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Summary

Little is known about microbial communities in the
Ganges River, India and how they respond to inten-
sive anthropogenic inputs. Here we applied shotgun
metagenomics sequencing to study microbial com-
munity dynamics and function in planktonic samples
collected along an approximately 700 km river tran-
sect, including urban cities and rural settings in
upstream waters, before and after the monsoon rainy
season. Our results showed that 11%–32% of the
microbes represented terrestrial, sewage and human
inputs (allochthonous). Sewage inputs significantly
contributed to the higher abundance, by 13-fold of
human gut microbiome (HG) associated sequences
and 2-fold of antibiotic resistance genes (ARGs) in
the Ganges relative to other riverine ecosystems in
Europe, North and South America. Metagenome-
assembled genome sequences (MAGs) representing
allochthonous populations were detectable and trac-
table across the river after 1–2 days of (downstream)
transport (> 200 km apart). Only approximately 8% of

these MAGs were abundant in U.S. freshwater eco-
systems, revealing distinct biodiversity for the Gan-
ges. Microbial communities in the rainy season
exhibited increased alpha-diversity and spatial
heterogeneity and showed significantly weaker
distance-decay patterns compared with the dry sea-
son. These results advance our understanding of the
Ganges microbial communities and how they
respond to anthropogenic pollution.

Introduction

The Ganges River is the third largest river in the world by
total amount of water discharged. It arises in the western
Himalayas in the Indian state of Uttarakhand and tra-
verses through many major cities such as Haridwar,
Kanpur and Allahabad, draining about one quarter of
India. Because of the geographical, historical, sociocul-
tural and economic reasons, it is the most important river
for the Indian people (Buhtiani et al., 2016). During the
past couple of decades, intensified anthropogenic effects
on the river have been reported, caused by expanding
human population, industrialization and intensive agricul-
tural practices (Sood et al., 2008). Direct waste discharge
into the river from anthropogenic sources such as faecal
(Tyagi et al., 2013), agricultural, industrial and sewage
wastes (Namrata, 2010) has been reported. Moreover,
poorly regulated use of antibiotics in India has resulted in
highly antibiotic resistant bacterial pathogens (Murki,
2009), and threatens water quality in the Ganges River.

Allochthonous inputs from human sources can
increase the abundance of antibiotic resistance genes
(ARGs; Marti et al., 2013) or mobile elements (Gillings
et al., 2015), with potentially important public health rami-
fications. Driven by the rapid advances in sequencing
technology, metagenomic approaches have been widely
applied to the study of microbial communities in riverine
and other ecosystems (Oh et al., 2011; Ghai, 2011; Abia
et al., 2018). Studies of anthropogenic effects on micro-
bial communities in freshwater systems have shown that
the discharge of industrial waste can affect microbial
diversity both at taxonomic and functional composition
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levels (Chao et al., 2013). For instance, anthropogenic
inputs along the Kalamas River in Greece can dramati-
cally affect bacterial diversity with fewer than 5% of the
total 16S rRNA gene-based operational taxonomic units
(OTUs) being shared between samples from four sea-
sons and two consecutive years (Meziti et al., 2016).

The microbial communities in the Ganges River and
their responses to anthropogenic inputs remain essen-
tially uncharacterized by culture-independent, metage-
nomic techniques, despite the apparent importance of
the river for millions of Indians who live along its banks
(Sharma et al., 2014). Recent studies have mostly
focused on the isolation of pathogens or faecal coliform
levels in the Ganges River (Tyagi et al., 2013; Hamner
et al., 2007). It is also not clear how the Ganges microbial
communities compare to their counterparts in other river-
ine ecosystems across the world. Compared with the
other studied riverine ecosystems, the Ganges River in
India has much higher density of human population along
its banks, and presumably heavier contamination from
industrial and human waste. Therefore, it represents an
ideal ecosystem to study how freshwater microbes
respond to anthropogenic inputs and potentially discover
novel diversity. In addition, the Ganges covers a distance
of over 2700 km, making it suitable to study the transpor-
tation of microbial populations along the river, especially
between upstream, mountainous headwaters relative to
downstream, density populated areas.

Herein, we investigate the variation in microbial com-
munities in the Ganges River in two consecutive years,
before or after the monsoon rainy season, at five sites
along the river, aiming to address the following questions:
(1) Are microbes in the Ganges river associated with high
allochthonous inputs? (2) If yes, from where do allochtho-
nous inputs originate and are they traceable along the
Ganges River? (3) What is the effect of the monsoon
(rainy season) and anthropogenic inputs on microbial
community composition in the river?

Results

Description of samples and metagenomes

A total of 18 samples were collected along the Ganges
River basin in India from upstream, less populated Gang-
otri and Haridwar areas, and downstream, urban settings
in Kanpur, Allahabad and Agra (Fig. 1 and Supporting
Information Table S1). Samples collected in 2015 were
after the rainy season (region-wide monthly rainfall:
267.9 mm), that is, wet season samples. While samples
collected in 2016 were before the rainy season, referred
to as dry season samples (region-wide monthly rainfall:
19.1 mm) [rainfall statistics for India are available at
http://hydro.imd.gov.in/hydrometweb/]. The wet season
samples included those collected from upstream waters
in Haridwar (Har_wet1 and Har_wet2), downstream

Fig. 1. Location of sampling sites along the Ganges River. Triangles represent samples collected in the wet season; squares represent samples
collected in the dry season. The gradient from orange to pink indicates the population density along the river bank (see Figure key). The map of
sampling sites was constructed on the ArcGIS platform and overlaid with World Land cover 30 m BaseVue 2013 and World Population Estimate
[available at: http://www.arcgis.com/].
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waters in Kanpur (Kan_wet1 and Kan_wet2), and a tribu-
tary to the Ganges River (Yamuna River) in Agra
(Agr_wet1 and Agr_wet2). The dry season samples
included those collected from upstream waters in
Gangotri (Gan_dry1, Gan_dry2 and Gan_dry3) and Har-
idwar (Har_dry1, Har_dry2 and Har_dry3), and down-
stream waters in Kanpur (Kan_dry1, Kan_dry2 and
Kan_dry3) and Allahabad (Alla_dry1, Alla_dry2 and
Alla_dry3). Dry season samples showed substantial vari-
ation in their physiochemical properties. Notably, higher
turbidity (1175 vs. 6–95) and lower pH (6.7 vs. 7.7–7.9)
were detected upstream in Gangotri compared with the
downstream (Supporting Information Table S2); no such
measurements were performed in the wet season
samples.
Around 5Gbp of shotgun metagenomic data were

acquired after trimming for each of the Ganges samples.
The coverage of the 18 metagenomes achieved by
sequencing, that is, the fraction of the total extracted
DNA that was sequenced, ranged from 45% to 85% as
assessed by Nonpareil 3.0 (Rodriguez-R and Konstanti-
nidis, 2014a, b; Rodriguez-R et al., 2018a, b). This level
of coverage is adequate for between sample compari-
sons and assembly (Rodriguez-R and Konstantinidis,
2016). Between 183,096 and 431,188 genes were
predicted from assembled contigs depending on the
metagenome considered, with 30%–67% of total metage-
nomic reads mapping to the contigs (> 95% identity and
> 50% query sequence coverage by the alignment; Sup-
porting Information Table S3). 16S rRNA (16S) gene
fragments extracted from the metagenomes were 0.1%–

0.3% of the total reads as expected based on an average
genome size of approximately 4 Mbp and 2–3 rRNA cop-
ies estimated for free-living bacteria. In each metagen-
ome, 77%–90% of the 16S fragments were classified as
bacterial at the class level, revealing that our metage-
nomic effort sampled predominantly bacteria.
To investigate the differences between the Ganges

microbial communities and those from other freshwater
ecosystems, one sample from the Amazon River in Brazil
(Amazon), six samples from the Kalamas River in Greece
(Kal1_Feb, Kal2_Feb, Kal1_May, Kal2_May, Kal1_Nov
and Kal2_Nov), and three samples from the Chattahoo-
chee River in the United States (Cha_Jan, Cha_Sep and
Cha_Nov) were included in our comparative analysis.
These samples were the only ones available from rivers
with similar DNA sequence coverage and technology.
The Amazon River sample was collected from a pristine
area at a site nearly 400 km upstream from Manaus, Bra-
zil (River delta), and the Chattahoochee River samples
originated from Lake Lanier, which represents the
upstream-most meromictic lake and the headwaters of
the river. The Kalamas River samples originated from
along the river and included waters that received treated

and untreated sewage from the largest municipal city in
the area.

Highly abundant allochthonous inputs in the Ganges
River

To assess the allochthonous inputs in the Ganges River,
16S fragments were assigned to the different habitats
(Fig. 2A) based on their best match analysis against a refer-
ence, in-house database (Meziti et al., 2016) [available at:
http://enve-omics.ce.gatech.edu/data/]. About 82% � 7% of
the 16S-encoded reads were assignable to a habitat, with
25% � 6% of them assigned to freshwater, 12% � 6%
assigned to other aquatic ecosystems, 11% � 4% assigned
to terrestrial, 6% � 4% assigned to sludge/sewage,
0.6% � 0.5% assigned to human related sequences (repre-
senting human gut, skin, oral, breast milk, etc.), and
27% � 8% assigned as others, depending on the sample
considered. Generally, less freshwater signal and higher
abundance of allochthonous sequences/taxa from terrestrial
and sludge/sewage were detected in the Ganges compared
with the other freshwater ecosystems. For instance, the
February samples from the Kalamas River had more than
40% of the total 16S sequences assigned to freshwater
and less than 10% assigned to the terrestrial and sludge/
sewage categories (Meziti et al., 2016).

Members of the Proteobacteria and Actinobacteria
were the most abundant microbes in the Ganges, with
43% � 21% and 15% � 10% of the total 16S fragments
classified to these phyla respectively. Proteobacteria,
mostly comprised of Betaproteobacteria (average value of
40% � 16% vs. 16% � 3%) and Gammaproteobacteria
(average value of 17% � 17% vs. 3% � 0.5%), were more
dominant in samples from the upstream locations and wet
season (Gan_dry1, Gan_dry2, Gan_dry3, Kan_wet1,
Kan_wet2, Har_wet1 and Har_wet2) than in downstream
samples from the dry season (Kan_dry1, Kan_dry2, Kan_-
dry3, Alla_dry1, Alla_dry2 and Alla_dry3). Actinobacteria
were more abundant in downstream samples from the dry
season than in upstream and wet season samples
(27% � 3% vs. 14% � 6%) (Fig. 2B). Taxonomic assign-
ment of protein-coding genes using MyTaxa (Luo et al.,
2014) showed that allochthonous bacterial populations
detected in the Ganges River in substantial in-situ relative
abundance (typically > 1% of the total metagenomic reads;
Supporting Information Fig. S1) included Pseudomonas
putida (Nelson et al., 2002) and Chthoniobacter flavus
(Sangwan et al., 2005), wastewater treatment plant-
associated Candidatus Nitrospira defluvii (Maixner et al.,
2008) and Thauera sp. MZ1T (Allen et al., 2004), patho-
gens Acinetobacter baumannii (Antunes et al., 2014), Aci-
netobacter junii (Bansal et al., 2017) and Pseudomonas
aeruginosa (Stover et al., 2000), and antimicrobial-
producing Rheinheimera sp. A13L (Gupta et al., 2011).
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Ganges microbes harbour higher abundance of human
gut signal and antibiotic resistance genes than
counterparts elsewhere

Human gut associated microbes (HG) and antibiotic
resistance gene (ARGs) sequence abundances in the
Ganges River were further investigated, and compared
with the other freshwater samples from the Amazon,
Kalamas and Chattahoochee Rivers (Supporting Informa-
tion Fig. S2) to assess the relative importance of anthro-
pogenic inputs. Only the February samples from the
Kalamas River, a medium to small sized river, were con-
sidered because it was in the middle of the rainy season
and the water flow was comparable to those in the other,

larger rivers. The average genome equivalents of HG
sequences, that is, what fraction of the total cells sam-
pled encoded the gene of interest, were about 13 times
higher (p < 0.05), on average, in the Ganges samples
collected in both the wet (all cells encoded 2.19 copies,
on average) and dry seasons (1.98 copies per cell, on
average) than the samples from the Amazon, Kalamas
and Chattahoochee Rivers combined (0.17 copies per
cell, on average) (Fig. 2C). The HG microbes in Ganges
River were mostly classified as Acinetobacter, Escheri-
chia, Oxalobacer, Geobacter, Alistipes, Bacteroides,
Prevotella and Caulobacter at the genus level, account-
ing for 88% of the (classified) HG sequences (Supporting
Information Fig. S3).

Fig. 2. Relative importance of allochthonous inputs based on habitat assignment of 16S rRNA and functional gene sequences.
A. Assignment of 16S rRNA gene sequence fragments to different habitats was based on best match analysis (> 99% nucleotide identity) against a ref-
erence in-house database (available at: http://enve-omisc.ce.gatech.edu/data/). The habitats including freshwater (lakes, rivers, streams), other aquatic
(marine, estuaries, ground water, various aquatic environments), terrestrial (soil, plant and animal-associated sequences), sludge/sewage (sludge, sew-
age and wastewater-associated sequences), human (human related samples, representing human gut, skin, oral, breast milk, etc.) and others.
B. Class-level community composition and abundance of microbes in the Ganges River based on taxonomic classification of identified 16S rRNA gene
sequence fragments. The relative abundance of each taxon at the class level was normalized by the total number of 16S rRNA gene sequence frag-
ments obtained in each corresponding metagenome. Only the top 25 most abundant classes are shown.
C and D. Boxplots of genome equivalents (average copies per cell) of human gut microbiome associated sequences (C), and antibiotic resistance
genes (D) in the Ganges River for both the wet (Ganges_wet) and dry (Ganges_dry) seasons, and in a combined category consisting of the other
freshwater ecosystems including two samples from the Kalamas River, three samples from the Chattahoochee River, and one sample from the
Amazon River (Kal_Cha_Amazon). Triangles display the mean value and horizontal lines display the median. * indicates p value < 0.05 as revealed
by one-way ANOVA analysis (comparison of average genome equivalents of HG sequences in the Ganges River versus the other ecosystems).
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The average genome equivalents of ARGs in the Gan-
ges River (2.21 copies per cell for wet season and 2.84
copies per cell for dry season samples, on average) was
about 2 times higher than those in the Amazon, Kalamas
and Chattahoochee Rivers combined (1.39 copies per cell,
on average) (Fig. 2D), albeit not statistically significant.
Excluding samples from the Chattahoochee River, which
had a relatively higher abundance of ARGs possibly
resulting from anthropogenic inputs, rendered the abun-
dance of ARGs to be significantly (p < 0.05) more
abundant in Ganges River relative to other riverine eco-
systems. Among the ARGs present in the Ganges, genes
conferring resistance to aminoglycosides, trimethoprim,
fluoroquinolones, polymyxin, chloramphenicol, tetracycline,
phenicols, macrolides, aminocoumarins and beta-lactams
were the most abundant, comprising about 93% of the
ARGs annotated. These genes were detected in almost all
the Ganges samples, but with a relatively higher abun-
dance in the samples from upstream locations and/or the
wet season (Supporting Information Fig. S4).

High abundance of HG signals and ARGs correlated
with sludge/sewage inputs

Pearson correlation showed significant positive correla-
tion of HG or ARGs relative abundance (genome

equivalents) with the percentage of 16S gene-encoding
reads assigned to sludge/sewage (r = 0.74, p < 0.001
and r = 0.72, p < 0.001, respectively). In contrast, signifi-
cant negative correlations were identified for HG or ARGs
relative abundance with the percentage of 16S-encoding
reads assigned to freshwater origin (r = 0.50, p < 0.05
and r = 0.53, p < 0.05, respectively), and for ARGs with
other aquatic ecosystems origin (r = 0.53, p < 0.05). No
significant correlation was observed for HG or ARGs with
16S-encoding reads assigned to terrestrial or human, or
for HG sequences with other aquatic ecosystems
(Fig. 3). While only a weak correlation between HG and
16S-encoding reads assigned to human origin was
observed when all samples were considered (r = 0.36,
p > 0.1), when the analysis was restricted to samples
with substantial HG signal (e.g., as opposed to signal
below detection limit), a strong positive correlation was
observed (r = 0.77, p < 0.05). Significant positive correla-
tion was also observed between the relative abundance
of HG and ARG sequences (r = 0.68, p < 0.01, Support-
ing Information Fig. S5).

Novelty of the Ganges microbial communities

Seventy-four percent of the 102 metagenome-assembled
genomes or MAGs (Supporting Information Table S4)

Fig. 3. Correlation of the genome equivalents of human gut microbes associated sequences and antibiotic resistance genes to the percentage of
16S rRNA gene sequence fragments assigned to different habitats. The fit-line in blue indicates significant negative correlation (p < 0.05); the fit-
line in red indicates significant positive correlation (p < 0.001); the fit-line in black indicates no significant correlation was found (p > 0.1). [Color
figure can be viewed at wileyonlinelibrary.com]
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recovered from the 18 metagenomic datasets of the Gan-
ges represented a novel species with probability p ≤ 0.01
based on the MiGA classification (Rodriguez-R et al.,
2018a, b). Fourteen percent of the remaining MAGs were
novel at the genus level, 5% at family level and the last
8% represented members of previously described spe-
cies. The majority of the 102 Ganges MAGs (n = 59, or
around 60% of total) was assignable to Actinobacteria
(n = 21), Betaproteobacteria (n = 16), Chitinophagia
(n = 8), Acidimicrobiia (n = 5), Alphaproteobacteria
(n = 2), Verrucomicrobiae (n = 2), Sphingobacteriia
(n = 2), Planctomycetia (n = 2) and Cytophagia (n = 1) at
the class level (p ≤ 0.01). Members of Comamonada-
ceae (n = 4), Bradyrhizobiaceae (n = 2) and unclassified
Burkholderiales (n = 2), etc were the most abundant fam-
ilies among the MAGs (n = 22, or around 20% of total)
(Fig. 4A). Only around 8% of the MAGs (n = 8) were
shared (i.e., > 95% genome-aggregate average nucleo-
tide identity) with the 1126 MAGs recovered from Chatta-
hoochee River. Among the eight MAGs, six of them
originated from urban settings in Kanpur, and two of them
were recovered from the less populated area in Haridwar.
These MAGs most likely (p ≤ 0.01) belong to

Betaproteobacteria (n = 3), Alphaproteobacteria (n = 1),
Sphingobacteria (n = 1) at the class level, and Methylo-
cystaceae (n = 1), Comamonadaceae (n = 1) at the fam-
ily level, and one of them was classified only at the
domain level as Bacteria.

PCoA based on Mash distances of whole metagen-
omes (Fig. 4B) showed the separation pattern of Ganges
microbial communities from their counterparts elsewhere
confirming the MAG-based results reported above, with
the possible exception of one sample from Gangotri
(Gan_dry1) that clustered closely to one sample from
Kalamas (Kal1_Nov). Interestingly, the latter Kalamas
sample was previously reported to contain a relatively
high abundance of sludge/sewage, and terrestrial associ-
ated sequences (Meziti et al., 2016), similar to what was
observed for the Gangotri sample in this study.

Tracking individual allochthonous populations along the
Ganges River

Two population genomes, that is, Gan_dry1.MAG001
and Gan_dry2.MAG001, which showed the highest rela-
tive abundance in, and were assembled from, the

Fig. 4. Novelty of Ganges River microbial communities.
A. Summary of the taxonomy of 102 MAGs recovered from the 18 metagenomic datasets of Ganges based on MiGA. The graph shows the low-
est possible classification (p < 0.01) that was achievable by MiGA for each MAG (i.e., the MAG was novel below that taxonomic rank).
B. Microbial community composition differences based on metagenomes from the Ganges, Amazon, Kalamas and Chattahoochee Rivers. The
graph represents the principal coordinates analysis (PCoA) of the metagenomes based on Mash distances. The rivers are denoted by different
colours, and the sampling locations along the Ganges River are denoted by different symbols (see Figure key).
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upstream samples Gan_dry1 and Gan_dry2 were
tracked in downstream samples, along the Ganges River.
Gan_dry1.MAG001 likely represented a novel genus
related to the antimicrobial-resistant Rheinheimera sp.
A13L strain (Gupta et al., 2011) (67.6% genome-aggregate
average amino acid identity [AAI]) (Konstantinidis and
Tiedje, 2005), and Gan_dry2.MAG001 was a close relative
of an emerging nosocomial pathogen Acinetobacter junii
NZ CP019041 (98.3% AAI) (Bansal et al., 2017). Both
populations were detectable downstream, albeit with
100–1000 times lower abundances in some samples
(Fig. 5A and Supporting Information Fig. S6). The down-
stream populations were clearly members/strains of the
same species (e.g., ANI > 97%) as the reference MAGs
based on phylogenetic analysis of their (assembled) whole
genome sequences from the corresponding (individual)
metagenomes (Fig. 5B and C).

Microbial diversity increased in the wet season along
the Ganges River

Samples collected in the wet season presented a signifi-
cantly higher dissimilarity among themselves based on
Mash distances than those collected in the dry season
(Fig. 6A), indicating that heavy, monsoon-associated rain
increased beta-diversity along the Ganges River. [Meta-
genomic datasets from the upstream location in Gangotri
were excluded from this analysis since these samples
showed more distinct community composition compared
with the remaining Ganges samples (Supporting Informa-
tion Fig. S7A).] Consistently, the alpha-diversity of the

samples collected from the wet season measured by
Nonpareil was higher than those from the dry season
(Supporting Information Table S3). While a significantly
negative distance-decay of microbial community similarity
over geographic distance (r = 0.83, p < 0.001) was
revealed in the dry season, the samples from the wet
season did not share this pattern (r = 0.37, p > 0.1)
(Fig. 6B), presumably due to greater importance of vari-
able (i.e. site-specific) allochthonous inputs during the
rainy season. Consistent with these findings, environ-
mental variables including turbidity, TDS, hardness, alka-
linity, pH, COD, TC, IC, TOC, sulfate, nitrate and chloride
significantly affected microbial community composition in
the dry season (Supporting Information Fig. S7B), and
the dissimilarity based on environmental variables signifi-
cantly correlated (r = 0.54, p < 0.001) with the geographic
variables (Latitude, Longitude and geographic distance)
(Supporting Information Fig. S7C).

Clustering based on Morisita distances of OTUs abun-
dance revealed consistent pattern with the Mash-based
results (Fig. 6C and Supporting Information Fig. S7A). Fur-
ther analysis of samples from Haridwar and Kanpur sites
that represented both the wet and dry seasons, showed
higher Morisita similarities of samples from the same sea-
son than from the same sites, indicating that seasonal
effects were more pronounced than spatial ones. In terms
of functional distribution, 370 subsystems based on SEED
level 3 were significantly differentially abundant (adjusted
p value < 0.01, negative binomial test) across sites and
seasons in total (Supporting Information Table S5). Cluster-
ing based on significantly differentially abundant functions

Fig. 5. Tracking of two upstream, abundant populations along the Ganges River.
A. Relative abundance (i.e., coverage) of two MAGs, that is, Gan_dry1.MAG001 and Gan_dry2.MAG001, based on the reads recruited from the
12 available metagenomes.B and C. Phylogenetic tree of reference MAGs, that is, Gan_dry1.MAG001 (B) and Gan_dry2.MAG001 (C), and con-
sensus genomes assembled from each of the downstream samples. Only metagenomes with the coverage of the population higher than 5× were
used in the analysis. Whole genome alignment was performed using Mugsy and phylogenetic relationships were inferred by Maximum likelihood
as implemented in RAxML with optimization of substitution rates and GTRCAT model of 100 iterations for the rate of heterogeneity. Note the
star-like phylogeny, with the possible exception of Gan_dry2.MAG001.Gan_dry1, which revealed that the population genomes were highly related
to, and equal distant from, each other. [Color figure can be viewed at wileyonlinelibrary.com]

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 21, 182–196

188 S.-Y. Zhang et al.

http://wileyonlinelibrary.com


from pairwise comparisons also demonstrated the separa-
tion patterns of samples collected from different seasons.
Lower abundance of genes associated with photosynthesis
were observed in samples from the wet season, contrasting
with higher abundances of nitrogen and aromatic com-
pounds metabolism, and motility and chemotaxis associ-
ated genes (Fig. 6D).

Discussion

Intensive allochthonous inputs of terrestrial, sewage,
sludge and human were detected in the Ganges River
(Fig. 2A). Among them, sludge and sewage inputs most
likely contributed to the high abundance of ARGs and
HG sequences in the Ganges compared with freshwater
ecosystems elsewhere (Fig. 3). Consistently, heavy
municipal sewage and industrial discharges have often
been dumped into the Ganges River (Sinha and Loga-
nathan, 2015) and presumably sewage, which includes
faecal microbiome material of human populations
(Newton et al., 2015), accounted for the high abundance

of HG sequences detected. In agreement with these inter-
pretations, the limited treatment of sewage in India results
in 80% of the sewage (untreated) to be released into the
water system [https://phys.org/news/]. Faecal coliform
counts have been also reported at high levels in rivers in
India previously (Hamner et al., 2006). The detection of
opportunistic pathogens such as HG microbes Acineto-
bacter, Bacteroides and Prevotella by our metagenomic
approach (e.g., Supporting Information Fig. S3) was con-
sistent with these previous results and revealed a potential
threat for public health and for the millions of people who
live along the banks of the River.

Recently, human gut microbiota has been reported as
an important reservoir of ARGs (Feng et al., 2018). Thus,
it is reasonable to hypothesize that the significantly high
correlation of ARGs with HG sequences in the Ganges
River (Supporting Information Fig. S5) resulted from
ARGs carried by human gut associated microbes. More-
over, in India, due to the prevalent over-prescription and
overuse of antibiotics in hospitals, clinics, households,
animal farming and agri-industrial production, antibiotic-

Fig. 6. The effect of the wet season on the Ganges microbial community composition.
A. Boxplot of Mash distances of metagenomes collected in the dry and wet seasons.
B. Distance-decay curve for microbial community similarity based on Mash distances.
C. Clustering of metagenomes based on Morisita distance of the 16S-based OTUs relative abundances. The smaller sub-tree only shows the
samples from Haridwar and Kanpur sites that represented both the wet and dry seasons.
D. Heatmap of SEED subsystems (level 1) showing statistically significant differences in abundance between wet (blue) and dry (red) season
samples (negative binomial test, adjusted p value < 0.01).
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resistant pathogens are commonly detected in patients
(Murki, 2009; Kotwani and Holloway, 2011; Wats and
Sohal, 2013; Ganguly et al., 2011). The inappropriate
use and disposal of antibiotics could also contribute to
the widespread occurrence of ARGs in the environment
(Guo et al., 2017). Consistent with these data, ARGs to
about 90% of the commonly used antibiotics in India,
including beta-lactams (cephalosporin, penicillin and car-
bapenem), fluoroquinolones, aminoglycosides, macro-
lides, tetracyclin and glycopeptide (vancomycin) (Wats
and Sohal, 2013), were all detected in the Ganges River
(Supporting Information Fig. S4). Corroboratively, a rela-
tively high frequency of various antibiotic-resistant bacte-
rial isolates, including extended-spectrum beta-lactamase
producing Gram-negative bacteria, methicillin-resistant
Staphylococcus aureaus, carbapenem-resistant Pseudo-
monas/Acinetobacter, vancomycin-resistant Enterococci
and multidrug-resistant bacteria, have been previously
reported in India (Murki, 2009). Collectively, our results
showed that high abundance, especially compared with
other freshwater ecosystems (see also below), and
spreading of ARGs genes constitute another important
public health risk in Ganges. Quantifying the associated
risk for human health, including through irrigation of agri-
cultural fields with water from the Ganges (Gorski et al.,
2016; Cooley et al., 2018), should be subject of follow-up
studies.
Somewhat unexpectedly, the upstream samples from

Gangotri, which is much less populated by humans and
thought to be a more pristine area compared with down-
stream areas, often had higher abundances of ARGs
and HG sequences than some of the downstream sam-
ples (Supporting Information Fig. S2). Since the Gango-
tri samples were collected in May 2016, which
coincided with massive numbers of visitors in this area
during seasonal pilgrimages and bathing in the River
(Ahammad et al., 2014), it is likely that the high signal
of ARGs and HG sequences in these samples also orig-
inated from those visitors. Previous studies of the effect
of pilgrimage-associated visits to the upper Ganges
River has shown that seasonally higher blaNDM-1 (NDM-
1 metallo-β-lactamase genes) levels resulted from the
increased levels of faecal coliforms originating from the
pilgrims in June (Ahammad et al., 2014). Consistently,
we also noticed a relatively high number of pilgrims
around Gangotri compared with the downstream loca-
tions during the sampling time. Noticeably, extremely
higher turbidity (around 12–196 times) was detected in
upstream samples in Gangotri (Supporting Information -
Table S2), which possibly indicated the higher
allochthonous inputs, mostly of soil origin through run-
off, in the upper Ganges River. Thus, the higher signal
of ARGs in the upstream sample was likely also attribut-
able, at least in part, to microorganisms originating

from soil, a well-known habitat for microbial antibiotic
production.

In any case, as revealed and quantified by metage-
nomics, these variable allochthonous inputs in the Ganges
River distinguish its microbial communities from their coun-
terparts elsewhere, and dramatically alter both the taxo-
nomic and functional composition in the river. While typical
freshwater bacteria in rivers, including Betaproteobacteria,
Actinobacteria, Bacteroidetes and Verrucomicrobia (Savio
et al., 2015; Newton et al., 2011; Iliev et al., 2017) were
also detected, the Ganges River was distinct by posses-
sing a higher abundance of Gammaproteobacteria, which
often have fast growth rates on high organic substrate con-
ditions (copiotrophs) such as sewage lagoons (Newton
et al., 2011). The higher allochthonous inputs rates of
sludge/sewage altered microbial communities in Ganges
River, especially in samples from the wet season and
upstream. For example, a higher abundance of Acineto-
bacter and Chromatiaceae (Gammaproteobacteria)
(Saunders et al., 2016; Bize et al., 2015; Wagner et al.,
1994), Comamonadaceae (Betaproteobacteria) (Saunders
et al., 2016), and the Cytophaga-Flavobacterium group
(Liu et al., 2005) that are commonly found in sludge and
sewage associated environments worldwide were detected
in Ganges River in the wet season and upstream samples
(Fig. 2B). The soil bacterium Pseudomonas putida (Nelson
et al., 2002), the pathogen Acinetobacter baumannii
(Antunes et al., 2014) and the antimicrobial-resistant Thein-
heimera sp. A13L (Gupta et al., 2011) were observed to be
more abundant in upstream relative to downstream sam-
ples as well (Supporting Information Fig. S1).

In terms of gene content, the higher allochthonous
inputs in the upstream and wet season decreased the
abundance of photosynthesis genes, and led to a higher
abundance of genes related to nitrogen and aromatic
compound metabolism, mobility and chemotaxis, heavy
metal (copper, arsenic and mercury) and antibiotic resis-
tance (Fig. 6D and Supporting Information Table S5).
These results were attributable, at least partly, to the high
sewage and runoff inputs in the river and high usage of
aromatic compounds, heavy metals and antibiotics in
India (Kotwani and Holloway, 2011; Wats and Sohal,
2013; Singh and Pandey, 2014; Sharma et al., 2015),
and were consistent with the phylogenetic diversity pat-
terns described above.

At the individual population level, the two allochtho-
nous populations, which are the most abundant in the
upstream samples were trackable across the river after
1–2 days of (downstream) transport (> 200 km apart).
Moreover, these sequence-discrete populations were
abundant (> 5×) and robustly detected especially in the
downstream samples less than 200 km. The intra-
population sequence diversity measured by the identity
of recruited reads to the reference MAG genome (ANIR
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values) varied from 99.84% to 99.74%, indicating that the
exact same population was identified at all sites based
on the phylogenetic patterns of the consensus genome
assembled from each sample or the recruited reads.
Therefore, metagenomic read recruitment plots as
described here hold great potential to reliably track, at
high resolution, that is, the individual population level, the
source of microbial taxa and their spatial and temporal
patterns within an ecosystem such as the Ganges.

Consistent with expectations for the relative magnitude
of run-off between wet versus dry seasons, increased
abundances of HG sequences and OTUs related to
sludge/sewage and terrestrial were detected in the Gan-
ges River in the months with high levels of precipitation
(e.g., July) (Fig. 2). Considering also that microbial com-
munities in some of the source environments such as soil
harbour a much greater diversity than aquatic communi-
ties (Crump et al., 2012), these substantial allochthonous
inputs presumably accounted for the higher alpha-
diversity of microbial communities in the wet season
(Supporting Information Table S3). Although increased
river flow due to rainfall has been reported to result in
more community homogeneity in the other riverine sys-
tems (Carney et al., 2015; de Oliveira and Margis, 2015),
a higher spatial heterogeneity was revealed in the Gan-
ges River in the wet season (Fig. 6A). The Ganges River
is one of the largest rivers in the world, and our sampling
sites represented an approximately 700 km-long transect
along the river, which is three to four times longer than
the length of the rivers showing more spatial homogene-
ity during wet seasons. Thus, it is likely that ‘mass-effect’
of increased ‘riparian influence’ resulting from locally
autochthonous inputs (Leibold et al., 2004; Crump et al.,
2007) were more important in shaping microbial commu-
nities in the wet season in the Ganges relative to other
(smaller) rivers.

While harbouring higher spatial heterogeneity, in the
wet season, microbial communities showed no significant
distance-decay patterns (Fig. 6B). Considering that
dispersal-driven assembly mechanisms have been pri-
marily detected only when beta-diversity is relatively low
(Langenheder et al., 2012), environmental heterogeneity
driven by ‘species sorting’ (Savio et al., 2015) could be
the primarily dominant assembly force, instead of dis-
persal, for microbial communities in the wet season. In
contrast, in the dry season, distance-decay of microbial
community similarity was significant, indicating dispersal
limitation was important in that season. In addition, previ-
ously identified environmental variables including alkalin-
ity, pH, COD, nutrient availability (Savio et al., 2015;
Staley et al., 2015; Zeglin, 2015; Jordaan and Bezui-
denhout, 2016) and chloride concentrations (Stanish
et al., 2016) also correlated with the Ganges microbial
community beta-diversity patterns in the dry season

(Supporting Information Fig. S7B). Nevertheless, after
excluding geographic factors (latitude, longitude and geo-
graphic distance), environmental factors independently
explained a small fraction (0.4%) of microbial community
variation, about approximately 12-fold less compared with
that explained by geographic factors independently (5%).
It is thus reasonable to hypothesize that homogenizing
physical and chemical conditions during the dry season
across such a long riverine system is limited, as shown
by the significant correlation of dissimilarities of environ-
mental with geographic variables (Supporting Informa-
tion Fig. S7C). Consistently, the majority (89%) was
explained by co-effect of both geographic and environ-
mental variables, reflecting dispersal limitations in micro-
bial community assembly in the dry season.

The increased sampling volumes in the dry relative to
the wet season (5 vs. 0.5 L) could have accounted, at
least partly, for some of the results observed here in
terms of community structure (Zinger et al., 2012), as vol-
ume size could affect diversity (Magurran, 2004), but it is
not uniform among habitats (Prosser et al., 2007). How-
ever, we observed higher diversity in wet season sam-
ples, both in terms of alpha and beta diversity, which
suggested that the effect of volume size was limited, if
any. Consistent with the latter interpretation, low variabil-
ity of community structure when sampling more than
50 ml of seawater (Ghiglione et al., 2005) and no signifi-
cant differences in richness when sampling increasing
volumes of water from 10 to 1000 ml (Dorigo et al., 2006)
were shown previously based on fingerprint profiles.

In any case and to confirm these preliminary findings
and interpretations about the microbial communities in
Ganges River, which travels approximately 2700 km,
more sampling sites/locations and different time points
(months) will be needed. Clearly, the limited number of
samples taken as part of our study did not allow for more
robust conclusions to emerge with respect to several of
the diversity patterns revealed compared with what was
mentioned above. Nonetheless, the effects of anthropo-
genic inputs and wet season on microbial communities
revealed by our analysis were significant. Moreover, our
results suggest that metagenomics could offer robust
means for reliable microbial source tracking purposes,
even in challenging environments such as the Ganges
River.

Experimental procedures

Sample collection and processing

Surface water samples were collected over an approxi-
mately 700 km long transect along the Ganges in India.
In July 2015, in the wet season after the rains, two 0.5-L
samples (biological replicates) were collected). In May
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2016, in the dry season before the rains, three 5-L sam-
ples (biological replicates) were collected. The map of
sampling sites was constructed using the ArcGIS plat-
form, and overlaid with World Land cover 30 m BaseVue
2013 and World Population Estimate [available at: http://
www.arcgis.com/] (Fig. 1). The water samples were fil-
tered within 1–3 days after transport to the lab. All water
samples were filtered using a peristaltic pump in the labo-
ratory, first through a 2.7 μm pre-filter (142 mm) to
remove large particles, followed by a 1.6 μm pore-size
glass fibre filter (Geotech) to remove eukaryotic cells,
and then collected onto a 0.2 μm Sterivex filter (Millipore)
for 2015 samples or onto a 0.2 μm membrane filter
(142 mm) for 2016 samples. The 0.2 μm filters were
stored at −80�C until DNA extraction. DNA was extracted
from the 0.2 μm filters using the cell lysis and organic
extraction method as described previously (Oh et al.,
2011) and detailed in Supproting Information. For the
2016 samples, physiochemical parameters including
hardness, alkalinity, turbidity, pH, DO, BOD, COD, TDS,
TC, IC, ammonium, nitrate, sulfate and chloride were
measured using a HACH instrument.

Shotgun metagenomics sequencing, and sequence
trimming, assembling and functional annotation

All 18 DNA libraries were prepared with the Illumina
Nextera XT DNA library prep kit and sequenced on an
Illumina Hiseq 2500 system for 300 cycles (paired end
rapid run, 2 × 150 bp) at the High Throughput DNA
Sequencing Core at the Georgia Institute of Technology.
Metagenomic datasets have been deposited in National
Center for Biotechnology Information (NCBI)’s Short
Read Archive (SRA) database, under the bioproject
PRJNA420715. NCBI SRA numbers for all datasets were
provided in Supporting Information Table S1. Metagen-
ome read quality checking, trimming and assembly as
well as gene annotation of the resulting assembled contig
sequences were performed as described in the Support-
ing Information Methods. Differentially abundant genes
and subsystems between samples were determined with
the DESeq package using the negative binomial model,
adjusted for false discovery rate (Love et al., 2014). Sig-
nificantly differentially abundant gene functions (adjust
p value <0.01), based on SEED level 1 annotation were
visualized by heatmap using the pheatmap R package
(Kolde and Kolde, 2015).

16S rRNA gene-encoding read identification and
taxonomic analysis

16S rRNA gene sequence (16S) fragments were
extracted using Parallel-META (Su et al., 2012) from the
metagenomics reads, and then processed for Operational

Taxonomic Unit (OTU) picking, defined at the greater
than 97% sequence threshold, and taxonomic identifica-
tion with SILVA database (Pruesse et al., 2007) using
QIIME 1.9.1 (Caporaso et al., 2010). Morisita distances
(Wolda, 1981) were used to assess the microbial taxo-
nomic compositional variation between samples based
on the abundance of 16S-derived OTUs because of the
independence of this metric from sample size and diver-
sity. To validate the taxonomic classification of 16S-
encoding metagenomic reads, MyTaxa with default
parameters was also used to assess the bacterial and
archaeal taxonomy of the assembled contigs (Luo et al.,
2014). The input file to MyTaxa was the Blastp results of
the query genes against the predicted proteins of all
closed and draft prokaryotic genomes available in NCBI
as of February 2015, with a minimum score of 60 bits
and 80% of query protein sequence coverage by the
alignment and only the top five hits per query, when
available, being considered.

Detecting human gut microbes associated sequences
and antibiotic resistance genes

Blastn search of predicted genes on assembled contigs
against the Integrated Gene Catalogue (IGC) of genes of
the human gut microbiome (HG Database) (Li et al.,
2014) was performed to detect human gut microbes
associated sequences (HG sequences). Only the best
match with nucleotide identity ≥ 98% and reference
sequence length coverage ≥ 50% by the alignment was
considered as HG sequences. Taxonomic compositions
of HG sequences were classified according to the HG
Database. Antibiotic resistance genes (ARGs) were iden-
tified based on searches of predicted protein sequences
on assembled contigs against the comprehensive antibi-
otic resistance database (CARD; April 2016 release)
(McArthur et al., 2013) and a minimum cut-off for a match
of 50% amino-acid identity and reference sequence
length coverage of 50% by the alignment (only best
matches were considered). Identified ARGs were anno-
tated according to the categories available by CARD.

The abundance of HG sequences and ARGs in each
metagenomic dataset was calculated by the number of
reads mapping on each gene above the cut-off (identity ≥

95% and query sequence coverage by the alignment ≥
50%) using BLAT (Kent, 2002) normalized by the gene
length. The abundance of RpoB genes was calculated by
total reads that identified as RpoB genes by ROCker as
described before (Orellana et al., 2016), normalized by
the average length of the RpoB genes [the ROCker
model is available at: http://enve-omics.ce.gatech.edu/
rocker/models]. The genome equivalent, that is, how
many cells of the total sampled encoded the HG
sequences or ARGs, was estimated by the ratio of the
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abundance of the HG/ARG genes against that of the
RpoB genes.

Population genome binning and relative in-situ
abundance

Metagenome-assembled genomes (MAGs) were recov-
ered using MaxBin Version 2.1.1 (Wu et al., 2014). Con-
tigs longer than 500 bp from each metagenomic dataset
and from coassembly of biological replicates were used
for binning. Quality assessment of the resulting MAG
sequences was performed by CheckM (Parks et al.,
2015). Only the genomes with completeness ≥ 70% and
contamination ≤ 10% were considered for further analy-
sis. Taxonomic classification of obtained MAGs, including
assessment of their taxonomic novelty, was performed
by the Microbial Genomes Atlas (MiGA) webserver
(Rodriguez-R et al., 2018a, b). The recovered MAGs
were also compared with 1126 MAGs recovered from
Chattahoochee River in the United States (freshwater
ecosystem) [available in MiGA].

The two most abundant population genomes recovered
from the Gangotri samples (Gan_dry1.MAG001 and
Gan_dry2.MAG001), after a reassembly step to improve
quality (see Supporting Information Methods for details)
were tracked along the Ganges River. More specifically,
the reads recruited from the 12 available metagenomics
datasets originating from downstream samples in the dry
season were mapped against these two MAGs using a
BLAT search, and only the best match with alignment
length ≥ 100 bp and 95% nucleotide identity was consid-
ered for coverage estimation using the enveomics.R
package (Rodriguez-R and Konstantinidis, 2016). Phylo-
genetic analysis to test if the population in a metage-
nomic sample was the same strain as the reference MAG
are detailed in the Supporting Information Methods.

Statistical analysis of alpha and beta community
diversity patterns

Nonpareil, an algorithm that determines coverage based
on the level of redundancy of the sequence reads of
metagenomes (Rodriguez-R and Konstantinidis, 2014a,
b), was used to estimate the abundance-weighted
average coverage of the sampled microbial communities
achieved by sequencing. The sample-to-sample
sequence composition similarity was assessed by Mash
distance (Ondov et al., 2016), and the resulting distance
matrix was visualized by principal coordinate analysis
(PCoA). The effects of environmental variables on beta-
diversity patterns were first evaluated using a distance-
based redundancy analysis coupled with analysis of vari-
ance (dbRDA-ANOVA) with 10 000 permutations based
on the dissimilarity matrix of Mash distances; with only

the significant variables included for further analysis. The
effects of environmental variables, geographic distance
(the distance of each site to the upstream location in
Gangotri) and rainfall were subsequently summarized by
nonmetric multidimensional scaling (NMDS). To assess
the correlation between environmental variables and geo-
graphic variables (latitude, longitude and geographic dis-
tance), dissimilarity of environmental/geographic variables
based on Euclidean distance was calculated and tested
by Pearson correlation. The distance-decay analysis was
applied to investigate the decrease in microbial community
similarity (based on Mash distances) with geographic dis-
tance (sample-to-sample distance) in wet versus dry sea-
sons in the Ganges River, and tested by Pearson
correlation. These analyses were performed in R 3.2.3
with Vegan (Wagner, 2015) and ggplot2 (Hadley, 2015)
packages.
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Fig. S1. Species-level community composition and abun-
dance of taxa in the Ganges River. Taxonomy was based on
MyTaxa analysis of assembled contigs and relative abun-
dance was determined based on the mapping of metage-
nomic reads against the contigs using BLAT. Only the top
30 most abundant species are shown.
Fig. S2. The genome equivalents (average copies per cell)
of (A) human gut microbiome associated and (B) antibiotic
resistance gene sequences in samples from the Ganges,
Amazon, Kalamas and Chattahoochee Rivers.
Fig. S3. Taxonomic classification of human gut associated
microbes in the Ganges River at the genus level. Blastn
searches of predicted genes on assembled contigs against
the Integrated Gene Catalogue (IGC) of genes of the human
gut microbiome (HG Database) were performed to detect
human gut microbes associated sequences (HG
sequences). Only the best matches with nucleotide identity

≥98% and reference sequence length coverage ≥50% by
the alignment were considered HG sequences. Taxonomic
compositions of the HG sequences were classified accord-
ing to the HG Database.
Fig. S4. Functional annotation of the antibiotic resistance
genes detected in the Ganges River. Antibiotic resistance
genes (ARGs) were identified based on searches of pre-
dicted protein sequences on assembled contigs against the
comprehensive antibiotic resistance database (CARD; April
2016 release) and a minimum cut-off for a match of 50%
amino-acid identity and reference sequence length coverage
of 50% by the alignment (only best matches were consid-
ered). Identified ARGs were annotated according to the cate-
gories available by CARD.
Fig. S5. Pearson correlation of the relative abundance of
human gut microbiome associated and antibiotic resistance
gene sequences in Ganges River. The fit-line in blue indi-
cates significant correlation (r = 0.63, p < 0.01).
Fig. S6. An example of a recruitment plot of reads recruited
from the metagenomics datasets originating from down-
stream samples (Gan_dry2) mapped against the reference
MAG (Gan_dry1.MAG001). For further details, please see
main text.
Fig. S7. (A) Two-dimensional NMDS plots based on Mash
distances of metagenomics datasets collected from the Gan-
ges River in wet and dry seasons. The correlation of the
ordination scores with rainfall and geographic distance is dis-
played as grey vectors. (B) Two-dimensional NMDS plots
based on Mash distances of metagenomics datasets col-
lected from the Ganges River in the dry season. The correla-
tion of the ordination scores with environmental variables is
displayed as grey vectors. (C) Pearson correlation of the dis-
similarity of environmental variables and geographic vari-
ables (Latitude, Longitude and geographic distance). The
environmental variables displayed in Fig. S7 were first evalu-
ated using a distance-based redundancy analysis coupled
with analysis of variance (dbRDA-ANOVA) with 10 000 per-
mutations based on the dissimilarity matrix of Mash dis-
tances, and only the significant variables were selected for
the NMDS analysis. The geographic distance is estimated
by the distance of each site to the upstream location in
Gangotri. Euclidean distances were calculated to estimate
the dissimilarity of environmental and geographic variables.
Samples collected from wet season included Har_wet1 and
Har_wet2 (light blue), Kan_wet1 and Kan_wet2 (light green),
Agr_wet1 and Agr_wet2 (pink). Samples collected from dry
season included Gan_dry1, Gan_dry2 and Gan_dry3 (red),
Har_dry1, Har_dry2 and Har_dry3 (blue), Kan_dry1, Kan_-
dry2 and Kan_dry3 (green), Alla_dry1, Alla_dry2 and Alla_-
dry3 (black).
Table S1. Information of samples included in this study.
Table S2. Physicochemical parameters.
Table S3. Metagenomic dataset statistics.
Table S4. Information of MAGs assembled from 18 metage-
nomic datasets.
Table S5. Normalized abundance of significantly (p < 0.01)
differentially abundant subsystems at SEED level 3 over
location and sampling year among the Ganges
metagenomes.
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