud having
very weak vertical motion. Non-linear coupled differential equations which govern ion concentra-
tions, charged and neutral droplet concentrations and electric field were used. Symmetry has been
observed in all the electrical parameters within the cloud. The magnitude of average positive ion
concentrations was observed to be high as compared to the negative ion concentrations, which is
due to low scavenging rate of positive ions than the negative ions, highly attributed to their mobili-
ties. The rate of scavenging of ions affects the concentration of charged droplets, which eventually
influence the electric field and thus the space charge density within the cloud. Maximum electric
field (Emax) was observed at middle of the cloud whereas minimum was observed at both the edges
of the cloud. Minimum electric field (Emin) was found to be equal and constant (∼27Vm−1) for any
drop concentration. Net positive and negative space charges were observed at the top and bottom
of the cloud, respectively. The simulated results show some discrepancies to the natural condition,
which are due to simulations made under some basic assumptions and limitations and that will be
incorporated in the future studies for natural cloud condition.

1. Introduction

The Earth’s climate could be affected by changes
in cloudiness caused by variations in the intensity
of galactic cosmic rays (GCRs) in the atmosphere
(Svensmark and Friis-Christebsen 1997; Carslaw
et al 2002; Siingh and Singh 2009 with references
therein). The effect of cosmic rays on climate could
be in three ways:

• through changes in the concentration of cloud
condensation nuclei,

• thunderstorm electrification, and
• ice formation in cyclones.

The concentration of cloud condensation nuclei
depends on the light ions produced during cosmic

ray ionization (Farrar 2000; Carslaw et al 2002).
Svensmark et al (2007) based on a laboratory
experiment in which a gas mixture equivalent
to chemical composition of the lower atmosphere
was subjected to UV light and cosmic rays,
reported that the released electrons promoted
fast and efficient formation of ultra-fine aerosol
particles which may grow to become cloud con-
densation nuclei. Aircraft-based ion mass spectro-
meter measurements in the upper troposphere have
shown an evidence for cosmic ray induced aerosol
formation (Solanki 2002; Mouel et al 2005). Obser-
vational studies show that the cosmic ray and
cloud effect seems to be present largely in the
low-altitude clouds, because low-altitude clouds
exert a large net cooling effect on the climate;
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this determines the sign of the possible cosmic ray
and cloud effect (Svensmark and Christensen 1997;
Marsh and Svensmark 2000). Although the low-
altitude clouds of limited vertical extent may only
contain one phase of liquid water, it is a key para-
meter in the numerical climate models used for
future climate change predictions. Kirkby (2007)
had presented an association of high GCR flux with
cooler climate, and low GCR flux with a warmer
climate.

Clouds having both convective and stratiform
types have different electrical properties. To date
several numerical schemes have been constructed
to understand the electrification and the produc-
tion of space charges within the convective clouds,
which have strong vertical motion and strong elec-
tric field (Chiu and Klett 1976; Masuelli et al 1997;
Helsdon et al 2001; Altaratz 2003; Saunders 2008).
However, no numerical studies, to the best of our
knowledge, have been carried out to understand
the production of space charge within the low level
stratiform type of cloud having very weak vertical
motion and weak electric field inside it.

Electrical structures of weakly electrified clouds
such as stratus are less well known, which has
been a subject of investigation (Tinsley et al 2000;
Harrison and Carslaw 2003; Tinsley and Yu 2004).
Stratus is a low level stratiform cloud mainly com-
posed of water droplets with little vertical thick-
ness but tend to be spread out into a thin sheet,
having maximum thickness of about 1 km from
top to bottom and large aerial coverage. It has
been conjectured that inside the clouds, where
conductivity reduces by about an order of magni-
tude with respect to clear air (Rust and Moore
1974), large space charge (up to few tens to
thousands elementary charges per cm−3) can accu-
mulate (Tinsley 2000). The space charge, mostly
the difference between uni-polar charges, is impli-
cated for droplet charging by various processes
notably amongst them is preferential scavenging
of aerosol particles (electro-scavenging) (Tinsley
2000). The space charge increases with the electric
field in the low-conductivity region within the
cloud, thereby restoring the equilibrium verti-
cal conduction current. Thus, although electrical
effects are much weaker in stratiform clouds than
in convective, they are certainly present and the
electric fields and charge densities are modulated
by cosmic rays (Carslaw et al 2002).

In this paper, we have made an attempt to
develop a model for the production of space charge
and to understand the electrical parameters, such
as electric field within the low level stratiform
cloud using non-linear coupled differential equa-
tions, which govern the ion concentration, charged
and neutral droplet concentration and electric field
variation inside the cloud. The detailed model

Figure 1. Schematic diagram of production of uni-polar
space charge due to processes occurring in the presence of
cosmic rays along with the variation in conductivity within
the stratiform cloud. Total air-Earth’s current density (Jz),
penetrating from top of the cloud, is considered constant
with height.

description along with assumptions and initial
boundary conditions are given in the next section.

2. Model descriptions

2.1 Physical understanding

Stratiform clouds could be electrified because their
presence in the free atmosphere reduces conducti-
vity (Rust and Moore 1974; Pruppacher and Klett
1997) and the influence of space charge accumu-
lation on their boundaries due to variations in
air-Earth’s current density (Tinsley 2000), causing
changes in cloud microphysics. Figure 1 shows
a schematic diagram based on the hypothesis
proposed by Tinsley (2000) for the production of
uni-polar space charge within weakly electrified
stratiform type of cloud. It shows total air-Earth’s
current density (Jz = Jz1 + Jz2), a product of
conductivity and electric field, penetrating from
top of the cloud, is constant with height ranging
from ∼1–4 pA m−2 into and out of each volume.
However, Jz1 (positive current density) and Jz2

(negative current density) vary with height due to
recombination and attachment of ions that occur
in the same volume. Thus, the regions of net uni-
polar space charge often exist on the upper and
lower boundaries of the cloud. Schematic diagram
also shows variation in conductivity that reduces
within the cloud (σc) as compared to the clear air
(σa) due to scavenging of ions by their attachment
with cloud droplets.

2.2 Theoretical formulation

A 1-D numerical model, to study the production of
space charges and other electrical properties such
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as electric field, has been developed for low level
stratiform clouds having weak electric field and
weak vertical motion. The non-linear system has
been modeled using coupled differential equations
for the rate of change of ion concentration, charged
and neutral droplet concentration and electric field
variation with height.

The time dependent conservation equation for
positive ions represented by 1 and negative ions
represented by 2 is given as:

dn1

dt
= q − αn1n2 − β1(Sn1 + S2n1) − 1

e
∇Jz1 , (1)

dn2

dt
= q − αn1n2 − β2(Sn2 + S1n2) +

1
e
∇Jz2 . (2)

Here n1,2 are positive (negative) ion concen-
tration, q is the ion production rate, α is the
ion–ion recombination coefficient, β1,2 are posi-
tive (negative) ion attachment coefficients with
droplets, S1,2 are charged droplet concentrations
having unit positive (negative) charge, S is the
neutral droplet concentrations, e is the electronic
charge and Jz1,2 is vertical current density.

The above two equations are balanced by the
production of ions due to ionization from cosmic
rays, i.e., q and loss of ions by various mecha-
nism such as ion–ion recombination, which play
a crucial role in ultra-fine particle formation in
the lower atmosphere (Mohnen 1977; Yu and
Turco 2001), and ion-droplet attachment within
the cloud (Griffiths et al 1974). The last term
of equations (1) and (2) indicates flux of posi-
tive (∇Jz1) and negative (∇Jz2) ions, respectively
which produces an imbalance between both the
ions in a region. Direct measurement of total cur-
rent density, Jz is difficult, therefore it is usu-
ally derived from the simultaneous measurements
of conductivity and electric field and can be
expressed as:

Jz = Jz1 + Jz2 = σz1Ez + σz2Ez. (3)

By such an approach, Jz is found to be constant
vertically in the stable and fair weather conditions
(Gringel et al 1986; Siingh et al 2007 and the refe-
rences therein). In equation (3), σz1 and σz2 are the
positive and negative ion conductivity, respectively
which can be expressed in terms of ionic number
density (n1, n2) and mobility of ions (μz1, μz2). The
total current density from equation (3) becomes:

Jz = (μz1n1e + μz2n2e)Ez;

Ez =
Jz

e

(
1

μz1n1 + μz2n2

)
. (4)

Equation (4) can be used as an initial value in
the model for the electric field at cloud boundaries
using total current density (Jz) penetrating from
top of the cloud.

Now, the last term of equations (1) and (2) can
be written as:

1
e
∇Jz1 =

1
e
∇(μz1n1eEz);

1
e
∇Jz2 =

1
e
∇(μz2n2eE2). (5)

For horizontal stratification and at steady state,
the above equations can be written as:

1
e
∇Jz1 =

1
e

∂

∂z
(Jz1)=μz1n1

∂

∂z
(Ez)+Ez

∂

∂z
(μz1n1);

1
e
∇Jz2 =

1
e

∂

∂z
(Jz2)=μz2n2

∂

∂z
(Ez)+Ez

∂

∂z
(μz2n2).

(6)

Using the values from equation (6), equations (1)
and (2) becomes:

dn1

dt
= q − αn1n2 − β1(Sn1 + S2n1)

− μz1n1

∂

∂z
(Ez) − Ez

∂

∂z
(μz1n1); (7a)

dn2

dt
= q − αn1n2 − β2(Sn1 + S2n1)

+ μz2n2

∂

∂z
(Ez) + Ez

∂

∂z
(μz2n2). (7b)

S1 and S2 are the number concentration of singly
positive and negative charge droplets, respectively.
The time dependent balance equation for charged
particles is depicted by Harrison and Carslaw
(2003). However, by ignoring positive ions attach-
ment to the positively charged droplets and nega-
tive ions attachment to the negatively charged
droplets, the balance equations for single positive
and single negative charge drops can be written in
equations (8) and (9), respectively as:

dS1

dt
= β1Sn1 − β2S1n2; (8)
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dS2

dt
= β2Sn2 − β1S2n1. (9)

The first term of both equations represent the
production of positively and negatively charged
droplets due to the attachment of positive and
negative ions with neutral droplets, respectively
whereas the last term represents loss of posi-
tively and negatively charged droplets due to their
attachment with negative and positive ions, respec-
tively. S is the neutral droplet concentration within
the cloud, which can also be written by using
above two equations (8) and (9) as:

dS

dt
= (β2S1n2 +β1S2n1)− (β1Sn1 +β2Sn2). (10)

The first bracket indicates the production of
neutral droplets by neutralizing the positively and
negatively charged droplets due to their attach-
ment with negative and positive ions, respectively.
However, the second bracket represents loss of neu-
tral droplets due to their attachment with positive
and negative ions, respectively.

The characteristic of ions that relates directly
to their ability to take part in the flow of electric
current, is their mobility (μ), which is the aver-
age velocity acquired by small ions as it moves
under the force exerted on it by the electric field.
Ion mobility controls the rate of uptake of ions by
the aerosols and droplets. Mobility varies inversely
with the mass of cluster of ions (Harrison 1992);

μ =
2 × 10−4√

(M + 29/M)
, (11)

where M is the mass of ions.
In the present cloud model, H+(H2O)m is used

as positive ion (μ1) and O−
2 (H2O)n as negative ion

(μ2) where ‘m’ and ‘n’ are the hydrated water
molecules, vary in such a manner that both the ion
mobilities are maximum at the edges of the cloud
and decreasing inside with minimum at the middle
of the cloud, as shown in figure 2.

The chemical differences between the species of
positive and negative ions lead to some physi-
cal asymmetries in the ion properties and cause
negative ions to have greater mobility than posi-
tive ions, i.e., μ2 > μ1 (Mohnen 1977). The magni-
tude of the difference is typically ∼20% but varies
with humidity in response to changes in the ion
hydration as well as ion composition (Harrison and
Carslaw 2003). This asymmetry is central to the
cloud electrification. In the present study, average
positive ion mobility was observed to be ∼7% less

Figure 2. Variation in positive (μ1) and negative (μ2) ion
mobilities inside the cloud.

as compared to the average negative ion mobility
within the cloud. The positive and negative ion
mobility at the cloud boundaries were calculated to
be maximum ∼1.3 × 10−4 and 1.5×10−4 m2V−1s−1

using low hydrated water molecules, i.e., m = 4 and
n = 1, respectively which approaches to minimum
∼1.0 × 10−4 and 9.75 × 10−5 m2V−1s−1 using large
hydrated water molecules, i.e., m = 6 and n = 3,
respectively at middle of the cloud. The difference
between both the ionic mobilities are high at the
boundaries where negative ion mobility was ∼15%
more than the positive ion mobility and low at
the middle of the cloud where negative ion mobi-
lity was ∼4% more than the positive ion mobility.
To get the mobility values at each point within
the cloud, a second order polynomial was fitted for
both the ionic mobilities with step size (X) and the
polynomial equations are:

Y = 1.20648 × 10−4 − 9.30144 × 10−8

× X + 9.30144 × 10−11 × X2, (12a)

Y = 1.34547 × 10−4 − 1.34673 × 10−7

× X + 1.34673 × 10−10 × X2. (12b)

Equations (12a) and (12b) predict a decrease in
both positive and negative ion mobilities by ∼25%
and 33%, respectively from cloud boundaries to the
middle of the cloud.

The rate of uptake of ions by cloud droplets is
known as collision rate, which leads to charging of
these droplets. It is normally expressed in terms of
attachment coefficient, which varies with height as
a function of ionic mobility. The attachment coeffi-
cient, primarily, depends on droplet size and the
number concentration of ions of both polarities.
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It is also said to depend on the magnitude of
charges carried by the droplets. However, when
cloud droplets act as collectors of ions, the collec-
tion current is independent of the droplet charge
for typical conditions (Pruppacher and Klett 1997,
pp 798). So, the charged droplets of either sign
and the neutral droplets should all collect ions at
the same rate that only depends on the properties
of the ions. Attachment coefficients, β1,2 for posi-
tive (negative) ions with cloud droplet of radii ‘ac’
were given by Griffiths et al (1974); Chiu (1978);
Pruppacher and Klett (1997):

β1,2(ac) = 4πacD1,2, (13)

where D1,2 = (μ1,2KT/e) is the diffusion coefficient
of positive (negative) ions.

Thus, equation (14) becomes:

β1,2(ac) =
4πacKTμ1,2

e
, (14)

where K is the Boltzmann constant and T is the
temperature.

The radius of cloud droplets of average size ‘ac’
can be computed from a relationship given by Chiu
(1978):

ac =
(

3
4

ρlc
πρwS

)1/3

, (15)

where ρ is the density of air (∼1.239 kg m−3), lc
is the liquid water content within the cloud, ρw is
the density of water (∼1000 kg m−3) and S is the
drop concentration within the cloud. Equation (16)
reveals that the average drop radii will decrease
with increase in drop number concentration within
the cloud.

The majority of free charges in the fair weather
part of the atmosphere arise from natural ioniza-
tion, e.g., cosmic rays (Chalmers 1967; Siingh and
Singh 2009), which is more dominant activity away
from the surface. The space charge, in the fair
weather, is the difference between the concentra-
tion of positive and negative ions. However, within
the clouds most of the positive and negative ions
will be in the form of charged droplets (Tinsley
2000). Therefore, space charge, in the above case,
will be the sum of differences between the con-
centration of positive and negative ions and the
concentration of positively and negatively charged
droplets, which is given as:

ρ = e[(n1 − n2) + (S1 − S2)]. (16)

Variations in electric field (E) and space
charge (ρ) are coupled by Poisson’s equation
(∇ · E = (ρ/ε)); where ε is the permittivity of
vacume (∼ 8.85419e − 12F m−1). Thus, assuming
horizontal stratification, the Poisson’s equation can
be written as:

∂Ez

∂z
=

ρ

ε
=

e

ε
[(n1 − n2) + (S1 − S2)]. (17)

To develop a 1-D numerical model to under-
stand the electrical properties and the production
of space charge inside the stratiform cloud, we
have solved equations (7a), (7b), (8), (9), (10) and
(17) simultaneously, using Gauss–Seidel iterative
method (Jain 1984) to get solution for enough time
to come to a steady state. The methodology of
solving these equations will be discussed in the next
section, which also includes basic assumptions and
the boundary conditions of the model.

2.3 Methodology

The above equations were discretized using
purely implicit finite difference scheme, which
enables the integration of a differential equation
numerically by evaluating the values of the func-
tion at finite number of points. All the equations
were integrated for sufficient time until steady
state condition is reached. Finite difference scheme,
applied here, has been solved using false tran-
sient method in time step, i.e., the steady state
time computed by the program is independent of
actual time. The origin of this method is Taylor
series expansion, which assumes that the func-
tion is smooth, i.e., continuous and differentiable.
Time derivative is discretized using forward differ-
ence and space derivatives with backward/forward
difference usually called forward time backward
space (FTBS) and/or forward time forward space
(FTFS) method of discretization (Ghoshdastidar
1998).

The model presented here is for stable cloud
layer, i.e., no vertical or horizontal motions exist
within the cloud. The basic assumption made while
solving these equations is: cloud contains mono-
dispersed droplets (i.e., all with the same radius),
representing the dominant size category, with at
most a single positive and/or negative charge.
Thus, β (ion attachment coefficient with droplet)
in each case apply to the radius of the dominant
droplets. The boundary conditions of the model
includes:

• equal and maximum positive and negative ion
concentration,
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Table 1. Typical values of the atmospheric parameters used
to calculate the initial boundary conditions of model.

Atmospheric
components Typical values References

q ∼1 × 107 ion Schonland (1953)
pair m−3 s−1

α ∼1.6 × 10−12 m3 s−1 Schonland (1953)

Jz ∼3 pA m−2 Harrison (2005)

Table 2. Average drop concentrations
and the corresponding radii within the
cloud for a constant liquid water con-
tent ∼0.3 g kg−1 within stratus cloud
(Chiu 1978).

Average drop Drop radii
concentration (m−3) (μm)

1.0e8 9.5

5.0e8 5.6

1.0e9 4.5

• total drop concentration are zero at top and
bottom of cloud, consequently,

• total charged and neutral droplet concentration
are also zero at both the cloud boundaries.

n1,2(0, t) = n1,2(N, t) =
( q

α

)1/2

, (18)

E(0) = E(N) =
Jz

e
(μ1n1 + μ2n2), (19)

S1,2(0, t) = S1,2(N, t) = 0, (20)

S(0, t) = S(N, t) = 0, (21)

where ‘0’ and ‘N ’ represents first and last boundary
of the cloud. S is the total drop concentration when
they are uncharged at time t = 0, which we have
assumed to be varied sinusoidally within the cloud
as S = S0(sin(πΔz/Z))2 with maximum concen-
tration at middle of the cloud. S0 is the maximum
drop concentration at middle of the cloud; Z is the
total thickness of the cloud (1000 m in the present
simulation) and Δz is the small increment (1 m).
Typical value of the atmospheric parameters, used
to calculate the initial boundary conditions for ion
concentration and electric field, is given in table 1.

3. Results

The variations in ionic concentration, within the
cloud, are extensively attributed to the variations

Figure 3. Variation in total drop concentrations within the
cloud at different drop sizes.

in drop number concentration and their sizes
through scavenging due to attachment process that
influence the concentration of charged droplets and
thus the production of space charge and electric
field (Harrison and Carslaw 2003). The experimen-
tally determined cloud droplet number concentra-
tions are to be below 1.0e8 m−3 and rarely above
1.0e9 m−3 within the stratiform clouds (Anderson
et al 1994; Gillani et al 1995). In the present
study, we have considered three different sets of
calculation assuming three different average drop
concentrations 1.0e8, 5.0e8 and 1.0e9 m−3 having
mono-dispersed drops of average drop radii ∼9.5,
5.6 and 4.5μm, respectively, which were calculated
from equation (16) keeping constant liquid water
content ∼0.3 gm kg−1 within stratus cloud (Chiu
1978) and shown in table 2.

3.1 Total drop concentration

The drop concentration within the cloud is one
of the important parameter, which influences the
cloud electrification. The variation in total drop
concentrations within the cloud having three dif-
ferent drop sizes (mono-dispersed) are shown in
figure 3, which indicates maximum drop concen-
tration at middle of the cloud. It also reveals that
the large average drop concentrations are having
smaller drop sizes and vice-versa.

3.2 Total ion concentration

The variation in ion concentrations within the
cloud is shown in figure 4 for three different
average drop concentrations, as mentioned before.
The magnitude of average positive and negative
ion concentrations were observed to be ∼8.18e8
and 8.16e8 m−3, respectively within the cloud for
drop concentration 1.0e8 m−3 having drop radii
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Figure 4. Variation in ionic concentrations within the cloud
having different drop concentrations at different sizes.

∼9.5μm. Significant decrease in bi-polar ionic con-
centrations was observed by ∼42% and 54% as the
drop concentrations increased by 5 and 10 times
with significant decrease in drop radii ∼41% and
52%, respectively. In all the three cases, the aver-
age positive ion concentrations were observed to be
higher than the negative ion concentrations within
the cloud, which is due to smaller attachment

coefficient of positive ions as compared to the
negative ions.

The attachment coefficient of ions to the cloud
drops highly depend on the mobility of ions,
drop sizes and also on the drop concentrations
(equations 14 and 15). It generally decreases with
decreasing drop sizes (not shown here). The rate of
ion removal or scavenging within the cloud highly
depends on their attachment coefficients and drop
concentrations apart from drop size. Thus, the
results obtained (figure 4) reveal a decrease in ion
scavenging for larger size drops (∼9.5μm), which
is mainly attributed to the presence of significantly
lower drop concentrations (1.0e8 m−3). Therefore,
although the attachment coefficient is high, in the
above case, ion scavenging rate is low. Figure also
shows a significant increase in ion scavenging rate
due to increased average drop concentrations by 5
and 10 times with significant decrease in drop radii
∼41% and 52%, respectively.

The concentration of both ions decreased up to
about middle of the cloud where it crosses each
other, above which the average positive ion con-
centrations were observed to be ∼3%, 9% and
12% more than that of the average negative ion
concentrations having average drop concentrations
1.0e8, 5.0e8 and 1.0e9 m−3 with radii ∼9.5, 5.6 and
4.5μm, respectively; however, opposite was true
near the bottom of the cloud. In this case, higher
positive ions near the top and higher negative ions
near the bottom of the cloud were observed due to
unequal loss rates of two ions. Production of both
ions are same but loss of negative ions is more near
the cloud top and vice-versa is true near the cloud
bottom.

3.3 Total charged and neutral drop
concentration

Because total drop concentrations within the cloud
are considered to vary sinusoidally with altitude,
it is maximum at the middle and minimum at the
cloud boundaries (shown in figure 3 for different
size of droplets). Consequently, the ion concentra-
tion will significantly reduce up to middle of the
cloud due to their attachment to the cloud droplets,
as already discussed in figure 4. The ion removal
process will thus increase the charged drop con-
centrations, i.e., positive (S1) and negative charge
drops (S2) as shown in figure 5 with dash and dash-
dot lines, respectively, and consequently decrease
in total drop concentrations (S) within the cloud at
steady-state. The steady-state uncharged droplets
are termed as neutral droplet concentrations (So),
which is shown in the same figure with solid line.
Average positive, negative and neutral drop con-
centrations were observed ∼32, 35 and 33% of the
total drop concentrations.
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Figure 5. Variation in positively charged, S1 (dash line),
negatively charged, S2 (dash-dot line) and neutral, So (solid
line) drop concentrations within the cloud having different
drop concentrations of different sizes.

In contrast to the average positive and negative
ion concentrations within the cloud, average posi-
tive charge drops were observed to be less as com-
pared to the average negative charge drops. This is
due to the low magnitude of attachment coefficient
of positive ions as compared to that of negative
ions, as discussed before. The magnitude of average

Figure 6. Variation in electric field within the cloud having
different drop concentrations at different sizes.

positive and negative charged drops were observed
∼3.2e7 and 3.5e7 m−3 within the cloud, contain-
ing average drop concentrations 1.0e8 m−3 having
drop radii ∼9.5μm, which increases by ∼5 and 10
times as the average drop concentrations increased
by 5 and 10 times with significant decrease in drop
radii ∼41% and 52%, respectively. The concentra-
tion of both the charged droplets were observed to
be increased up to about middle of the cloud where
it crosses each other and showing similar beha-
viour as obtained in case of ionic concentrations
near top and bottom of the cloud. The remaining
uncharged droplets, termed as neutral, were also
observed within the cloud, which compensate the
total drop concentrations.

3.4 Electric field

An enhancement in the production of charged
droplets associated with ion removal will conse-
quently increase the electric field within the cloud
to compensate vertical current density, as shown
in figure 6. Minimum electric field (Emin) was
observed ∼27V m−1 at both the edges of cloud,
which is the constant initial value goes into the
model, calculated using various initial parameters
already discussed earlier. Maximum electric field
(Emax) was observed at middle of the cloud where
it was ∼260V m−1 in the case of cloud having
average drop concentrations 1.0e8 m−3 with radii
∼9.5μm. It increases significantly by ∼3 and 5
times as the average drop concentrations increased
by 5 and 10 times with significant decrease in drop
radii ∼41% and 52%, respectively. Variations in
electric field inside the cloud are in accordance
with the observed electric field variations in non-
thunderstorm cloud as reported by MacGorman
and Rust (1998, pp. 46–47).
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Figure 7. Variation in uni-polar space charge within the
cloud having different drop concentrations at different sizes.

3.5 Uni-polar space charge

Regions of dominance of ions and charged particles
create a gradient in the air conductivity in
presence of non-zero current density, which lead
to the presence of space charge. The atmospheric
electrical conductivity is generally increased expo-
nentially with altitude in fair weather condition.
However, it decreases inside the cloud (and aerosol)
layers where ions are scavenged by cloud drops
(and aerosol particles), which are highly associated
with electric field as discussed earlier, so the regions
of net uni-polar space charge will often exist on the
upper and lower surfaces of the layers (Harrison
and Carslaw 2003).

The present simulation results the variations
in uni-polar space charge within the cloud con-
taining different drop concentrations at different
sizes, which are shown in figure 7. The aver-
age net positive and net negative space charges
(∼2.6 × 107 e m−3) were observed at the top and
bottom of the cloud, which contains average drop
concentrations 1.0e8 m−3 of radii ∼9.5μm. The
space charge was observed to be increased by
∼3 and 5 times as the average drop concentra-
tions increased by 5 and 10 times with significant
decrease in drop radii ∼41% and 52%, respectively.
Both positive and negative space charges were
observed to be maximum at ∼250 and 750 m alti-
tude level, respectively inside the cloud (from its
top) containing different drop concentrations of
different sizes.

4. Discussions and implications
to the natural cloud

An attempt has been made to develop a numerical
model for the production of space charge and to

understand the behaviour of other electrical para-
meters within the stratiform cloud. Though the
present simulated results show some discrepancies
to the natural conditions, which could be due to
simulations made under some basic assumptions
and limitations to solve the complex non-linear
coupled differential equations, it is crucial to study
these electrical parameters to understand their
impacts on non-thunderstorm clouds, and there-
fore conceivably on climate, via cloud microphysi-
cal processes (Harrison 2005).

In an earlier study, Zhou and Tinsley (2007)
also modeled the production of space charge and
its partition between charges on droplets, aerosol
particles and ions and perform its sensitivity for
the variations of different electrical parameters.
They have considered mono-dispersive aerosol size
distribution, with at most a single positive and
negative charge on aerosol. They have also consi-
dered the droplet concentrations of mono-disperse
size distribution and reported typically 50–100 ele-
mentary charges on both positively and negatively
charged droplets. Though most of the attachment
of ions within the clouds occurs on droplets rather
than on aerosol particles, we have considered only
droplet concentrations of mono-disperse size distri-
bution having single positive and negative charges
in the present study. A discussion on the impli-
cations of assumptions considered in the present
study to the natural condition have been given in
the next section by comparing simulated results
with those obtained by Zhou and Tinsley (2007)
using a cloud model and also with few available
observational results.

4.1 Effects of single and multiple droplet
charges

Enhancement in the concentration of cloud
droplets within cloud increases the ions attach-
ment, which reduces the ion concentrations and
results in an increase in the charged drop
concentrations within the cloud as clearly seen
in figures 4 and 5, respectively. A decrease in
the ionic concentrations reduces ionic conducti-
vity within the cloud which, in turn, results in
an increase in electric field (figure 6). The above
results help in producing positive and negative
space charges at top and bottom boundaries of
the cloud, respectively, which increases signifi-
cantly with an increase in cloud drop concentra-
tions (figure 7). The magnitude of the above results
differs significantly from the results obtained by
Zhou and Tinsley (2007, figure 3), which is clearly
a consequence of considering mono-disperse size
distributions of single positive and single nega-
tive charged aerosols along with multiple charged
droplets in a cloud model having comparatively less
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cloud layer thickness. Nevertheless, the nature of
variations in the electrical parameters was found to
be nearly similar to the present simulated results.
To understand the percentage difference in the
magnitude of the electrical parameters obtained
from the present simulation and simulation done
by Zhou and Tinsley (2007), a comparison in the
magnitude of electric field was done for an identi-
cal case for the droplet concentrations of 1.0e8 m−3.
The simulated electric field value in the present
study shows a decrease of ∼30% from the value
obtained by Zhou and Tinsley (2007).

In an earlier study, Griffiths et al (1974) have
shown that the effect of droplet charge (varied
over a wide range) and its distribution over the
droplets on normalized conductivity (the ratio
of the in-cloud value to the clear-air value at
the same altitude) is significantly very small in
the weakly-electrified clouds. However, the only
significant effect exercised by cloud charge is to
introduce an asymmetry into the process of ionic
immobilization. Zhou and Tinsley (2007) showed
that 50% variations in air-Earth’s current density
(Jz) can cause up to about 40% variations in charge
on droplets and aerosols. These variations can
certainly influence the collision processes between
them and may affect cloud cover and climate.
Earlier, Tinsley et al (2006) have numerically
demonstrated that charges on aerosol particles
and/or cloud droplets modify the droplet–particle
collision efficiencies involved in scavenging, and
the droplet–droplet and particle–particle collision
efficiencies involved in coalescence of droplets
and particles, even in weakly-electrified clouds and
aerosol layers. Apart from the model estimated
results, there are also a few observational evi-
dences for the enhancement of space charge within
the non-thunderstorm cloud. In the earlier studies,
Clark (1958); Imyanitov and Chubarina (1967)
have observed the space charge density typically
∼0.5 − 1.0 × 108 e m−3, which are nearly compa-
rable to the present model estimated values. On the
other hand, Tinsley (2000) estimated the space
charge density at the interface of top of the cloud
and found very large magnitude of charge density
(∼109 − 1010 e m−3), which are due to his assump-
tion of a very thin region (∼1 − 10m) above the
cloud where space charge accumulation occurs
(Harrison and Carslaw 2003).

The discrepancy in the present study of space
charge density and the other electrical para-
meters, apart from the layer thickness, could also
due to the electrical parameter’s dependence on
several factors, including the stability of cloud
layer in terms of turbulent mixing (not included
in the present model simulation), ionization rate
(q) and the total air-Earth current density (Jz)
(Harrison and Carslaw 2003), which are considered

Table 3. Variation in space charge within
the cloud at varying cloud thickness.

Cloud thickness ρ+(ρ+Max)

(m) (e m−3)

1000 8.07e7 (1.27e8)

500 1.61e8 (2.45e8)

100 5.85e8 (7.64e8)

50 7.77e8 (1.0e9)

as constant under steady condition and taken
as the typical values (table 1) for calculating
initial boundary conditions of the model. Apart
from the above factors, cloud drop concentra-
tions and their sizes are the other important para-
meters that can also profoundly affect the various
electrical parameters within the cloud, which is
not mentioned in the earlier studies (Clark 1958;
Imyanitov and Chubarina 1967; Tinsley 2000) and
considered slightly different from the present simu-
lations by Zhou and Tinsley (2007) in the cloud
model. It can change the total ionic and charged
drop concentrations and thus modulate the total
space charge density by changing electric field
within the cloud.

4.2 Effects of thickness of cloud layer

The model presented here is for the stable cloud
layer. However, localized downward (and upward)
winds near the top (and bottom) of the cloud
can cause narrowing of the cloud layer and thus
increased gradient of all the electrical parameters
within the cloud (Zhou and Tinsley 2007). Zhou
and Tinsley (2007) have reported that variations
in vertical air-Earth’s current density (Jz1 and Jz2)
due to variations in relative amounts of positive
and negative ion concentrations (n1 and n2) cre-
ate space charges at the cloud boundaries. Con-
sequently, more positive ions can flow downward
than the negative ions flow upward from the top
of the cloud, because of the decreased ion concen-
tration within the cloud. Similarly, more negative
ions can flow upward from the bottom of the cloud
than positive ions flow down.

To understand the dependence of space charge
on thickness of cloud layer, simulations have been
done for the variations of space charge within the
cloud by varying cloud thickness. Simulations were
done for a single case of cloud, containing droplet
concentrations of 5.0e8 m−3 having drop radii of
∼5.6μm. Results are shown in table 3 where the
values outside the brackets indicate net average
positive space charge at top of the cloud; the values
in the brackets indicate maximum positive space
charge within the cloud. Similar magnitude with
opposite sign, i.e., negative space charge, was
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observed at bottom of the cloud. Table 3 clearly
reveals that the magnitude of space charge highly
depends on cloud layer thickness. A significant
increase in space charge with narrowing cloud layer
thickness was observed in the present simulation.
Nearly similar feature in the nature of variation
of space charge within the cloud was reported
earlier by Tinsley (2000); Harrison and Carslaw
(2003); Zhou and Tinsley (2007). Other electrical
parameters within the cloud except electric field
show similar behaviour as discussed above for space
charge. However, a significant decrease in electric
field was observed with decrease in cloud thickness
as can be understood from equation (18).

5. Conclusions

• Numerical simulations of the production of space
charge and the variations in other electrical para-
meters within the low level stratiform cloud have
been done by assuming mono-disperse droplet
distribution, with at most a single positive
and/or negative charge.

• The magnitude of average positive ion concen-
trations was observed to be more than the aver-
age negative ion concentrations within the cloud
due to low scavenging rate of positive ions than
the negative ions, which is highly attributed to
their mobilities. Consequently, low concentration
of average positive charge drops were observed as
compared to the average negative charge drops.
On the other hand, the concentration of aver-
age net positive ions and net positively charged
drops were observed to be higher near the top
of cloud than the concentration of average net
negative ions and net negatively charged drops;
however, reverse was observed near the cloud
bottom.

• The magnitude of maximum electric field (Emax)
was observed ∼260V m−1 at middle of the cloud
having average drop concentrations 1.0e8 m−3

with radii ∼9.5μm, which increases significantly
by ∼3 and 5 times as the average drop concen-
trations increased by 5 and 10 times with sub-
sequent decrease in drop radii ∼41 and 52%,
respectively. However, the magnitude of mini-
mum electric field (Emin) was observed to be con-
stant (∼27V m−1) at both the edges of cloud for
any drop concentrations.

• Net positive space charge density was observed
at the top and negative at the bottom of
the cloud, which was attained ∼2.6 × 107 e m−3

when cloud containing the average drop concen-
trations 1.0e8 m−3 having drop radii ∼9.5μm.
The space charge density was observed to be
increased by ∼3 and 5 times as the average drop
concentrations increased by 5 and 10 times with

significant decrease in drop radii ∼41 and 52%,
respectively.

• All the above electrical parameters are highly
sensitive to the thickness of the cloud. Except
electric field within the cloud, other electri-
cal parameters show significant increase with
narrowing the cloud thickness. However, a signi-
ficant decrease in electric field was observed with
decrease in cloud depth.
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