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Abstract 

A straightforward theoretical prescription is described for combining any approximate quantum scattering calculation with a 
semi-classical correction. The correction involves the standard semi-classical approximation to the time evolution operator, so 
that only real time trajectories are needed, by transforming to an initial value representation the calculations require only an 
average over the phase space of initial conditions. To the extent that the semi-classical approximation is accurate, the net result 
for the S matrix is exact. Application to one-dimensional barrier transmission shows the semi-classical approximation to do a 
very good job, for energies above, near to, or far below the barrier. 

1. Introduction 

The last few years have seen quite significant ad- 
vances in rigorous quantum-mechanical calculations 
for the dynamics of simple chemical reactions [ l-41. 
This is due both to new developments in theoretical 
methodology and to continued increases in compu- 
tational power. To date the most complex reaction 
that has been described rigorously (i.e. in its full di- 
mensionality, six degrees of freedom) is [ 51 
H2+0H+H+H20. Computers will of course con- 
tinue to increase in speed and memory size, making 
it possible to extend these rigorous approaches to 
more complex (i.e. larger) molecular systems, but it 
is clear that one will always be interested in carrying 
out reliable calculations that are beyond the capabil- 
ity of a fully rigorous quantum treatment. 

One strategy for dealing with more complex sys- 
tems is to employ a hybrid approach, one that com- 
bines an accurate quantum treatment of the few ( < 6, 
say) degrees of freedom that are most important in a 
given reaction with a more approximate treatment of 

the (perhaps many) remaining degrees of freedom 
that play a more passive role. An attractive candidate 
for the “more approximate” way of dealing with the 
many passive degrees of freedom is classical (or semi- 
classical) mechanics, for it is well recognized that 
classical trajectory simulations are feasible for truly 
complex molecular systems. The idea, therefore, is to 
combine an accurate quantum description of a few 
degrees of freedom with a classical (or semi-classi- 
cal) treatment of everything else. Feynman path in- 
tegral methods [ 6,7] offer one approach for devising 
methods of this type, as does the time-dependent self- 
consistent field (TD-SCF) method [ 8- 111. 

This paper describes another approach for com- 
bining an approximate quantum description with a 
semi-classical approximation, one based on time-in- 
dependent scattering theory. Section 2 describes the 
basic theoretical ideas, and section 3 presents the re- 
sults of a simple but not totally trivial test problem, 
testing how well the semi-classical approximation de- 
scribes barrier transmission (the one-dimensional 
model of a chemical reaction). The results for this 
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test problem are extremely encouraging, convincing the S matrix. The specific form and normalization 
us that this approach is worthy of further develop- used for the @s is also carried over from this earlier 

ment for interesting applications. work. 

2. Overview of the theory 

The most complete characterization of a bimolec- 
ular scattering process (reactive or nonreactive) is the 
S matrix, in terms of which all reaction probabilities, 
cross sections, rate constants, etc., can be expressed. 
A formally exact expression for the S matrix ele- 
ments is 

+txn,I~+wxm)l > 

where 

(1) 

xnr = (fi-E)@,, > Gal 

xn, = (A-w&z, 9 (2b) 

and np, n, denote the product and reactant quantum 
numbers, respectively. fi is the total Hamiltonian and 
G+ (E) the full Green function for the problem. 0, 
is any (regular) scattering wavefunction with a unit 
incoming wave in channel n and outgoing waves in 

all other open channels n’; i.e. the asymptotic form 
for 0, for large R is 

@n(r, RI = -@n(r) 
exp ( - ik,, R ) 

A 

+ c h,(r) 
ew(ihR) so 

& n’,n ’ (3) 
?I’ 

where R denotes the coordinate for relative transla- 
tion of the two colliding molecules and r the remain- 
ing (internal) coordinates of the system. {g,(r) } and 
v,, are the eigenfunction and translational velocity for 
the nth channel, respectively. 

Eqs. ( 1 )- (2) are essentially the distorted wave 
representation [ 12 ] of the S matrix; it is formally ex- 
act for whatever “distorted waves” one uses for the 
0’s. Note that we are using the convention that wave- 
function in the bra symbol ( I are not complex con- 
jugated. This is a carry over from using this conven- 
tion in quantum scattering calculations via the S 
matrix Kohn variational method [ 13,141 and is use- 
ful because it more explicitly reveals the symmetry of 

In fact, one may recognize that the first two terms 
of Eq. ( 1) are the S-matrix Kohn variational func- 

tional [ 141 itself, 

sKVP +DWBA-&O 
np,nr - npm np.nr 

+ (i/A) ( onn, I (A-E) I @,, > , (da) 

which we have also noted is the distorted wave Born 
approximation [ 12 ] (DWBA) (i.e. the Kohn varia- 
tional method is the DWBA where the distorted waves 
are chosen variationally). It is thus useful to write Eq. 

(1) as 

(4b) 

where AS,,,,, is the third term in eq. ( 1)) 

As,,,~,=(il~)(xn,l~+(E)Ixnr), (4c) 

which contains all higher-order corrections beyond 

the DWBA/KVP. In the Kohn variational method 
one takes the @s to be a linear combination of a given 
basis set and chooses the expansion coefficients by 
making Eq. (4a) stationary; if the basis is large 
enough, the correction term AS,,,,, will be negligible 
(because x= (H-E) @ will be approximately zero), 
but for sufficiently large molecular systems this will 

not be possible. 
One can imagine other ways of choosing approxi- 

mate scattering wavefunctions for the 0s. The one 

which accomplishes the purposes discussed in sec- 
tion 1 would be a “reduced dimensionality” [ 15 ] 
wavefunction; i.e. one would carry out a quantum 
scattering calculation for the few most important de- 
grees of freedom, assuming the others to be uncou- 
pled from them (or perhaps training them within a 
vibrationally adiabatic approximation). SE::” 
would thus be an accurate quantum-mechanical re- 
sult involving the few important degrees of freedom, 
with the correction to this, AS,,,,,, to be approxi- 
mated semi-classically (vide infra). 

We refer to Eq. ( 1 ), or Eq. (4), as formally exact 
because the correction term, Eq. (4c), involves the 
full Green function, the construction of which is tan- 
tamount to solving the full Schrodinger equation 
(with boundary conditions Eq. (3) ). Thus in any 
practical calculation one must approximate this term, 
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and herein lies the semi-classical approximation. Us- 
ing the exact relation 

G+(E)= $Tdrexp(i&/fi) exp( -i??t/zi) (5) 
0 

and the standard (Van Vleck-Gutzwiller [ 16,171) 
semi-classical approximation for the time evolution 
operator, the semi-classical approximation to the 
correction term is 

Ax&l,= r 1 
A2 (2xifr)F’2 

xx,,(q2)ew 
( 

i(%oa(q2, ql; t) +Et Mu, -- 

fi 2 > 

xxd41) > (6) 

where Ya(q2, q,; t) is the classical action for the ath 
trajectory that goes from q1 at time t = 0 to q2 at time 
t, 

t 

%(a,w)=Sdf [p(f)+(f) 
0 

-H@(f),q(f))l 3 (7) 

and the sum over (Y is over all possible trajectories 
that satisfy this double ended boundary condition. pa 
in Eq. (6) is the Maslov index [ 181, the number of 
zeros experienced by the Jacobian determinant in the 
time interval (0, t). (Note also that it has been as- 
sumed in Eqs. (6 ) and (7) that the Hamiltonian is 
of Cartesian form. ) 

The evaluation of Eq. (6) is greatly simplified by 
the transformation to an initial value representation 
[ 19,201; i.e. for fixed q1 and 1, one changes integra- 
tion variable from q2 top, , 

where we have emphasized that the sum over multi- 
ple trajectories is subsumed in the integration overp, 
because initial conditions (p,, q1 ) determine a unique 
classical trajectory. Eq. (6 ) thus becomes 

w&n,= 1 fi2 (2rcih)F’2 

+iJdq,; ( ( 
dt Det a42h PIi t) >I 1’2 

0 
dP1 

xxnp(42) ew 
( 

i(y4p(q2, ql; t) +n) irrp -- 
#i 2 

xX2,(41 ) , (9) 
where q2=q2(q,,p1; t). Eq. (9) thus involves an in- 
tegral over the phase space of initial conditions. (The 
integral over time t in Eq. (9) can be carried out as 
one is computing the trajectory. ) 

The classical S-matrix theory [ 19-2 1 ] developed 
in the early 1970s can be viewed as the stationary 
phase approximation for evaluating all the integrals 
in Eq. (6) or (9), but here we wish to evaluate them 
exactly (numerically) #I. Our interest in this has been 
spurred by Heller’s recent work [ 22-26 ] showing that 
this “primitive” semi-classical approximation can be 
surprisingly accurate, even for long times and in sit- 
uations where the classical mechanics is chaotic. In 
Eq. (9) we expect that only relatively short time dy- 
namics will be required - because the functions 
xnr (q, > and xnP (42) decay rapidly (as T2 functions) 
for large q1 and q2 - so that the semi-classical approx- 
imation has an even better chance of being usefully 
accurate. To the extent that the semi-classical ap- 
proximation for AS,,,,, is accurate, the net result, Eq. 
(4b), will be invariant to the choice of the approxi- 
mate wavefunctions {on}, The more closely the 0s 
approximate the complete solution of the Scrhiidin- 
ger equation, then of course the smaller will be the 
semi-classical correction term. 

3. Application to a one-dimensional barrier 

Here we test the ideas of section 2 on a one-dimen- 
sional model of a chemical reaction, namely trans- 

*’ Though the stationary phase approximation introduces no ad- 
ditional error beyond that already inherent in the semi-classical 
propagator (error of order h), in practice things may be quite 
different. For example, if the potential function is quadratic - i.e. 
harmonic oscillators or parabolic barriers -the semi-classical ap- 
proximation to the propagator ( q2 1 exp( -iHf/fi ) 1 q, ) happens 
to be exact. In this case Eq. (6) and (9) are exact if the integrals 
are evaluated exactly, while the stationary phase approximation 
introduces error of order fr. 



192 S. Keshavamurthy, W.H. Miller /Chemical Physics Letters 218 (1994) 189-194 

mission through an Eckart barrier [ 27 1, 

V(q) = V, sech’(aq) . (10) 

The barrier height, V,, and the mass, m, were chosen 
to be 0.425 eV and 1060 au, respectively. (Y is set equal 
to 1.3624 au. With this choice of parameters, the po- 
tential approximately corresponds to the collinear 
H + H2 reaction. 

To provide the most stringent test of the semi-clas- 
sical approximation we make the simplest possible 
choice for the wavefunctions {@,}, smoothly cutoff 
plane waves (with reactants r to the left, products p 
to the right ) , 

Rd4) = -L ew(ik) N-4-a) , 
J- 

(lla) 

R,(4) = -$exP( -ik) Mq-a) , (lib) 

where h(q) is a smooth step function ( = 1 for q >> 0, 
and 0 for q +Z 0). For the applications below we used 
the particular function 

h(q)= &. (12) 

Thus G+,(q) is cutoff smoothly on the left (reactant) 
side of the barrier at qx -a, so that 

R,(q) = -$exp(ikq), forqe-a, 

d&(q)= 0, forq>-a, 

and similarly for o,,,(q) at q x + a. The zeroth-order 
term in Eq. ( 1) (and (4a) ) is thus zero, so that 

SDWBA(E)= f (@+ I (H-E) I%,,> , (13) 

which with the particular @s of Eq. ( 11) is given by 

-co 

+ifivh&- &S&] , 

where 

h=h(-q-u), h,=h(q-a), 

&=d(q+u) ) 6,rS(q--a) . 

(14) 

6(q) = h’ (q) is a smooth pre-limit version of a Dirac 
delta function; with Eq. ( 3 ) for h ( q ) , one has 

6(q) = aA sech’( t&r) . (15) 

The explicit form of the semi-classical correction term 
is 

AS”“(E) = kv 

x 7 dq, 5 &, ~dWg,,p,,O 
-co --m 0 

xew[(ilfi)~(q~,pl, Gl , 

where 

Y=fik[qr -q2(qr,p,, t)l+Et 

+.4p(q,,h, O-hfi(~+f), 

(16) 

(17) 

V(q,)h,+ ;(v+ ;)&I 

x[V(qdh,+ ;(v+$p], (18) 

where q2=q2(q1, PG 0, p2=p2(q1, A; 0, and v= 
Jm. The integral over t in Eq. ( 16) is evaluated 
simultaneously with computing the trajectory with 
initial conditions (p,, q1 ). The integral over q1 is well 
behaved, and though that over p, is less so, it can be 
handled with appropriate care. 

Fig. 1 shows the transmission probability P(E) 
s 1 S(E) 1 2 as a function of energy for the cutoff pa- 
rameter a= 5 uo. This corresponds to cutting off the 
@s well into their respective asymptotic regions, and 
in this case one can see that variational term in Eq. 
( 14) is essentially zero (because 0,, and Qn, have 
no overlap). Thus the entire contribution to the 
transmission probability is from the semiclassical 
correction term in Eq. ( 16 ), and it is impressive to 
see how well it does even in the deep tunneling re- 
gion. For transmission probabilities below low6 it 
becomes progressively worse, being about an order of 
magnitude too large when Pz 10 -‘. 

Note that all the trajectories that contribute in Eq. 
(16)gofromq,<-utoq2>,+uinrealtimet.They 
thus all have a classical energy pf/2m + V( q, ) that 
lies above the barrier, even though the energy E may 
be above or below the barrier. Were E below the bar- 
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loo 

c 1o-2 

z 

lo.4 

0.20 0.40 
Energy(eV) 

0.60 0.60 4. Concluding remarks 

Fig. 1. Transmission probability, P(E), as a function of total en- 
ergy. The cutoff parameters are, 1~2.5 au and a=5.0 au. Solid 
line is the exact result, and the points correspond to the present 

The theoretical approach in section 2 shows a very 
straight forward procedure for combining an approx- 
imate quantum-mechanical treatment of a scattering 
process with a semi-classical theory which corrects 
(approximately) for the lack of completeness of the 
quantum treatment. The example in section 3 shows 
that the semi-classical approximation does quite a 
good job of describing one-dimensional barrier 
transmission, even in the deep tunneling region, and 
even when the quantum wavefunctions are the sim- 
plest ones possible (plane waves ) . One would clearly 
expect the results to be even more accurate if better 
wavefunctions (i.e. distorted waves) were used. 
However, we believe that the greatest potential of this 
approach is for multidimensional problems. The dis- 
torted waves can be chosen to be the scattering wave- 
functions that describe a few (of the most impor- 
tant) degrees of freedom accurately; i.e. what can be 
done accurately quantum mechanically should so be 
done. The semi-classical approximation is then only 
needed to correct for the couplings between the var- 
ious degrees of freedom that are omitted in the quan- 
tum wavefunctions. The utility of these ideas, how- 
ever, must be demonstrated by substantive 
applications. 

. 

. 

i---- 

. 

. 

semi-classical results. 

1o-6 L 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

a (a.u) 

Fig. 2. Variation in P(E) as a function of the cutoff parameter a 
with I ftved at 2.5 au. (0) E=O.l eV, (m) E=0.2 eV, (A) 
E=0.3eV,(~)E=0.4eVand(~)E=0.5eV. 

rier and the integral over t evaluated by the station- 
ery phase approximation, the stationary value of t 
would be complex and the corresponding classical 
trajectory would have energy E. Thus whether the 
classical trajectories go over the barrier (real time) or 
tunnel through the barrier (complex time) is simply 
a matter of how one does the time integral. See ref. 
[ 201 for a more complete discussion of this point. 
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