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Abstract. Wireless low-cost particulate matter sensor net-
works (WLPMSNs) are transforming air quality monitor-
ing by providing particulate matter (PM) information at
finer spatial and temporal resolutions. However, large-scale
WLPMSN calibration and maintenance remain a challenge.
The manual labor involved in initial calibration by colloca-
tion and routine recalibration is intensive. The transferability
of the calibration models determined from initial collocation
to new deployment sites is questionable, as calibration fac-
tors typically vary with the urban heterogeneity of operating
conditions and aerosol optical properties. Furthermore, the
stability of low-cost sensors can drift or degrade over time.
This study presents a simultaneous Gaussian process regres-
sion (GPR) and simple linear regression pipeline to calibrate
and monitor dense WLPMSNs on the fly by leveraging all
available reference monitors across an area without resorting
to pre-deployment collocation calibration. We evaluated our
method for Delhi, where the PM2.5 measurements of all 22
regulatory reference and 10 low-cost nodes were available
for 59 d from 1 January to 31 March 2018 (PM2.5 averaged
138±31 µg m−3 among 22 reference stations), using a leave-
one-out cross-validation (CV) over the 22 reference nodes.
We showed that our approach can achieve an overall 30 %
prediction error (RMSE: 33 µg m−3) at a 24 h scale, and it
is robust as it is underscored by the small variability in the
GPR model parameters and in the model-produced calibra-
tion factors for the low-cost nodes among the 22-fold CV. Of

the 22 reference stations, high-quality predictions were ob-
served for those stations whose PM2.5 means were close to
the Delhi-wide mean (i.e., 138± 31 µg m−3), and relatively
poor predictions were observed for those nodes whose means
differed substantially from the Delhi-wide mean (particularly
on the lower end). We also observed washed-out local vari-
ability in PM2.5 across the 10 low-cost sites after calibra-
tion using our approach, which stands in marked contrast to
the true wide variability across the reference sites. These ob-
servations revealed that our proposed technique (and more
generally the geostatistical technique) requires high spatial
homogeneity in the pollutant concentrations to be fully ef-
fective. We further demonstrated that our algorithm perfor-
mance is insensitive to training window size as the mean pre-
diction error rate and the standard error of the mean (SEM)
for the 22 reference stations remained consistent at ∼ 30 %
and ∼ 3 %–4 %, respectively, when an increment of 2 d of
data was included in the model training. The markedly low
requirement of our algorithm for training data enables the
models to always be nearly the most updated in the field,
thus realizing the algorithm’s full potential for dynamically
surveilling large-scale WLPMSNs by detecting malfunction-
ing low-cost nodes and tracking the drift with little latency.
Our algorithm presented similarly stable 26 %–34 % mean
prediction errors and ∼ 3 %–7 % SEMs over the sampling
period when pre-trained on the current week’s data and pre-
dicting 1 week ahead, and therefore it is suitable for online
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calibration. Simulations conducted using our algorithm sug-
gest that in addition to dynamic calibration, the algorithm
can also be adapted for automated monitoring of large-scale
WLPMSNs. In these simulations, the algorithm was able
to differentiate malfunctioning low-cost nodes (due to ei-
ther hardware failure or under the heavy influence of local
sources) within a network by identifying aberrant model-
generated calibration factors (i.e., slopes close to zero and
intercepts close to the Delhi-wide mean of true PM2.5). The
algorithm was also able to track the drift of low-cost nodes
accurately within 4 % error for all the simulation scenarios.
The simulation results showed that ∼ 20 reference stations
are optimum for our solution in Delhi and confirmed that
low-cost nodes can extend the spatial precision of a network
by decreasing the extent of pure interpolation among only
reference stations. Our solution has substantial implications
in reducing the amount of manual labor for the calibration
and surveillance of extensive WLPMSNs, improving the spa-
tial comprehensiveness of PM evaluation, and enhancing the
accuracy of WLPMSNs.

1 Introduction

Low-cost air quality (AQ) sensors that report high time res-
olution data (e.g., ≤ 1 h) in near real time offer excellent
potential for supplementing existing regulatory AQ monitor-
ing networks by providing enhanced estimates of the spa-
tial and temporal variabilities of air pollutants (Snyder et al.,
2013). Certain low-cost particulate matter (PM) sensors have
demonstrated satisfactory performances when benchmarked
against Federal Equivalent Methods (FEMs) or research-
grade instruments in some previous field studies (Holstius
et al., 2014; Gao et al., 2015; SCAQMD, 2015a–c, 2017a–c;
Jiao et al., 2016; Kelly et al., 2017; Mukherjee et al., 2017;
Crilley et al., 2018; Feinberg et al., 2018; Johnson et al.,
2018; Zheng et al., 2018). Application-wise, low-cost PM
sensors have had success in identifying urban fine particle
(PM2.5, with a diameter of 2.5 µm and smaller) hotspots in
Xi’an, China (Gao et al., 2015), mapping urban air quality
with additional dispersion model information in Oslo, Nor-
way (Schneider et al., 2017), monitoring smoke from pre-
scribed fire in Colorado, US (Kelleher et al., 2018), measur-
ing a traveler’s exposure to PM2.5 in various microenviron-
ments in Southeast Asia (Ozler et al., 2018), and building up
a detailed city-wide temporal and spatial indoor PM2.5 expo-
sure profile in Beijing, China (Zuo et al., 2018).

On the down side, researchers have been plagued by
calibration-related issues since the emergence of low-cost
AQ sensors. One common brute force solution is initial cal-
ibration by collocation with reference analyzers before field
deployment and follow-up with routine recalibration. Yet, the
transferability of these pre-determined calibrations at collo-
cation sites to new deployment sites is questionable as cali-

bration factors typically vary with operating conditions such
as PM mass concentrations, relative humidity (RH), temper-
ature, and aerosol optical properties (Holstius et al., 2014;
Austin et al., 2015; Wang et al., 2015; Lewis and Edwards,
2016; Crilley et al., 2018; Jayaratne et al., 2018; Zheng et al.,
2018). Complicating this further, the pre-generated calibra-
tion curves may only apply for a short term as the stability
of low-cost sensors can develop drift or degrade over time
(Lewis and Edwards, 2016; Jiao et al., 2016; Hagler et al.,
2018). Routine recalibrations which require frequent transit
of the deployed sensors between the field and the reference
sites are not only too labor intensive for a large-scale network
but also still cannot address the impact of urban heterogene-
ity of ambient conditions on calibration models (Kizel et al.,
2018).

As such, calibrating sensors on the fly while they are de-
ployed in the field is highly desirable. Takruri et al. (2009)
showed that the interacting multiple model (IMM) algo-
rithm combined with the support vector regression (SVR)–
unscented Kalman filter (UKF) can automatically and suc-
cessfully detect and correct low-cost sensor measurement er-
rors in the field; however, the implementation of this algo-
rithm still requires pre-deployment calibrations. Fishbain and
Moreno-Centeno (2016) designed a self-calibration strategy
for low-cost nodes with no need for collocation by exploit-
ing the raw signal differences between all possible pairs of
nodes. The learned calibrated measurements are the vectors
whose pairwise differences are closest in the normalized pro-
jected Cook–Kress (NPCK) distance to the corresponding
pairwise raw signal differences given all possible pairs over
all time steps. However, this strategy did not include ref-
erence measurements in the self-calibration procedure, and
therefore the tuned measurements were still essentially raw
signals (although instrument noise was dampened). An al-
ternative calibration method involves chain calibration of the
low-cost nodes in the field with only the first node calibrated
by collocation with reference analyzers and the remaining
nodes calibrated sequentially by their respective previous
node along the chain (Kizel et al., 2018). While this node-
to-node calibration procedure proved its merits in reducing
collocation burden and data loss during calibration, reloca-
tion, and recalibration and accommodating the influence of
urban heterogeneity on calibration models, it is only suitable
for relatively small networks because calibration errors prop-
agate through chains and can inflate toward the end of a long
chain (Kizel et al., 2018).

In this paper, we introduce a simultaneous Gaussian pro-
cess regression (GPR) and simple linear regression pipeline
to calibrate PM2.5 readings of any number of low-cost PM
sensors on the fly in the field without resorting to pre-
deployment collocation calibration by leveraging all avail-
able reference monitors across an area (e.g., Delhi, India).
The proposed strategy is theoretically sound since the GPR
(also known as Kriging) can capture the spatial covariance
inherent in the data and has been widely used for spatial data
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interpolation (e.g., Holdaway, 1996; Di et al., 2016; Schnei-
der et al., 2017), and the simple linear regression calibration
can adjust for disagreements between the low-cost sensor and
reference instrument measurements, leading to more consis-
tent spatial interpolation. This paper focuses on the follow-
ing:

1. quantifying experimentally the daily performance of our
dynamic calibration model in Delhi during the win-
ter season based on model prediction accuracy on the
holdout reference nodes during leave-one-out cross-
validations (CVs) and low-cost node calibration accu-
racy;

2. revealing the potential pitfalls of employing a dynamic
calibration algorithm;

3. examining the sensitivity of our algorithm to the train-
ing data size and the feasibility of it for dynamic cali-
bration;

4. demonstrating the ability of our algorithm to auto-detect
faulty nodes and auto-correct the drift of nodes within
a network via computational simulation, and therefore
the practicality of adapting our algorithm for automated
large-scale sensor network monitoring; and

5. studying computationally the optimal number of refer-
ence stations across Delhi to support our technique and
the usefulness of low-cost sensors for extending the spa-
tial precision of a sensor network.

To the best of our knowledge, this is the first study to apply
such a non-static calibration technique to a wireless low-cost
PM sensor network in a heavily polluted region such as India
and is the first to present methods of auto-monitoring dense
AQ sensor networks.

2 Materials and methods

2.1 Low-cost node configuration

The low-cost packages used in the present study (dubbed
“Atmos”) shown in Fig. 1a were developed by Respirer
Living Sciences (http://atmos.urbansciences.in/, last access:
30 November 2018) and cost USD∼ 300 per unit. The
Atmos monitor measures 20.3 cm L×12.1 cm W×7.6 cm H,
weighs 500 g, and is housed in an IP65 (Ingress Pro-
tection rating 65) enclosure with a liquid crystal display
(LCD) on the front showing real-time PM mass concentra-
tions and various debugging messages. It includes a Plan-
tower PMS7003 sensor (USD∼ 25; dimension: 4.8 cm L
×3.7 cm W ×1.2 cm H) to measure PM1, PM2.5, and PM10
mass concentrations, an Adafruit DHT22 sensor to mea-
sure temperature and relative humidity, and an ultra-compact
Quectel L80 GPS model to retrieve accurate locations in real
time. The operating principle and configuration of PMS7003

are similar to its PMS1003, PMS3003, and PMS5003 coun-
terparts and have been extensively discussed in previous
studies (Kelly et al., 2017; Zheng et al., 2018; and Sayahi
et al., 2019, respectively). The inlet and outlet of PMS7003
were aligned with two slots on the box to ensure unrestricted
airflow into the sensor. The PM and meteorology data are
read over the serial TTL interface every 3 seconds, aggre-
gated every 1 min to the memory of the device, before be-
ing transmitted by a Quectel M66 GPRS module through
the mobile 2G cellular network to an online database. The
Atmos can also store the data on a local microSD card in
case of transmission failure. Users have the option to con-
figure the frequencies of data transfer and logging to 5, 10,
15, 30, and 60 min via a press key on the device and are able
to view the settings on the LCD. All components of the At-
mos monitors (key parts are labeled in Fig. 1b) are integrated
to a custom-designed printed circuit board (PCB) which is
controlled by a STMicroelectronics microcontroller (model
STM32F051). Each Atmos was continuously powered up by
a 5V 2A USB wall charger, but it also comes with a fail-safe
3.7 V–2600 mAh rechargeable Li-ion battery, in the case of
power outage, that can last up to 10 h at a 1 min transmission
frequency and 20 h at a 5 min frequency.

The Atmos network’s server architecture was also devel-
oped by Respirer Living Sciences and built on the follow-
ing open-source components: KairosDB as the primary fast
scalable time series database built on Apache Cassandra,
custom-made Java libraries for ingesting data and for provid-
ing XML-, JSON-, and CSV-based access to aggregated time
series data, HTML5 and JavaScript for creating the front-end
dashboard, and LeafletJS for visualizing Atmos networks on
maps.

2.2 Data description

2.2.1 Reference PM2.5 data

Hourly ground-level PM2.5 concentrations from 21 mon-
itoring stations operated by the Central Pollution Con-
trol Board (CPCB), the Delhi Pollution Control Com-
mittee (DPCC), the India Meteorological Department
(IMD), the Uttar Pradesh and Haryana State Pollu-
tion Control Boards (SPCBs) (https://app.cpcbccr.com/ccr/
#/caaqm-dashboard/caaqm-landing, last access: 18 Septem-
ber 2018), and from one monitoring station operated by the
U.S. Embassy in New Delhi (https://www.airnow.gov/index.
cfm?action=airnow.global_summary#India$New_Delhi, last
access: 18 September 2018) were available in our study
domain of Delhi, and its satellite cities including Gur-
gaon, Faridabad, Noida, and Ghaziabad, from 1 January to
31 March 2018 (winter season) and were used as the refer-
ence measurements in our Delhi PM sensor network. The to-
pographical, climatic, and air quality conditions of Delhi are
well documented by Tiwari et al. (2012, 2015) and Gorai et
al. (2018). Briefly, Delhi experiences unusually high PM2.5
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Table 1. Delhi PM sensor network sites along with the 1 h percentage data completeness with respect to the entire sampling period (i.e., from
1 January 00:00 to 31 March 2018 23:59, Indian standard time, IST; in total 90 d, 2160 h) before and after 1 h missing-data imputation for
each individual site. Note that a 10 % increase in the percentage data completeness after 1 h missing-data imputation is equivalent to ∼ 216 h
of 1 h data being interpolated.

Category Site names Latitude (◦ N) Longitude (◦ E) Initial 1 h 1 h data completeness
data after missing-data

completeness imputation

Reference Anand Vihar 28.6468350 77.3160320 88 % 100 %
Aya Nagar 28.4706914 77.1099364 97 % 100 %
Burari Cross 28.7258390 77.2033350 98 % 100 %
CRRI Mathura Road 28.5512005 77.2735737 98 % 100 %
Delhi Technological 28.7500499 77.1112615 96 % 100 %
University (DTU)
Faridabad 28.4088421 77.3099081 98 % 100 %
IGI Airport Terminal-3 28.5627763 77.1180053 95 % 100 %
IHBAS, Dilshad Garden 28.6811736 77.3025234 98 % 100 %
ITO Metro Station (ITO) 28.6316945 77.2494387 98 % 100 %
Lodhi Road 28.5918245 77.2273074 93 % 100 %
Mandir Marg 28.6364290 77.2010670 96 % 100 %
North Campus 28.6573814 77.1585447 94 % 100 %
NSIT Dwarka 28.6090900 77.0325413 95 % 100 %
Punjabi Bagh 28.6740450 77.1310230 94 % 100 %
Pusa 28.6396450 77.1462620 99 % 100 %
R K Puram 28.5632620 77.1869370 95 % 100 %
Sector 62 Noida 28.6245479 77.3577104 93 % 99 %
Sector 125 Noida 28.5447608 77.3231257 90 % 97 %
Shadipur 28.6514781 77.1473105 97 % 100 %
Siri Fort 28.5504249 77.2159377 78 % 100 %
U.S. Embassy 28.5980970 77.1880330 95 % 100 %
Vasundhara, Ghaziabad 28.6603346 77.3572563 100 % 100 %

Low-cost All India Institute of 28.5545006 77.2124023 89 % 100 %
Medical Science (AIIMS)
Hiran Kudna 28.6674995 77.0089035 80 % 97 %
Indian Institute of 28.5473003 77.1909027 88 % 99 %
Technology Delhi (IITD)
Indian Institute of 28.6303400 77.1750400 98 % 100 %
Tropical Meteorology (IITM)
Kaushambi 28.6410008 77.3199005 84 % 100 %
Manav Rachna University 28.4477005 77.3084030 87 % 100 %
(MRU)
Mayur Vihar 28.6079998 77.2906036 85 % 93 %
Naraina Vihar 28.6289005 77.1391983 70 % 79 %
New Friends Colony 28.5676994 77.2687988 99 % 100 %
S.D.A. Park 28.5517006 77.2031021 66 % 97 %

concentrations over winter season due to a combination of
increased biomass burning for heating, shallower boundary
layer mixing height, diminished wet scavenging by precip-
itation, lower wind speed, and trapping of air pollutants by
the Himalayan topology. Figure 2 visualizes the spatial dis-
tribution of these 22 reference monitors (triangles with italic
text) and Table 1 lists their latitudes and longitudes. No sta-
tion of the 22 reference monitors is known for regional back-
ground monitoring. The complex local built environment in
Delhi arising from the densely and intensively mixed land

use (Tiwari, 2002) and the significant contributions to air
pollution from all vehicular, industrial (small-scale indus-
tries and major power plants), commercial (diesel generators
and tandoors), and residential (diesel generators and biomass
burning) sectors (CPCB, 2009; Gorai et al., 2018) render the
PM2.5 concentrations relatively unconnected to the land-use
patterns. We removed 104 1 h observations (labeled invalid
and missing) from the U.S. Embassy dataset based on its re-
ported QA and QC (quality assurance and quality control)
remarks. However, the same procedure was not applied to
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Figure 1. (a) Front view of the low-cost node. (b) Key components
of the low-cost node.

the remaining 21 Indian government monitoring stations be-
cause neither the relevant Indian agencies provided QA and
QC remarks or error flags in any of their regulatory moni-
toring stations’ datasets nor can we obtain the QA and QC
procedures (e.g., how and how often reference monitors are
maintained and calibrated) for these reference monitors. Due
to lack of relevant QA and QC information to exclude any
measurements, all of the hourly PM2.5 concentrations of the
21 monitoring stations operated by the Indian agencies were
assumed to be correct. We would like to highlight this as a
potential shortcoming of using the measurements from the
Indian government monitoring stations. While mathemati-
cally the GPR model can operate without requiring data from
all the stations to be non-missing on each day by relying
on only each day’s non-missing stations’ covariance infor-
mation to make inference, we practically required concur-
rent measurements of all the stations in this paper to drasti-
cally increase the speed of the algorithm (∼ 10 min to run a
complete 22-fold leave-one-out CV, up to ∼ 20 times faster)
by avoiding the expensive computational cost of excessive

amount of matrix inversions that can be incurred otherwise.
We therefore linearly interpolated the 1 h PM2.5 values for
the hours with missing measurements for each station, af-
ter which we averaged the hourly data to daily resolution as
the model inputs. We validate our interpolation approach in
Sect. 3.2.1 by showing that the model accuracies with and
without interpolation are statistically the same.

2.2.2 Low-cost node PM2.5 data

Hourly uncalibrated PM2.5 measurements from 10 At-
mos low-cost nodes across Delhi between 1 January and
31 March 2018 were downloaded from our low-cost sensor
cloud platform. No correction or filter of any kind was ap-
plied to the raw signals of the low-cost nodes over the cloud
platform before we downloaded the data. Figure 2 shows the
sampling locations of these 10 low-cost nodes as circles, and
Table 1 specifies their latitudes and longitudes. In our cur-
rent study, the factors governing the siting of these nodes
consist of the ground contact personnel availability, the re-
source availability such as a strong mobile network signal
and 24/7 main power supply, the location’s physical acces-
sibility, and some other common criteria for sensor deploy-
ment (e.g., locations away from major pollution sources, sit-
uated in a place where free flow of air is available, and pro-
tected from vandalism and extreme weather). Similar to the
pre-processing of the reference PM2.5 data, we linearly inter-
polated the missing hourly PM2.5 for each low-cost node and
then aggregated the hourly data at a daily interval. The com-
parison of 1 h PM2.5’s completeness before and after miss-
ing data imputation for both reference and low-cost nodes
is detailed in Table 1, and the periods over which data were
imputed for each site are illustrated in Fig. S1 in the Sup-
plement. There is no obvious pattern in the data missing-
ness. To remove the prospective outliers such as erroneous
surges or nadirs existing in the datasets of the 21 Indian gov-
ernment reference nodes and the 10 low-cost nodes, or to
remove unreasonable interpolated measurements introduced
during handling the missing data, we employed the Local
Outlier Factor (LOF) algorithm with 20 neighbors consid-
ered (a number that works well in general) to remove a con-
servative ∼ 10 % of the 32-dimensional (22 reference + 10
low-cost nodes) 24 h PM2.5 datasets. The LOF is an unsu-
pervised anomaly detection method that assigns each multi-
dimensional data point a LOF score, defined as the ratio of
the average local density of its k nearest neighboring data
points (k = 20 in our study) to its own local density, to mea-
sure the relative degree of isolation of the given data point
with respect to its neighbors (Breunig et al., 2000). Normal
observations tend to have LOF scores near 1, while outliers
have scores significantly larger than 1. The LOF therefore
identifies the outliers as those multi-dimensional observa-
tions with the top x% (x = 10 in our study) LOF scores. A
total of 59 d of PM2.5 measurements common to all 32 nodes
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Figure 2. Locations of the 22 reference nodes (triangles with italic text) and 10 low-cost nodes (circles) that form the Delhi PM sensor
network. ©OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

in the network were left (see Fig. S1) and used for our model
evaluation.

2.3 Simultaneous GPR and simple linear regression
calibration model

The simultaneous GPR and simple linear regression calibra-
tion algorithm is introduced here as Algorithm 1. The critical
steps of the algorithm are linked to sub-sections under which
the respective details can be found. Complementing Algo-
rithm 1, a flow diagram illustrating the algorithm is given in
Fig. 3.

2.3.1 Leave one reference node out

Because the true calibration factors for the low-cost nodes
are not known beforehand, a leave-one-out CV approach
(i.e., holding one of the 22 reference nodes out of modeling
each run for model predictive performance evaluation) was
adopted as a surrogate to estimate our proposed model ac-
curacy of calibrating the low-cost nodes. For each of the 22-
fold CV, 31 node locations (denoted 0 = {x1, . . .,x31}) were
available, where xi is the latitude and longitude of node i. Let
yit represent the daily PM2.5 measurement of node i on day
t and yt ∈ R31 denote the concatenation of the daily PM2.5
measurements recorded by the 31 nodes on day t . Given a
finite number of node locations, a Gaussian process (GP) be-

comes a multivariate Gaussian distribution over the nodes in
the form of the following:

yt |0 ∼N (µ,6) , (1)

where µ ∈ R31 represents the mean function (assumed to be
0 in this study); 6 ∈ R31×31 with 6ij =K

(
xi,xj ;2

)
rep-

resents the covariance function or kernel function and 2 is a
vector of the GPR hyperparameters.

For simplicity’s sake, the kernel function was set to a
squared exponential (SE) covariance term to capture the spa-
tially correlated signals coupled with another component to
constrain the independent noise (Rasmussen and Williams,
2006):

K
(
xi,xj ;2

)
= σ 2

s exp

(
−

∥∥xi − xj∥∥2
2

2l2

)
+ σ 2

n I, (2)

where σ 2
s , l, and σ 2

n are the model hyperparameters (to be
optimized) that control the signal magnitude, characteristic
length scale, and noise magnitude, respectively; 2 ∈ R3 is a
vector of the GPR hyperparameters σ 2

s , l, and σ 2
n .

2.3.2 Initialize low-cost nodes’ (simple linear
regression) calibrations

What separates our method from standard GP applications
is the simultaneous incorporation of calibration for the low-
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Figure 3. The flow diagram illustrating the simultaneous GPR and simple linear regression calibration algorithm. In step one, for each of the
22-fold leave-one-out CVs, one of the 22 reference nodes is held out of modeling for the model predictive performance evaluation in step
seven. In step two, fit a simple linear regression model between each low-cost node i and its closest reference node’s PM2.5, initialize low-
cost node i’s calibration model to this linear regression model, and calibrate the low-cost node i using this model. In step three, first initialize
the GPR hyperparameters to [0.1, 50, 0.01] and then update the hyperparameters based on the training samples from the 10 initially calibrated
low-cost nodes and 21 reference nodes over 59 d. In step four, first compute each low-cost node i’s means conditional on the remaining 30
nodes given the optimized GPR hyperparameters, then fit a simple linear regression model between each low-cost node i and its conditional
means, update low-cost node i’s calibration model to this new linear regression model, and re-calibrate the low-cost node i using this new
model. In steps five and six, iterative optimizations alternate between the GPR hyperparameters and the low-cost node calibrations using the
approaches described in steps three and four, respectively, until the GPR hyperparameters converged. In step seven, predict the 59 d PM2.5
measurements of the holdout reference node based on the finalized GPR hyperparameters and the low-cost node calibrations.

cost nodes using a simple linear regression model into the
spatial model. Linear regression has previously been shown
to be effective at calibrating PM sensors (Zheng et al., 2018).
Linear regression was first used to initialize low-cost nodes’
calibrations (step two in Fig. 3). In this step, each low-cost
node i was linearly calibrated to its closest reference node
using Eq. (3), where the calibration factors αi (slope) and βi
(intercept) were determined by fitting a simple linear regres-
sion model to all available pairs of daily PM2.5 mass concen-
trations from the uncalibrated low-cost node i (independent
variable) and its closest reference node (dependent variable).
This step aims to bridge disagreements between low-cost and
reference node measurements, which can lead to a more con-
sistent spatial interpolation and a faster convergence during
the GPR model optimization.

r i =

{
yi, if reference node
αi · yi +βi, if low-cost node , (3)

where yi is either a vector of all the daily PM2.5 measure-
ments of reference node i or a vector of all the daily raw
PM2.5 signals of low-cost node i; r i is either a vector of all
the daily PM2.5 measurements of reference node i or a vector
of all the daily calibrated PM2.5 measurements of low-cost
node i; and αi and βi are the slope and intercept, respec-
tively, determined from the fitted simple linear regression
calibration equation with daily PM2.5 mass concentrations
of the uncalibrated low-cost node i as independent variable
and PM2.5 mass concentrations of low-cost node i’s closest
reference node as dependent variable.

2.3.3 Optimize GPR model (hyperparameters)

In the next step (step three in Fig. 3), a GPR model was fit
to each day t’s 31 nodes (i.e., 10 initialized low-cost nodes
and 21 reference nodes) as described in Eq. (4). Prior to
the GPR model fitting, all the PM2.5 measurements of the
31 nodes over 59 available days used for GPR model hy-
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perparameters training were standardized. The standardiza-
tion was performed by first concatenating all these training
PM2.5 measurements (from the 31 nodes over 59 d), then
subtracting their mean µtraining and dividing them by their
standard deviation straining (i.e., transforming all the training
PM2.5 measurements to have a 0 mean and unit variance). It
is worth noting that assuming the mean function µ ∈ R31 to
be 0 along with standardizing all the training PM2.5 samples
in this study is one of the common modeling formulations
on the GPR model and also the simplest one. More complex
formulations including a station-specific mean function (lack
of prior information for this project), a time-dependent mean
function (computationally expensive), and a combination of
both were not considered for this paper. After the standard-
ization of training samples, the GPR was trained to maximize
the log marginal likelihood over all 59 d using Eq. (5) and us-
ing an L-BFGS-B optimizer (Byrd et al., 1994). To avoid bad
local minima, several random hyperparameter initializations
were tried and the initialization that resulted in the largest log
marginal likelihood after optimization was chosen (in this pa-

per, 2 = [σ 2
s , l, σ 2

n ] was initialized to [0.1, 50, 0.01]).

r t |0 ∼N (µ, 6) , (4)

where t ranges from 1 (inclusive) to 59 (inclusive); r t ∈ R31

is a vector of all 31 nodes’ PM2.5 measurements (calibrated
if low-cost nodes) on day t ; 0 = {x1, . . .,x31} denotes 31
nodes’ locations and xi ∈ R2 is a vector of the latitude and
longitude of node i; µ ∈ R31 represents the mean function
(assumed to be 0 in this study); and 6 ∈ R31×31 with 6ij =
K
(
xi,xj ;2

)
represents the covariance function or kernel

function.

arg max
2
L(2)= arg max

2

∑59
t=1

logp(r t |2)

= arg max
2
(−0.5 · 59 · log |6θ | − 0.5

∑59
t=1
rTt 6

−1
θ r t ), (5)

where 2 ∈ R3 is a vector of the GPR hyperparameters σ 2
s , l,

and σ 2
n .
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2.3.4 Update low-cost nodes’ (simple linear regression)
calibrations based on their conditional means

Once the optimum 2 for the (initial) GPR was found, we
used the learned covariance function to find the mean of each
low-cost node i’s Gaussian Distribution conditional on the
remaining 30 nodes within the network (i.e., µitA|B) on day
t as described mathematically in Eqs. (6)–(8), and we re-
peatedly did so until all 59 d of µitA|B (i.e., µiA|B ∈ R59) were
found and then re-calibrated that low-cost node i based on
the µiA|B. The re-calibration was done by first fitting a simple
linear regression model to all 59 pairs of daily PM2.5 mass
concentrations from the uncalibrated low-cost node i (yi , in-
dependent variable) and its conditional mean (µiA|B, depen-
dent variable) and then using the updated calibration factors
(slope αi and intercept βi) obtained from this newly fitted
simple linear regression calibration model to calibrate the
low-cost node i again (using Eq. 3). This procedure is sum-
marized graphically in Fig. 3 step four and was performed
iteratively for all low-cost nodes one at a time. The reasoning
behind this step is given in the Supplement. A high-level in-
terpretation of this step is that the target low-cost node is cal-
ibrated by being weighted over the remaining nodes within
the network and the 6itAB6

it−1

BB term computes the weights.
In contrast to the inverse distance weighting interpolation
which will weight the nodes used for calibration equally if
they are equally distant from the target node, the GPR will
value sparse information more and lower the importance of
redundant information (suppose all the nodes are equally dis-
tant from the target node) as shown in Fig. S2.

p

([
r itA
r itB

])
= N

([
r itA
r itB

]
;

[
µitA
µitB

] [
6itAA 6itAB
6itBA 6itBB

])
, (6)

r itA

∣∣∣r itB ∼ N (µitA|B, 6itA|B) , (7)

µitA|B = µ
it
A+6

it
AB6

it−1

BB (r
it
B − µ

it
B), (8)

where r itA and r itB are the daily PM2.5 measurement (s) of
the low-cost node i and the remaining 30 nodes on day t ;
µitA,µ

it
B , and µitA|B are the mean (vector) of the partitioned

multivariate Gaussian distribution of the low-cost node i,the
remaining 30 nodes, and the low-cost node i conditional on
the remaining 30 nodes, respectively, on day t ; and 6itAA,
6itAB, 6itBA, 6itBB, and 6itA|B are the covariance between the
low-cost node i and itself, the low-cost node i and the re-
maining 30 nodes, the remaining 30 nodes and the low-cost
node i, the remaining 30 nodes and themselves, and the low-
cost node i conditional on the remaining 30 nodes and itself,
respectively, on day t .

2.3.5 Optimize alternately and iteratively and converge

Iterative optimizations alternated between the GPR hyperpa-
rameters and the low-cost node calibrations using the ap-
proaches described in Sect. 2.3.3 and 2.3.4, respectively

(Fig. 3 steps five and six, respectively), until the GPR pa-
rameters2 converged. The convergence criteria is the differ-
ences in all the GPR hyperparameters between the two adja-
cent runs below 0.01 (i.e., with 1σ 2

s ≤ 0.01, 1l ≤ 0.01, and
1σ 2

n ≤ 0.01).

2.3.6 Predict on the holdout reference node and
calculate accuracy metrics

The final GPR was used to predict the 59 d PM2.5 measure-
ments of the holdout reference node (Fig. 3 step seven) fol-
lowing the Cholesky decomposition algorithm (Rasmussen
and Williams, 2006) with the standardized predictions being
transformed back to the original PM2.5 measurement scale
at the end. The back transformation was done by multiply-
ing the predictions by the standard deviation straining (the
standard deviation of the training PM2.5 measurements) and
then adding back the mean µtraining (the mean of the training
PM2.5 measurements). Metrics including root mean square
errors (RMSE, Eq. 9) and percent errors defined as RMSE
normalized by the average of the true measurements of the
holdout reference node in this study (Eq. 10) were calculated
for each fold and further averaged over all 22 folds to assess
the accuracy and sensitivity of our simultaneous GPR and
simple linear regression calibration model.

RMSE=

√
1

59

∥∥yi − ŷi∥∥2
2, (9)

where yi and ŷi are the true and model predicted 59 daily
PM2.5 measurements of the holdout reference node i.

Percent error=
RMSE

avg. holdout reference PM2.5 conc.
(10)

3 Results and discussion

3.1 Spatial variation of PM2.5 across Delhi

Figure 4a presents the box plot of the daily averaged PM2.5
at each available reference site across Delhi from 1 January
to 31 March 2018. The Vasundhara and DTU sites were the
most polluted stations with the PM2.5 averaging 194± 104
and 193± 90 µg m−3, respectively. The Pusa and Sector 62
sites had the lowest mean PM2.5, averaging 86± 40 and
88± 36 µg m−3, respectively. The Delhi-wide average of the
3-month mean PM2.5 across the 22 reference stations was
found to be 138± 31 µg m−3. This pronounced spatial varia-
tion in mean PM2.5 in Delhi (as reflected by the high SD of
31 µg m−3) coupled with the stronger temporal variation for
each station even at a 24 h scale (range: 35–104 µg m−3, see
Fig. 4a) caused nonuniform calibration performance of the
GPR model across Delhi, as detailed in Sect. 3.2.
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Figure 4. (a) Box plots of the 24 h aggregated true ambient PM2.5 mass concentrations measured by the 22 government reference monitors
across Delhi from 1 January to 31 March 2018. (b) Box plots of the low-cost node 24 h aggregated PM2.5 mass concentrations calibrated by
the optimized GPR model. In both (a) and (b), mean and SD of the PM2.5 mass concentrations for each individual site are superimposed on
the box plots.

3.2 Assessment of GPR model performance

The optimum values of the GPR model parameters includ-
ing the signal variance (σ 2

s ), the characteristic length scale
(l), and the noise variance (σ 2

n ) are shown in Fig. S3. The
σ 2
s , l, and σ 2

n from the 22-fold leave-one-out CV averaged
0.53± 0.02, 97.89± 5.47 km, and 0.47± 0.01, respectively.
The small variability in all the parameters among all the folds
indicates that the model is fairly robust to the different com-
binations of reference nodes. The learned length scale can
be interpreted as the modeled spatial pattern of PM2.5 being
relatively consistent within approximately 98 km, suggesting
that the optimized model majorly captures a regional trend
rather than fine-grained local variations in Delhi.

3.2.1 Accuracy of reference node prediction

We start by showing the accuracy of model prediction on the
22 reference nodes using leave-one-out CV (when the low-
cost node measurements were included in our spatial predic-
tion). Without any prior knowledge of the true calibration
factors for the low-cost nodes, the holdout reference node
prediction accuracy is a statistically sound proxy for estimat-
ing how well our technique can calibrate the low-cost nodes.
The performance scores (including RMSE and percent error)
for each reference station sorted by the 3-month mean PM2.5
in descending order are listed in Table 2. An overall 30 %
prediction error (equivalent to an RMSE of 33 µg m−3) at a
24 h scale was achieved on the reference nodes following our
calibration procedure. In this paper, we reported our algo-
rithm’s accuracy on the 24 h data only rather than on the 1 h
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Table 2. Summary of the GPR model 24 h performance scores (including RMSE and percent error) for predicting the measurements of the
22 holdout reference nodes across the 22-fold leave-one-out CV when the full sensor network is used. The mean of the true ambient PM2.5
mass concentrations throughout the study (from 1 January to 31 March 2018) for each individual reference node is provided. The reference
nodes with the means of true PM2.5 inside the range of (Delhi-wide mean ± SD, i.e., 138± 31) are indicated with shading.

Reference nodes RMSE Percent error Mean of true
(µg m−3) PM2.5 (µg m−3)

Vasundhara, Ghaziabad 68 44 % 195
DTU 56 36 % 194
Anand Vihar 47 32 % 181
Sector 125 Noida 31 23 % 169
Punjabi Bagh 26 20 % 163
NSIT Dwarka 25 19 % 153
R K Puram 26 20 % 153
Siri Fort 22 18 % 147
U.S. Embassy 21 18 % 144
North Campus 27 24 % 144
CRRI Mathura Road 27 21 % 142
Mandir Marg 16 14 % 142
ITO 15 14 % 136
Faridabad 21 18 % 133
Shadipur 23 22 % 132
Burari Cross 36 39 % 109
Lodhi Road 34 41 % 107
IGI Airport Terminal–3 29 32 % 106
Aya Nagar 34 38 % 105
IHBAS, Dilshad Garden 38 41 % 105
Sector 62 Noida 47 60 % 89
Pusa 48 70 % 86
Delhi-wide mean 33 30 % 138
SD 13 14 % 31

data because real-time reference monitors that are certified as
the Federal Equivalent Methods (FEMs) by the U.S. Environ-
mental Protection Agency (EPA) are required to provide re-
sults comparable to the Federal Reference Methods (FRMs)
only for a 24 h but not a 1 h sampling period. Our algorithm,
which essentially relies on the accuracy of the reference mea-
surements, can only calibrate or predict as well as the ref-
erence methods measure. Therefore, only the percent error
based on the reliable 24 h reference measurements is a fair
representation of our algorithm’s true calibration/prediction
ability. Although the technique is reasonably accurate, es-
pecially considering the minimal amount of field work in-
volved, its calibration error is nearly 3 times higher than the
error of the low-cost nodes that were well calibrated by col-
location with an environmental beta attenuation monitor (E-
BAM) in our previous study (error: 11 %; RMSE: 13 µg m−3)
under similar PM2.5 concentrations at the same temporal res-
olution (Zheng et al., 2018). The suboptimal on-the-fly map-
ping accuracy is a result of the optimized model’s ability to
simulate only the regional trend well. From a different per-
spective, the GPR method would have modeled the spatial
pattern of PM2.5 in Delhi well had the natural spatial covari-
ance among the nodes not been disturbed by the complex

and prevalent local sources there. As a substantiation of the
flawed local PM2.5 variation modeling, the reference node
mapping accuracy follows a pattern, with relatively high-
quality prediction for those nodes whose means were close to
the Delhi-wide mean (e.g., Delhi-wide mean ± SD as high-
lighted with shading in Table 2) and relatively poor predic-
tion for those nodes whose means differed substantially from
the Delhi-wide mean (particularly on the lower end).

In this paper, we interpolated the missing 1 h PM2.5 val-
ues for all the reference and low-cost stations to fulfill our
requirement of concurrent measurements of all the stations.
This approach drastically increased the speed of the algo-
rithm (up to ∼ 20 times faster) by avoiding the expensive
computational cost of excessive amount of matrix inver-
sions that can be incurred from relying on only each day’s
non-missing stations’ covariance information to make infer-
ence. Here we prove that the interpolation is an appropriate
methodology for this paper by demonstrating that the model
prediction percent errors for the 22 reference stations with
and without interpolation are statistically the same. The com-
parison of the errors for each station can be found in Table S1
in the Supplement. Table S1 shows that the percent errors for
all the stations are essentially the same with only one ex-
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Figure 5. Box plots of the GPR model 24 h performance scores (in-
cluding RMSE and percent error) for predicting the measurements
of the 22 holdout reference nodes across the 22-fold leave-one-out
CV under two scenarios – using the full sensor network by includ-
ing both reference and low-cost nodes and using only the reference
nodes for the model construction. Note both scenarios were given
the initial parameter values and bounds that maximize the model
performance.

ception of station Vasundhara whose error without interpo-
lation is 10 % lower than that with interpolation. The Delhi-
wide mean percent errors with (30 %) and without interpo-
lation (29 %) are also essentially the same. We further used
the Wilcoxon signed-rank test (Wilcoxon, 1945) to prove that
the two related paired samples (i.e., the percent errors for the
22 reference stations with and without interpolation) are in-
deed statistically the same. The Wilcoxon signed-rank test is
a nonparametric version of the parametric paired t test (in-
volving two related or matched samples or groups) that re-
quires no specific distribution on the measurements (unlike
the parametric paired t test that assumes a normal distribu-
tion). We conducted a two-sided test which has the null hy-
pothesis that the percent errors for the 22 reference stations
with and without interpolation are the same (i.e., H0: with
= without) against the alternative that they are not the same
(i.e., H1: with 6= without). The p value of the test is 0.07.
The level of statistical significance was chosen to be 0.05,
which means that the null hypothesis (i.e., H0: with = with-
out) cannot be rejected when the p value is 0.07 (above 0.05).
Therefore, interpolating missing 1 h PM2.5 data for both ref-
erence and low-cost nodes is appropriate for this paper be-
cause the accuracies of model prediction on the 22 reference
nodes with and without interpolation are not distinct based
on the Wilcoxon signed-rank test result.

It is of particular interest to validate the value of estab-
lishing a relatively dense wireless sensor network in Delhi
by examining if the addition of the low-cost nodes can truly
lend a performance boost to the spatial interpolation among
sensor locations. We juxtapose the interpolation performance
using the full sensor network (including both the reference
and low-cost nodes) with that using only the reference nodes
in Fig. 5. In this context, the unnormalized RMSE is less rep-

Figure 6. Box plots of the learned calibration factors (i.e., intercept
and slope) for each individual low-cost node from the 22 optimized
GPR models across the 22-fold leave-one-out CV.

resentative than the percent error of the model interpolation
performance because of the unequal numbers of overlapping
24 h observations for all the nodes (59 data points) and for
only the reference nodes (87 data points). The comparison re-
vealed that the inclusion of the 10 low-cost devices on top of
the regulatory grade monitors can reduce mean and median
interpolation error by roughly 2 %. While only a marginal
improvement with 10 low-cost nodes in the network, the out-
come hints that densely deployed low-cost nodes can have
great promise of significantly decreasing the amount of pure
interpolation among sensor locations, therefore benefitting
the spatial precision of a network. We will explore more
about the significance of the low-cost nodes for the network
performance in Sect. 3.3.3.

3.2.2 Accuracy of low-cost node calibration

Next we describe the technique’s accuracy of low-cost
node calibration. The model-produced calibration factors are
shown in Fig. 6. The intercepts and slopes for each unique
low-cost device varied little among all the 22 CV folds, re-
iterating the stability of the GPR model. The values of these
calibration factors resemble those obtained in the previous
field work, with slopes comparable to South Coast Air Qual-
ity Management District’s evaluations on the Plantower PMS
models (SCAQMD, 2017a–c) and intercepts comparable to
our Kanpur, India post-monsoon study (Zheng et al., 2018).

Two low-cost nodes (i.e., MRU and IITD) were collocated
with two E-BAMs throughout the entire study. This allows us
to take their model-derived calibration factors and calibrate
the corresponding raw values of the low-cost nodes before
computing the calibration accuracy based on the ground truth
(i.e., E-BAM measurements). Figure 7a and b show the scat-
terplots of the collocated E-BAM measurements against the
model-calibrated low-cost nodes at the MRU and the IITD
sites, respectively. The two sites had similarly large calibra-
tion errors (∼ 50 %) because their concentrations were both
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Figure 7. Correlation plots comparing the GPR model-calibrated low-cost node PM2.5 mass concentrations to the collocated E-BAM mea-
surements at (a) MRU and (b) IITD sites. In both (a) and (b), correlation of determination (R2), RMSE, percent error, and mean of the true
ambient PM2.5 mass concentrations throughout the study (from 1 January to 31 March 2018) are superimposed on the correlation plots.

near the lower end of PM2.5 spectrum in Delhi. These high
error rates echo the conditions found at the comparatively
clean Pusa and Sector 62 reference sites. The scatterplots
also reveal the reason why the technique especially has trou-
ble calibrating low-concentration sites – the technique over-
predicted the PM2.5 concentrations at the low-concentration
sites to match the levels as if subject to the natural spatial
variation. The washed-out local variability after model cal-
ibration more obviously manifests in Fig. 4b, which stands
in marked contrast to the true wide variability across the ref-
erence sites (Fig. 4a). In other words, the geostatistical tech-
niques can calibrate the low-cost nodes dynamically, with the
important caveat that it is effective only if the degree of ur-
ban homogeneity in PM2.5 is high (e.g., the local contribu-
tions are as small a fraction of the regional ones as possible,
or the local contributions are prevalent but of similar mag-
nitudes). Otherwise, quality predictions will only apply for
those nodes whose means are close to the Delhi-wide mean.
Gani et al. (2019) estimated that Delhi’s local contribution to
the composition-based submicron particulate matter (PM1)
was ∼ 30 to 50 % during winter and spring months. Clearly
the huge amount of local influence in Delhi did not fully sup-
port our technique.

3.2.3 GPR model performance as a function of training
window size

So far, the optimization of both GPR model hyperparame-
ters and the linear regression calibration factors for the low-
cost nodes has been carried out over the entire sampling pe-
riod using all 59 available daily averaged data points. It is
of critical importance to examine the effect of time history
on the algorithm, by analyzing how sensitive the model per-
formance is to training window size. We tracked the model
performance change when an increment of 2 d of data were
included in the model training. The model performance was

measured by the mean accuracy of model prediction on the
22 reference nodes (within the time period of the training
window) using leave-one-out CV, as described in Sect. 3.2.1.
Figure 8 illustrates that, throughout the 59 d, the error rate
and the standard error of the mean (SEM) remained surpris-
ingly consistent at ∼ 30 % and ∼ 3 %–4 %, respectively, re-
gardless of how many 2 d increments were used as the train-
ing window size. The little influence of training window size
on the GPR model performance is possibly a positive side
effect of the algorithm’s time-invariant mean assumption,
strong spatial smoothing effect, and the additional averaging
of the error rates of the 22 reference nodes. The markedly
low requirement of our algorithm for training data is pow-
erful in that it enables the GPR model hyperparameters and
the linear regression calibration factors to always be nearly
the most updated in the field. This helps realize the algo-
rithm’s full potential for automatically surveilling large-scale
networks by detecting malfunctioning low-cost nodes within
a network (see Sect. 3.3.1) and tracking the drift of low-cost
nodes (see Sect. 3.3.2) with as little latency as possible.

3.2.4 GPR model dynamic calibration performance

The stationary model performance in response to the increase
of training data hints that using our method for dynamic cali-
bration or prediction is feasible. We assessed the algorithm’s
1 week-ahead prediction performance, by using simple lin-
ear regression calibration factors and GPR hyperparameters
that were optimized from one week to calibrate the 10 low-
cost nodes and predict each of the 22 reference nodes, re-
spectively, in the next week. For example, the first, second,
third. . . , and seventh weeks’ data were used as training data
to build GPR models and simple linear regression models.
These simple linear regression models were then used to cal-
ibrate the low-cost nodes in the second, third, fourth. . . , and
eighth weeks, followed by the GPR models to predict each
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Figure 8. The mean percent error rate of GPR model prediction on the 22 reference nodes using leave-one-out CV (see Sect. 3.2.1) as a
function of training window size in an increment of 2 d. The error bars represent the standard error of the mean (SEM) of the GPR prediction
errors of the 22 reference nodes.

of the 22 reference nodes in that week. The performance was
still measured by the mean accuracy of model prediction on
the 22 reference nodes using leave-one-out CV, as described
in Sect. 3.2.1. We found similarly stable 26 %–34 % dynamic
calibration error rates and ∼ 3 %–7 % SEMs throughout the
weeks (see Fig. S4).

3.2.5 Relative humidity (RH) adjustment to the
algorithm

We attempted RH adjustment to the algorithm by incorporat-
ing an RH term in the linear regression models, where the
RH values were the measurements from each corresponding
low-cost sensor package’s embedded Adafruit DHT22 RH
and temperature sensor. However, there was no improvement
in the algorithm’s accuracy after RH correction. A plausi-
ble explanation is one regarding the infrequently high RH
conditions during the winter months in Delhi and stronger
smoothing effects at longer averaging time intervals (i.e.,
24 h). Our previous work (Zheng et al., 2018) suggested that
the PMS3003 PM2.5 weights exponentially increased only
when RH was above ∼ 70 %. The Delhi-wide average of the
3-month RH measured by the 10 low-cost sites was found
to be 55± 15 %. Only 17 % and 6 % of these RH values
were greater than 70 % and 80 %, respectively. The infre-
quently high RH conditions can cause the RH-induced biases
to be insignificant. Additionally, our previous work found
that even though major RH influences can be found in 1 min
to 6 h PM2.5 measurements, the influences significantly di-
minished in 12 h PM2.5 measurements and were barely ob-
servable in 24 h measurements. Therefore, longer averaging
time intervals can smooth out the RH biases.

Additionally, while our algorithm was analyzed over the
59 available days in this study, the daily averaged temper-
ature and RH measurements for the entire sampling period

(i.e., from 1 January to 31 March 2018, 90 days) were statis-
tically the same as those for the 59 d. To support this state-
ment, we conducted the Wilcoxon rank-sum test, also called
Mann–Whitney U test (Wilcoxon, 1945; Mann and Whit-
ney, 1947) on the daily averaged temperature and RH mea-
surements from the Indira Gandhi International (IGI) Air-
port. The Wilcoxon rank-sum test is a nonparametric ver-
sion of the parametric t test (involving two independent sam-
ples or groups) that requires no specific distribution on the
measurements (unlike the parametric t test that assumes a
normal distribution). We did not use a paired test here be-
cause the two groups had different sample sizes (i.e., 59
and 90, respectively). We conducted a two-sided test which
has the null hypotheses that the daily averaged temperature
and RH measurements for the 90 d (19± 5 ◦C, 59± 14 %)
and the 59 d (20± 5 ◦C, 59± 12 %) were the same (i.e.,
H0: Temperature59 d = Temperature90 d/RH59 d = RH90 d)
against the alternatives that they were not the same (i.e., H1:
Temperature59 d 6= Temperature90 d/RH59 d 6= RH90 d). The p
values for the temperature and RH comparisons are 0.28
and 0.59, respectively. The level of statistical significance
was chosen to be 0.05, which means that the null hypothe-
ses (i.e., H0: Temperature59 d = Temperature90 d/RH59 d =

RH90 d) cannot be rejected when the p values are both above
0.05. Therefore, the daily averaged temperature and RH mea-
surements from the IGI Airport for the entire sampling period
and for the 59 d were not statistically distinct.

3.3 Simulation results

While the exact values of the calibration factors derived from
the GPR model fell short of faithfully recovering the original
picture of PM2.5 spatiotemporal gradients in Delhi, these val-
ues of one low-cost node relative to another in the network
(Sect. 3.3.1) or relative to itself over time (Sect. 3.3.2) turned
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out to be useful in facilitating automated large-scale sensor
network monitoring.

3.3.1 Simulation of low-cost node failure or under
heavy influence of local sources

One way to simulate the conditions of low-cost node fail-
ure or under heavy influence of local sources is to replace
their true signals with values from random number gener-
ators so that the inherent spatial correlations are corrupted.
In this study, we simulated how the model-produced cali-
bration factors change when all (10), nine, seven, three, and
one of the low-cost nodes within the network malfunction or
are subject to strong local disturbance. We have three major
observations from evaluating the simulation results (Figs. 9
and S5). First, the normal calibration factors are quite dis-
tinct from those of the low-cost nodes with random signals.
Compared to the normal values (see Fig. 9f), the ones of the
low-cost nodes with random signals have slopes close to 0
and intercepts close to the Delhi-wide mean of true PM2.5 in
Delhi (most clearly shown in Fig. 9a). Second, the calibration
factors of the normal low-cost nodes are not affected by the
aberrant nodes within the network (see Fig. 9b,c,d,e,f). These
two observations indicate that the GPR model enables auto-
mated and streamlined process of instantly spotting any mal-
functioning low-cost nodes (due to either hardware failure or
under heavy influence of local sources) within a large-scale
sensor network. Third, the performance of the GPR model
seems to be rather uninfluenced by changing the true sig-
nals to random numbers (see Fig. S5, 33 % error rate when
all low-cost nodes are random vs. baseline 30 % error rate).
One possible explanation is that the prevalent and intricate air
pollution sources in Delhi have already dramatically weak-
ened the natural spatial correlations. This means that a sig-
nificant degree of randomness has already been imposed on
the low-cost nodes in Delhi prior to our complete random-
ness experiment. It is worth mentioning that flatlining is an-
other commonly seen failure mode of our low-cost PM sen-
sors in Delhi. The raw signals of such malfunctioning PM
sensors were observed to flatline at the upper end of the sen-
sor output values (typically thousands of µg m−3). The very
distinct signals of these flatlining low-cost PM nodes, how-
ever, make it rather easy to separate them from the rest of the
nodes and filter them out at the early pre-processing stage
before analyses and therefore without having to resort to our
algorithm. Nevertheless, our not so accurate on-the-fly cali-
bration model has created a useful algorithm for supervising
large-scale sensor networks in real time as a by-product.

3.3.2 Simulation of low-cost node drift

We further investigated the feasibility of applying the GPR
model to track the drift of low-cost nodes accurately over
time. We simulated drift conditions by first setting random
percentages of intercept and slope drift, respectively, for each

individual low-cost node and for each simulation run. Next,
we adjusted the signals of each low-cost node over the en-
tire study period given these randomly selected percentages
using Eq. (11). Then, we rebuilt a GPR model based on
these drift-adjusted signals and evaluated if the new model-
generated calibration factors matched our expected predeter-
mined percentage drift relative to the true (baseline) calibra-
tion factors.

yi_drift =
yi

(1− percentageslopedrifti)

+
percentage interceptdrifti · true intercepti
(1− percentageslopedrifti) · true slopei

, (11)

where yi , true intercepti , true slopei , percentage intercept
drifti , percentage slope drifti , and yi_drift are a vector of the
true signals, the standard model-derived intercept, the stan-
dard model-derived slope, the randomly generated percent-
age of intercept drift, the randomly generated percentage of
slope drift, and a vector of the drift-adjusted signals, respec-
tively, over the full study period for low-cost node i.

The performance of the model for predicting the drift was
examined under a variety of scenarios including the assump-
tion that all (10), eight, six, four, and two of the low-cost
nodes developed various degrees of drift such as a signif-
icant (11 %–99 %), a marginal (1 %–10 %), and a balanced
mixture of significant and marginal. The testing results for
10, six, and two low-cost nodes are displayed in Table 3
and those for eight and four nodes are in Table S2. Over-
all, the model demonstrates excellent drift predictive power
with less than 4 % errors for all the simulation scenarios.
The model proves to be most accurate (within 1 % error)
when low-cost nodes only drifted marginally regardless of
the number of nodes drift. In contrast, significant, and par-
ticularly a mixture of significant and marginal drifts, might
lead to marginally larger errors. We also notice that the inter-
cept drifts are slightly harder to accurately capture than the
slope drifts. Similar to the simulation of low-cost node fail-
ure or under strong local impact as described in Sect. 3.3.1,
the performance of the model for predicting the measure-
ments of the 22 holdout reference nodes across the 22-fold
leave-one-out CV was untouched by the drift conditions (see
Fig. S6). This unaltered performance can be attributable to
the fact that the drift simulations only involve simple linear
transformations as shown in Eq. (11). The high-quality drift
estimation has therefore presented another convincing case
of how useful our original algorithm can be applied to dy-
namically monitoring dense sensor networks, as a by-product
of calibrating low-cost nodes.

It should be noted that the mode of drift (linear or random
drift) will not significantly affect our simulation results. As
we demonstrated in Sect. 3.2.3, the performance of our algo-
rithm is insensitive to the training data size. And we believe
that models with a similar prediction accuracy should have
a similar drift detection power. For example, if the predic-
tion accuracy of the model trained on 59 d of data is virtually
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Figure 9. Learned calibration factors for each individual low-cost node from the optimized GPR models by replacing measurements of
all (a), nine (b), seven (c), three (d), one (e), and zero (f) of the low-cost nodes with random integers bounded by the min and max of the true
signals reported by the corresponding low-cost nodes. Note that the nine, seven, three, and one of the low-cost nodes (whose true signals are
replaced with random integers) were randomly chosen.

the same as accuracy of the model trained on 2 d of data,
and if the model trained on 59 d is able to detect the simu-
lated drift, then so should the model trained on 2 d. Then if
we reasonably assume that the drift rate remains roughly un-
changed within a 2 d window, then the drift mode (linear or
random), which only dictates how the drift rate jumps (usu-
ally smoothly as well) between any adjacent discrete 2 d win-
dows, does not matter anymore. All that matters is to track
that one fixed drift rate reasonably well within those 2 d,
which is virtually the same as what we already did with the
entire 59 d of data.

3.3.3 Optimal number of reference nodes

Points which remain unaddressed are (1) what the optimum
or minimum number of reference instruments is to sustain
this technique, and (2) if the inclusion of low-cost nodes can
effectively assist in lowering the technique’s calibration or
mapping inaccuracy. It is interesting to note that optimizing
the model’s calibration accuracy can not only directly fulfill

the fundamental calibration task, but it can also better help
the sensor network monitoring capability as an added bonus.
To address these two outstanding issues, we randomly sam-
pled subsets of all the 22 reference nodes within the network
in increments of one node (i.e., from 1 to 21 nodes) and im-
plemented our algorithm with and without incorporating the
low-cost nodes, before finally computing the mean percent
errors in predicting all the holdout reference nodes. To get
the performance scores as close to truth as possible but with-
out incurring excessive computational cost in the meantime,
the sampling was repeated 100 times for each subset size.
The calibration error in this section was defined as the mean
percent errors in predicting all the holdout reference nodes
further averaged over 100 simulation runs for each subset
size.

Figure 10 describes the 24 h calibration percent error rate
of the model as a function of the number of reference stations
used for modeling with and without involving the low-cost
nodes. The error rates generally decrease as the number of
reference instruments increases (full network: from ∼ 40 %
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Table 3. Comparison of predetermined percentages of drift to those estimated from the GPR model for intercept and slope, respectively, for
each individual low-cost node, assuming all (10), six, and two of the low-cost nodes developed various degrees of drift such as significant
(11 %–99%), marginal (1 %–10 %), and a balanced mixture of significant and marginal. Note the sensors that drifted, the percentages of drift,
and which sensors drifted significantly or marginally are randomly chosen. The results reported under each scenario are based on averages
of 10 simulation runs.

Drift category Low-cost nodes All low-cost nodes drift Six low-cost nodes drift Two low-cost nodes drift

Intercept drift Slope drift Intercept drift Slope drift Intercept drift Slope drift
(%) (%) (%) (%) (%) (%)

True Estimated True Estimated True Estimated True Estimated True Estimated True Estimated

Significant AIIMS 58 % 57 % 54 % 54 % 74 % 71 % 46 % 47 % 0 % −1 % 0 % −1 %
Hiran Kudna 43 % 30 % 50 % 52 % 66 % 61 % 53 % 53 % 62 % 64 % 45 % 44 %
IITD 51 % 52 % 52 % 51 % 0 % −1 % 0 % −2 % 0 % 1 % 0 % −3 %
IITM 54 % 53 % 56 % 55 % 61 % 58 % 48 % 48 % 0 % −1 % 0 % −2 %
Kaushambi 61 % 62 % 73 % 72 % 70 % 70 % 49 % 48 % 0 % 0 % 0 % −2 %
MRU 55 % 56 % 56 % 56 % 58 % 61 % 41 % 39 % 0 % −1 % 0 % −2 %
Mayur Vihar 60 % 65 % 48 % 47 % 0 % 1 % 0 % −3 % 0 % 1 % 0 % −3 %
Naraina Vihar 56 % 54 % 76 % 76 % 0 % −4 % 0 % 1 % 0 % −1 % 0 % −1 %
New Friends Colony 66 % 68 % 68 % 67 % 55 % 55 % 48 % 47 % 59 % 61 % 37 % 36 %
S.D.A. Park 53 % 47 % 48 % 50 % 0 % −4 % 0 % 2 % 0 % −1 % 0 % 0 %

Mean absolute difference 3 % 1 % 2 % 1 % 1 % 2 %

50 % significant AIIMS 4 % 2 % 5 % 6 % 0 % −4 % 0 % 2 % 0 % 1 % 0 % −2 %
and 50 % Hiran Kudna 51 % 42 % 51 % 52 % 50 % 42 % 50 % 52 % 0 % 1 % 0 % −2 %
marginal IITD 6 % 4 % 6 % 6 % 5 % 2 % 6 % 8 % 0 % 0 % 0 % −2 %

IITM 56 % 52 % 40 % 40 % 64 % 58 % 47 % 48 % 0 % 1 % 0 % −3 %
Kaushambi 60 % 60 % 42 % 41 % 5 % 2 % 5 % 7 % 0 % 0 % 0 % −2 %
MRU 6 % 5 % 4 % 3 % 0 % −6 % 0 % 3 % 6 % 3 % 5 % 5 %
Mayur Vihar 57 % 59 % 55 % 55 % 5 % 2 % 5 % 6 % 0 % 1 % 0 % −2 %
Naraina Vihar 4 % 0 % 5 % 7 % 0 % −4 % 0 % 2 % 57 % 65 % 64 % 63 %
New Friends Colony 6 % 5 % 6 % 5 % 0 % −3 % 0 % 2 % 0 % −1 % 0 % −1 %
S.D.A. Park 53 % 48 % 61 % 61 % 59 % 58 % 64 % 64 % 0 % 0 % 0 % −1 %

Mean absolute difference 3 % 1 % 4 % 2 % 2 % 2 %

Marginal AIIMS 5 % 5 % 5 % 4 % 8 % 8 % 5 % 5 % 0 % 0 % 0 % −1 %
Hiran Kudna 3 % 4 % 6 % 5 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
IITD 5 % 6 % 7 % 5 % 7 % 8 % 5 % 4 % 6 % 7 % 5 % 4 %
IITM 5 % 5 % 5 % 5 % 0 % 0 % 0 % −1 % 0 % 0 % 0 % −1 %
Kaushambi 5 % 5 % 5 % 4 % 5 % 6 % 7 % 6 % 0 % 0 % 0 % −1 %
MRU 5 % 7 % 4 % 2 % 6 % 8 % 5 % 3 % 5 % 7 % 6 % 4 %
Mayur Vihar 7 % 7 % 5 % 4 % 0 % 1 % 0 % −1 % 0 % 1 % 0 % −1 %
Naraina Vihar 6 % 6 % 7 % 6 % 7 % 7 % 6 % 5 % 0 % 0 % 0 % −1 %
New Friends Colony 7 % 8 % 7 % 5 % 0 % 1 % 0 % −2 % 0 % 1 % 0 % −1 %
S.D.A. Park 5 % 5 % 7 % 6 % 6 % 6 % 6 % 6 % 0 % 0 % 0 % −1 %

Mean absolute difference 1 % 1 % 1 % 1 % 1 % 1 %

with 1 node to ∼ 29 % with 21 nodes; network excluding
low-cost nodes: from ∼ 43 % to ∼ 30 %) but are somewhat
locally variable and most pronounced when five, seven, and
eight reference nodes are simulated. These bumps might sim-
ply be the result of five, seven, and eight reference nodes
being relatively non-ideal (with regard to their neighboring
numbers) for the technique, although the possibility of non-
convergence due to the limited 100 simulation runs for each
scenario cannot be ruled out. The 19 or 20 nodes emerge as
the optimum numbers of reference nodes with the lowest er-
rors of close to 28 %, while 17 to 21 nodes all yield compara-
bly low inaccuracies (all below 30 %). The pattern discovered
in our research shares certain similarities with Schneider et
al. (2017), who studied the relationship between the accu-
racy of using colocation-calibrated low-cost nodes to map
urban AQ and the number of simulated low-cost nodes for
their urban-scale air pollution dispersion model and Kriging-

fueled data fusion technique in Oslo, Norway. Both studies
indicate that at least roughly 20 nodes are essential to start
producing an acceptable degree of accuracy. Unlike Schnei-
der et al. (2017), who further expanded the scope to 150
nodes by generating new synthetic stations from their es-
tablished model and showed a “the more, the merrier” trend
of up to 50 stations, we restricted ourselves to only realis-
tic data to investigate the relationship since we suspect that
stations created from our model with approximately 30 % er-
rors might introduce large noise, which could misrepresent
the true pattern. We agree with Schneider et al. (2017) that
such relationships are location specific and cannot be blindly
transferred to other study sites.

Lastly, we used the Wilcoxon rank-sum test (Mann–
Whitney U test) again to prove that modeling with the 10
low-cost nodes can statistically significantly reduce the un-
certainty of spatial interpolation of the reference node mea-
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Figure 10. Average 24 h percent errors of the GPR model for pre-
dicting the holdout reference nodes in the network as a function of
the number of reference stations used for the model construction
under two scenarios – using the full sensor network information
by including both reference and low-cost nodes and using only the
reference nodes for the model construction. Note each data point
(mean value) is derived from 100 simulation runs. The error bars
indicating 95 % confidence interval (CI) of the means are based on
1000 bootstrap iterations. All scenarios were given the initial pa-
rameter values and bounds that maximize the model performance.
The p value of the Wilcoxon rank-sum test for each reference sta-
tion number is superimposed, where a p value below 0.05 means
that the error when modeling with the 10 low-cost nodes is smaller
than the error without them for that reference station number.

surements in comparison to modeling without them, (at least)
when the number of reference stations is optimum. We did
not use a paired test here because the reference nodes for
algorithm training for each simulation run were randomly
chosen. Specifically in our study, for each number of refer-
ence stations, the two independent samples (100 replications
per sample) are the 100 replications of the mean of the 24 h
percent errors (in predicting all the holdout reference nodes)
from the 100 repeated random simulations when modeling
with and without the low-cost nodes, respectively. We con-
ducted a one-sided test which has the null hypothesis that
our model’s mean 24 h prediction percent errors with and
without including the low-cost nodes are the same (i.e., H0:
with = without) against the alternative that the error with the
low-cost nodes is smaller than the error without them (i.e.,

H1: with < without). The p values of the Wilcoxon rank-sum
tests are superimposed on Fig. 10. The level of statistical sig-
nificance was chosen to be 0.05, which means that the null
hypothesis (i.e., H0: with = without) can be rejected in favor
of the alternative (i.e., H1: with < without) when p values are
below 0.05. Figure 10 shows that the accuracy improvement
when modeling with the 10 low-cost nodes is statistically sig-
nificant when the optimum number of reference stations (i.e.,
19 or 20) is used. Significant accuracy improvements were
also observed for 17 and 18 reference stations that had com-
parably low prediction errors. Therefore, we conclude that
when viewing the entire sensor network in Delhi as a whole
system over the entire sampling period, modeling with the 10
low-cost nodes can decrease the extent of pure interpolation
among only reference stations, (at least) when the number of
reference stations is optimum. The accuracy gains are still
relatively minor because of the suboptimal size of the low-
cost node network (i.e., 10). We postulate that once the low-
cost node network scales up to 100s, the model constructed
using the full network information can be more accurate than
the one with only the information of reference nodes by con-
siderable margins.

4 Conclusions

This study introduced a simultaneous GPR and simple linear
regression pipeline to calibrate wireless low-cost PM sensor
networks (up to any scale) on the fly in the field by cap-
italizing on all available reference monitors across an area
without the requirement of pre-deployment collocation cali-
bration. We evaluated our method for Delhi, where 22 ref-
erence and 10 low-cost nodes were available from 1 Jan-
uary to 31 March 2018 (Delhi-wide average of the 3-month
mean PM2.5 among 22 reference stations: 138± 31 µg m−3),
using a leave-one-out CV over the 22 reference nodes. We
demonstrated that our approach can achieve excellent robust-
ness and reasonably high accuracy, as it is underscored by
the low variability in the GPR model parameters and model-
produced calibration factors for low-cost nodes and by an
overall 30 % prediction error (equivalent to an RMSE of
33 µg m−3) at a 24 h scale, respectively, among the 22-fold
CV. We closely investigated (1) the large model calibration
errors (∼ 50 %) at two low-cost sites (MRU and IITD with
a 3-month mean PM2.5 of ∼ 72 µg m−3) where our E-BAMs
were collocated; (2) the similarly large model prediction er-
rors at the comparatively clean Pusa and Sector 62 reference
sites; and (3) the washed-out local variability in the model
calibrated low-cost sites. These observations revealed that
our technique (and more generally the geostatistical tech-
niques) can calibrate the low-cost nodes dynamically, but
it is effective only if the degree of urban homogeneity in
PM2.5 is high. High urban homogeneity can consist of two
scenarios, namely, local contributions are as small a frac-
tion of the regional ones as possible or local contributions
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are prevalent but of similar magnitudes. Otherwise, quality
predictions will only apply for those nodes whose means
are close to the Delhi-wide mean. We showed that our al-
gorithm performance is insensitive to training window size
as the mean prediction error rate and the standard error of
the mean (SEM) for the 22 reference stations remained con-
sistent at ∼ 30 % and ∼ 3 %–4 % when an increment of 2 d
of data were included in the model training. The markedly
low requirement of our algorithm for training data enables
the models to always be nearly the most updated in the field,
thus realizing the algorithm’s full potential for dynamically
surveilling large-scale wireless low-cost particulate matter
sensor networks (WLPMSNs) by detecting malfunctioning
low-cost nodes and tracking the drift with little latency. Our
algorithm presented similarly stable 26 %–34 % mean pre-
diction errors and ∼ 3 %–7 % SEMs over the sampling pe-
riod when pre-trained on the current week’s data and pre-
dicting 1 week ahead, and is therefore suitable for dynamic
calibration. Despite our algorithm’s non-ideal calibration ac-
curacy for Delhi, it holds the promise of being adapted for
automated and streamlined large-scale wireless sensor net-
work monitoring and of significantly reducing the amount of
manual labor involved in the surveillance and maintenance.
Simulations proved our algorithm’s capability of differenti-
ating malfunctioning low-cost nodes (due to either hardware
failure or under heavy influence of local sources) within a
network and its capability of tracking the drift of low-cost
nodes accurately with less than 4 % errors for all the simula-
tion scenarios. Finally, our simulation results confirmed that
the low-cost nodes are beneficial for the spatial precision of a
sensor network by decreasing the extent of pure interpolation
among only reference stations, highlighting the substantial
significance of dense deployments of low-cost AQ devices
for a new generation of AQ monitoring networks.

Two directions are possible for our future work. The first
one is to expand both the longitudinal and the cross-sectional
scopes of field studies and examine how well our solution
works for more extensive networks in a larger geographical
area over longer periods of deployment (when sensors are
expected to actually drift, degrade, or malfunction). This en-
ables us to validate the practical use of our method for cal-
ibration and surveillance more confidently. The second is to
explore the infusion of information about urban PM2.5 spa-
tial patterns such as high-spatial-resolution annual average
concentration basemap from air pollution dispersion models
(Schneider et al., 2017) into our current algorithm to further
improve the on-the-fly calibration performance by correcting
for the concentration range-specific biases.

Data availability. The data are available upon request to Tongshu
Zheng (tongshu.zheng@duke.edu).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-12-5161-2019-supplement.

Author contributions. TZ, MHB, and DEC designed the study.
DEC and TZ participated in the algorithm development. TZ wrote
the paper, coded the algorithm, and performed the analyses and sim-
ulations. MHB and DEC provided guidance on analyses and simu-
lations and assisted in writing and revising the paper. RS and SNT
established, maintained, and collected data from the low-cost sen-
sor network and the two E-BAM sites. TZ collected data from all
the regulatory air quality monitoring stations in Delhi. RC provided
funding and technical support for the project.

Competing interests. Author Ronak Sutaria is the founder of
Respirer Living Sciences Pvt. Ltd, a start-up based in Mumbai,
India, which is the developer of the Atmos low-cost AQ monitor.
Ronak Sutaria was involved in developing and refining the hardware
of Atmos and its server and dashboard, in deploying the sensors, but
not involved in data analysis. Author Robert Caldow is the director
of engineering at TSI and responsible for the funding and technical
support but not responsible for data analysis.

Acknowledgements. The authors would like to thank CPCB,
DPCC, IMD, SPCBs, and AirNow DOS (Department of State) for
providing the Delhi 1 h reference PM2.5 measurements used in the
current study.

Financial support. This research has been supported under the Re-
search Initiative for Real-time River Water and Air Quality Monitor-
ing program funded by the Department of Science and Technology,
Government of India and Intel®.

Review statement. This paper was edited by Francis Pope and re-
viewed by three anonymous referees.

References

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.:
Laboratory evaluation of the Shinyei PPD42NS low-
cost particulate matter sensor, PLoS One, 10, 1–17,
https://doi.org/10.1371/journal.pone.0137789, 2015.

Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Iden-
tifying Density-Based Local Outliers, available at: http://www.
dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf (last access: 10 De-
cember 2018), 2000.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory
algorithm for bound constrained optimization, available at: http://
users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf (last
access: 10 December 2018), 1994.

CPCB: Air quality monitoring, emission inventory, and source ap-
portionment studies for Delhi, available at: http://cpcb.nic.in/
cpcbold/Delhi.pdf, (last access: 10 December 2018), 2009.

www.atmos-meas-tech.net/12/5161/2019/ Atmos. Meas. Tech., 12, 5161–5181, 2019

https://doi.org/10.5194/amt-12-5161-2019-supplement
https://doi.org/10.1371/journal.pone.0137789
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf
http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf
http://cpcb.nic.in/cpcbold/Delhi.pdf
http://cpcb.nic.in/cpcbold/Delhi.pdf


5180 T. Zheng et al.: Gaussian process regression model

Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R.,
Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a
low-cost optical particle counter (Alphasense OPC-N2) for
ambient air monitoring, Atmos. Meas. Tech., 11, 709–720,
https://doi.org/10.5194/amt-11-709-2018, 2018.

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang,
Y., and Schwartz, J.: Assessing PM2.5Exposures with
High Spatiotemporal Resolution across the Continen-
tal United States, Environ. Sci. Technol., 50, 4712–4721,
https://doi.org/10.1021/acs.est.5b06121, 2016.

Feinberg, S., Williams, R., Hagler, G. S. W., Rickard, J., Brown,
R., Garver, D., Harshfield, G., Stauffer, P., Mattson, E., Judge,
R., and Garvey, S.: Long-term evaluation of air sensor tech-
nology under ambient conditions in Denver, Colorado, Atmos.
Meas. Tech., 11, 4605–4615, https://doi.org/10.5194/amt-11-
4605-2018, 2018.

Fishbain, B. and Moreno-Centeno, E.: Self Calibrated Wireless Dis-
tributed Environmental Sensory Networks, Sci. Rep., 6, 1–10,
https://doi.org/10.1038/srep24382, 2016.

Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P.,
Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Sub-
micron aerosol composition in the world’s most polluted megac-
ity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19,
6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.

Gao, M., Cao, J., and Seto, E.: A distributed network of low-
cost continuous reading sensors to measure spatiotemporal vari-
ations of PM2.5 in Xi’an, China, Environ. Pollut., 199, 56–65,
https://doi.org/10.1016/j.envpol.2015.01.013, 2015.

Gorai, A. K., Tchounwou, P. B., Biswal, S., and Tu-
luri, F.: Spatio-Temporal Variation of Particulate Matter
(PM2.5) Concentrations and Its Health Impacts in a Mega
City, Delhi in India, Environ. Health Insights, 12, 1–9,
https://doi.org/10.1177/1178630218792861, 2018.

Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.:
Air Quality Sensors and Data Adjustment Algorithms: When Is
It No Longer a Measurement?, Environ. Sci. Technol., 52, 5530–
5531, https://doi.org/10.1021/acs.est.8b01826, 2018.

Holdaway, M. R.: Spatial modeling and interpolation of
monthly temperature using kriging, Clim. Res., 6, 215–225,
https://doi.org/10.3354/cr006215, 1996.

Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field
calibrations of a low-cost aerosol sensor at a regulatory mon-
itoring site in California, Atmos. Meas. Tech., 7, 1121–1131,
https://doi.org/10.5194/amt-7-1121-2014, 2014.

Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.:
The influence of humidity on the performance of a low-cost
air particle mass sensor and the effect of atmospheric fog, At-
mos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-
11-4883-2018, 2018.

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver,
D., Judge, R., Caudill, M., Rickard, J., Davis, M., Wein-
stock, L., Zimmer-Dauphinee, S., and Buckley, K.: Commu-
nity Air Sensor Network (CAIRSENSE) project: evaluation of
low-cost sensor performance in a suburban environment in the
southeastern United States, Atmos. Meas. Tech., 9, 5281–5292,
https://doi.org/10.5194/amt-9-5281-2016, 2016.

Johnson, K. K., Bergin, M. H., Russell, A. G. and Hagler, G. S. W.:
Field test of several low-cost particulate matter sensors in high
and low concentration urban environments, Aerosol Air Qual.

Res., 18, 565–578, https://doi.org/10.4209/aaqr.2017.10.0418,
2018.

Kelleher, S., Quinn, C., Miller-Lionberg, D., and Volckens,
J.: A low-cost particulate matter (PM2.5) monitor for wild-
land fire smoke, Atmos. Meas. Tech., 11, 1087–1097,
https://doi.org/10.5194/amt-11-1087-2018, 2018.

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dyb-
wad, A., Sleeth, D., Martin, R., and Butterfield, A.:
Ambient and laboratory evaluation of a low-cost par-
ticulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017.

Kizel, F., Etzion, Y., Shafran-Nathan, R., Levy, I., Fish-
bain, B., Bartonova, A., and Broday, D. M.: Node-to-
node field calibration of wireless distributed air pol-
lution sensor network, Environ. Pollut., 233, 900–909,
https://doi.org/10.1016/j.envpol.2017.09.042, 2018.

Lewis, A. and Edwards, P.: Validate personal air-pollution sensors,
Nature, 535, 29–31, https://doi.org/10.1038/535029a, 2016.

Mann, H. B. and Whitney, D. R.: On a Test of Whether
one of Two Random Variables is Stochastically
Larger than the Other, Ann. Math. Stat., 18, 50–60,
https://doi.org/10.1214/aoms/1177730491, 1947.

Mukherjee, A., Stanton, L. G., Graham, A. R., and Roberts, P. T.:
Assessing the utility of low-cost particulate matter sensors over a
12-week period in the Cuyama valley of California, Sensors, 17,
1805, https://doi.org/10.3390/s17081805, 2017.

Ozler, S., Johnson, K. K., Bergin, M. H. and Schauer, J. J.: Per-
sonal Exposure to PM2.5 in the Various Microenvironments
as a Traveler in the Southeast Asian Countries, 14, 170–184,
https://doi.org/10.3844/ajessp.2018.170.184, 2018.

Rasmussen, C. E. and Williams, C. K. I.: 2. Regression, in: Gaussian
Processes for Machine Learning, MIT Press, 8–31, 2006.

Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term
field evaluation of the Plantower PMS low-cost par-
ticulate matter sensors, Environ. Pollut., 245, 932–940,
https://doi.org/10.1016/j.envpol.2018.11.065, 2019.

Schneider, P., Castell, N., Vogt, M., Dauge, F. R., La-
hoz, W. A., and Bartonova, A.: Mapping urban air qual-
ity in near real-time using observations from low-cost sen-
sors and model information, Environ. Int., 106, 234–247,
https://doi.org/10.1016/j.envint.2017.05.005, 2017.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,
Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A.,
Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air
Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377,
https://doi.org/10.1021/es4022602, 2013.

South Coast Air Quality Management District (SCAQMD):
Field Evaluation AirBeam PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-
evaluations/ (last access: 10 January 2018), 2015a.

South Coast Air Quality Management District (SCAQMD):
Field Evaluation AlphaSense OPC-N2 Sensor, available
at: http://www.aqmd.gov/docs/default-source/aq-spec/field-
evaluations/alphasense (last access: 10 January 2018), 2015b.

South Coast Air Quality Management District (SCAQMD):
Field Evaluation Laser Egg PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-
evaluations/laser (last access: 10 January 2018), 2017a.

Atmos. Meas. Tech., 12, 5161–5181, 2019 www.atmos-meas-tech.net/12/5161/2019/

https://doi.org/10.5194/amt-11-709-2018
https://doi.org/10.1021/acs.est.5b06121
https://doi.org/10.5194/amt-11-4605-2018
https://doi.org/10.5194/amt-11-4605-2018
https://doi.org/10.1038/srep24382
https://doi.org/10.5194/acp-19-6843-2019
https://doi.org/10.1016/j.envpol.2015.01.013
https://doi.org/10.1177/1178630218792861
https://doi.org/10.1021/acs.est.8b01826
https://doi.org/10.3354/cr006215
https://doi.org/10.5194/amt-7-1121-2014
https://doi.org/10.5194/amt-11-4883-2018
https://doi.org/10.5194/amt-11-4883-2018
https://doi.org/10.5194/amt-9-5281-2016
https://doi.org/10.4209/aaqr.2017.10.0418
https://doi.org/10.5194/amt-11-1087-2018
https://doi.org/10.1016/j.envpol.2016.12.039
https://doi.org/10.1016/j.envpol.2017.09.042
https://doi.org/10.1038/535029a
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.3390/s17081805
https://doi.org/10.3844/ajessp.2018.170.184
https://doi.org/10.1016/j.envpol.2018.11.065
https://doi.org/10.1016/j.envint.2017.05.005
https://doi.org/10.1021/es4022602
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/airbeam---field-evaluation.pdf?sfvrsn=4
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/airbeam---field-evaluation.pdf?sfvrsn=4
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/alphasense-opc-n2---field-evaluation.pdf?sfvrsn=0
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/alphasense-opc-n2---field-evaluation.pdf?sfvrsn=0
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/laser-egg---field-evaluation.pdf
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/laser-egg---field-evaluation.pdf


T. Zheng et al.: Gaussian process regression model 5181

South Coast Air Quality Management District (SCAQMD):
Field Evaluation Purple Air PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-
evaluations/purpleair (last access: 10 January 2018), 2017b.

South Coast Air Quality Management District (SCAQMD):
Field Evaluation Purple Air (PA-II) PM Sensor, avail-
able at: http://www.aqmd.gov/docs/default-source/aq-spec/field-
evaluations/purple (last access: 10 January 2018), 2017c.

Takruri, M., Challa, S., and Yunis, R.: Data fusion techniques
for auto calibration in wireless sensor networks, Inf. Fu-
sion, 132–139, available at: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5203880 (last access: 10 December 2018),
2009.

Tiwari, G.: Urban Transport Priorities, Cities, 19, 95–103, available
at: http://www.mumbaidp24seven.in/reference/geetam.pdf (last
access: 10 December 2018), 2002.

Tiwari, S., Chate, D. M., Pragya, P., Ali, K., and Bisht, D. S. F.: Vari-
ations in mass of the PM10, PM2.5 and PM1 during the monsoon
and the winter at New Delhi, Aerosol Air Qual. Res., 12, 20–29,
https://doi.org/10.4209/aaqr.2011.06.0075, 2012.

Tiwari, S., Hopke, P. K., Pipal, A. S., Srivastava, A. K.,
Bisht, D. S., Tiwari, S., Singh, A. K., Soni, V. K., and
Attri, S. D.: Intra-urban variability of particulate matter
(PM2.5 and PM10) and its relationship with optical proper-
ties of aerosols over Delhi, India, Atmos. Res., 166, 223–232,
https://doi.org/10.1016/j.atmosres.2015.07.007, 2015.

Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and
Biswas, P.: Laboratory Evaluation and Calibration of
Three Low-Cost Particle Sensors for Particulate Mat-
ter Measurement, Aerosol Sci. Technol., 49, 1063–1077,
https://doi.org/10.1080/02786826.2015.1100710, 2015.

Wilcoxon, F.: Individual Comparisons by Ranking Methods, Bio-
metrics Bulletin, 1, 80–83, https://doi.org/10.2307/3001968,
1945.

Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirod-
kar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field
evaluation of low-cost particulate matter sensors in high- and
low-concentration environments, Atmos. Meas. Tech., 11, 4823–
4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.

Zuo, J. X., Ji, W., Ben, Y. J., Hassan, M. A., Fan, W. H.,
Bates, L., and Dong, Z. M.: Using big data from air qual-
ity monitors to evaluate indoor PM2.5 exposure in build-
ings: Case study in Beijing, Environ. Pollut., 240, 839–847,
https://doi.org/10.1016/j.envpol.2018.05.030, 2018.

www.atmos-meas-tech.net/12/5161/2019/ Atmos. Meas. Tech., 12, 5161–5181, 2019

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pdf
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pdf
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purple-air-pa-ii---field-evaluation.pdf?sfvrsn=2
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purple-air-pa-ii---field-evaluation.pdf?sfvrsn=2
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5203880
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5203880
http://www.mumbaidp24seven.in/reference/geetam.pdf
https://doi.org/10.4209/aaqr.2011.06.0075
https://doi.org/10.1016/j.atmosres.2015.07.007
https://doi.org/10.1080/02786826.2015.1100710
https://doi.org/10.2307/3001968
https://doi.org/10.5194/amt-11-4823-2018
https://doi.org/10.1016/j.envpol.2018.05.030

	Abstract
	Introduction
	Materials and methods
	Low-cost node configuration
	Data description
	Reference PM2.5 data
	Low-cost node PM2.5 data

	Simultaneous GPR and simple linear regression calibration model
	Leave one reference node out
	Initialize low-cost nodes' (simple linear regression) calibrations
	Optimize GPR model (hyperparameters)
	Update low-cost nodes' (simple linear regression) calibrations based on their conditional means
	Optimize alternately and iteratively and converge
	Predict on the holdout reference node and calculate accuracy metrics


	Results and discussion
	Spatial variation of PM2.5 across Delhi
	Assessment of GPR model performance
	Accuracy of reference node prediction
	Accuracy of low-cost node calibration
	GPR model performance as a function of training window size
	GPR model dynamic calibration performance
	Relative humidity (RH) adjustment to the algorithm

	Simulation results
	Simulation of low-cost node failure or under heavy influence of local sources
	Simulation of low-cost node drift
	Optimal number of reference nodes


	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

