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In this paper we study the classical and quantum mechanics of the 3-mode Baggot vibrational
Hamiltonian for H2O. Our aim is to classify and assign highly-excited quantum states based upon
a knowledge of the classical phase space structure. In particular, we employ a classical template
formed by the primary resonance channels in action space, as determined by Chirikov resonance
analysis. More detailed analysis determining the exact periodic orbits and their bifurcations and
families of resonant 2-tori for the Baggot Hamiltonian confirms the essential correctness of the
Chirikov picture. It is emphasized that the primary periodic orbits alone do not define a suitable
phase space skeleton; it is important to consider higher dimensional invariant structures, such as
2-tori and 3-tori. Examining the manifold of quantum states for a given superpolyad numberP
5n11n21nb/2 reveals sequences of eigenstates that progress along the classical resonance zones.
These sequences provide insight into the nature of strongly mixed states found in the vicinity of the
resonance junction. To further explore the classical-quantum correspondence, we have also
computed eigenstate Husimi phase space distribution functions and inverse participation ratios. It is
thereby possible to provide dynamically based assignments for many states in the manifold of states
with superpolyad numberP516. © 1997 American Institute of Physics.
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I. INTRODUCTION

Understanding the nature of highly-excited vibration
and rotation-vibration states of polyatomic molecules is
problem of central importance in chemical physics.1 Tradi-
tional spectroscopic methods for assignment of levels ba
on harmonic oscillator~normal mode!-rigid rotor quantum
numbers and wavefunctions2 can break down for highly-
excited rovibrational states as a result of strong mo
coupling.3,4 Such mode coupling, due either to anharmo
coupling terms in the potential or to rotation-vibration inte
action, leads to the phenomenon of intramolecular vib
tional energy redistribution~IVR!,4 and results in compli-
cated energy level and intensity patterns.

One source of apparent complexity in vibrational spec
is strong mixing of manifolds of near-degenerate states b
single resonant coupling term; the corresponding class
problem is nevertheless integrable in this case. Another p
sibility is strong mixing of states due to the presence of t
or more resonant coupling terms; classically, the problem
nonintegrable and we have the possibility of chaos.5 State
mixing can also occur as a result ofdynamical tunneling,6 a
nonclassical mixing of states localized in different regions
phase space that is associated either with symmetry re
or accidental degeneracies of levels.

Many approaches have been proposed for the stud
complicated spectra beyond traditional methods: we men
statistical Fourier transform analysis,7 hierarchical trees;8

periodic orbits;9,10 semiclassical propagator base
approaches;11 and bifurcation theory.12,13Recently, Wolynes

a!Present address: Department of Chemistry, IIT Kanpur, U.P. 208
India.
156 J. Chem. Phys. 107 (1), 1 July 1997 0021-9606/97/

Downloaded¬26¬Oct¬2002¬to¬203.197.196.1.¬Redistribution¬subject
l
a

ed

e
c

-

a
a
al
s-
o
is

ed

of
n

and coworkers have made efforts14–17to understand IVR and
eigenstate localization in large systems by establishing c
nections to the problem of Anderson localization in t
theory of disordered metals.18

Considerable progress has been made in the analys
two modes coupled by a single resonant term.12 In this case
there is a constant of the motion in addition to the to
energy, and the associated reduced phase space is
sphere, the so-called polyad phase sphere.19 Classically, one
can study the fixed points of a reduced 1 degree-of-freed
~dof! spectroscopic Hamiltonian on the sphere, which cor
spond to periodic orbits~pos! in the full phase space. Thes
fundamental periodic orbits serve as organizing centers
the classical and quantum phase space. As parameters
as energy or polyad number are changed, these periodic
bits will bifurcate or merge, leading to qualitative changes
the phase space structure. Each distinct arrangement of
odic orbits and associated stable and unstable manifolds~for
unstable pos! defines azonein parameter space, and Kellma
and coworkers20 have systematically studied the bifurcatio
of pos and the passage from one zone to another for both
and 2:1 resonant systems~see also the recent work o
Joyeux21!. Periodic orbit bifurcations in 1:1 and 2:1 resona
vibrational Hamiltonians have been studied using semic
sical energy-time analysis22 of level spectra.23

It is of considerable importance to extend such a
proaches to deal with multi-mode (N>3) systems. More
generally, we seek to develop qualitative methods for ana
sis of energy level patterns and wavefunctions in multimo
systems based on the underlying classical nonlinear dyn
ics.

One possibility, following the success of the polya
6,
107(1)/156/24/$10.00 © 1997 American Institute of Physics
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157S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
phase sphere approach for 2-mode systems, is to deter
fundamental pos for multimode Hamiltonians~cf. Appen-
dix!. Lu and Kellman24 have recently examined fundament
pos and their bifurcations in a classical version of t
3-mode vibrational spectroscopic Hamiltonian for H2O due
to Baggot.25 The Baggot Hamiltonian25 has an extra constan
of the motion in addition to the energy, the so-called sup
polyad numberN 52(I 11I 2)1I b ~see next section!. In the
presence of this additional constant of the motion, the B
got Hamiltonian has essentially 2 degrees of freedom. F
lowing the procedure used for 2-mode resonant problems
and Kellman have determined critical points of the 2-mo
reduced Hamiltonian for H2O; these critical points corre
spond to the fundamental pos in the full phase space.24,26

One can then attempt to use the fundamental pos as a fr
work for organizing the phase space structure and for un
standing the localization of quantum eigenstates.

Another possibility, given the existence of a superpoly
number, is to use the methods ofstratified Morse theory, as
developed in a series of papers by Zhilinskii a
coworkers.13 In this approach a qualitative understanding
the families of pos and their possible bifurcations is obtain
on rather general grounds using the powerful mathema
apparatus of Morse theory.

In the present paper, we aim at the construction o
‘‘classical template,’’ based on an approximate partition
the classical phase space, that can be used to understan
organize highly-excited quantum eigenstates. The partit
ing of classical phase space is achieved using Chrikov r
nance analysis.27

An important aspect of the study of the phase sp
structure of multimode systems is the search for ways
partition ~either approximately or exactly! phase space~full
or reduced, at constantE! into regions corresponding t
qualitatively different dynamics. In the case that the Ham
tonian of interest has two degrees of freedom, the stable
unstable manifolds of unstable pos have the appropriate
mensionality~codimension one! to divide the energy shel
into disjoint regions, and each zone in parameter spac
then associated with a different partitioning of the poly
phase sphere.20 Such partitions have been used in theories
phase space transport in systems with mixed phase space28,29

The relevant pos can be determined either as critical po
on the polyad phase sphere for the case of a single reso
coupling, or as fixed points on a Poincare´ section. ForN
>3 mode systems, however, the stable and unstable m
folds of unstable pos do not have sufficiently high dimens
to define a partition of phase space. The natural genera
tion of an unstable periodic orbit forN>3 mode systems is
a normally hyperbolic invariant manifold~NHIM ! ~Ref. 29!,
which has codimension two. Thus the stable and unsta
manifolds associated with a NHIM have the right dimensio
ality to partition phase space in a manner analogous to
two mode case. Mapping out the NHIMs in a general mu
mode system is a difficult task and there are essential dif
ences as compared to the unstable po in two dimensi
Detailed discussions of the dimensionality issues of divid
surfaces in multimode systems and appropriate genera
J. Chem. Phys., Vol. 10
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tions of unstable pos can be found in Refs. 29–31.
In multimode nonintegrable systems, an approxim

partitioning of phase space can be obtained via Chrikov re
nance analysis.27 A resonance channelor resonance zone is
region of phase space of full dimensionality consisting
trajectories that are strongly affected by a coupling term
the Hamiltonian corresponding to a single resonance co
tion on N zeroth-order frequencies.32 Resonance channel
define regions of phase space characterized by particular
namical behavior; it is therefore natural to use them as
basis for a partitioning of phase space in multimode syste
The totality of resonance channels forms the Arnold web33

Phase points can drift along resonance channels,
‘‘change direction’’ at intersections between channels.34 In
three or more degrees of freedom systems this diffusion
the action variables in phase space leads to long t
instability.35,36

The location and width of resonance channels in a giv
system can be determined approximately using the stan
analysis due to Chirikov.27 In their pioneering work, Oxtoby
and Rice mapped out resonance zones for 2- and multi-m
model molecular Hamiltonians in order to correlate the on
of resonance overlap with statistical unimolecular dec
dynamics.37 Resonance channels have since been map
out for a number of molecular Hamiltonians,38–45 and con-
nections with the corresponding quantum syste
examined.39,42,43,45Of particular interest in multimode clas
sical systems is the possibility of chaotic motion at the int
section of resonance channels.40,41,43,46Atkins and Logan43

studied a three mode coupled Morse system with small
harmonicities and demonstrated the possibility of chaos
the intersection of lowest order resonances. For the spe
set of parameters in their paper, various measures of lo
ization ~basis dependent! provided adequate means to disti
guish between different types of quantum states. No sign
cant classical phase space transport of the Arnold diffus
type was however observed in their system. Moreover,
kins and Logan did not attempt to analyse in detail individu
quantum states and correlate eigenstate features with in
ant structures in phase space.

The above studies have established close connect
between classical overlapping resonance zones and the
nomenon of IVR in the corresponding quantum systems
the present paper, we further explore the correspondenc
the level of analyzing individual quantum states based o
classical resonance template. Specifically, we examine
problem of assigning highly-excited eigenstates of
3-mode Baggot vibrational Hamiltonian for H2O in the mani-
fold of states withP5n11n21nb/2516. Results of our
analysis forP58 have been presented elsewhere.47

Our analysis of the 45 eigenstates withP58 showed
that each state in the manifold could be given a dynam
assignment based upon study of the distribution of amplit
in action space and the quantum mechanical phase s
distribution function.47 The only ambiguity in assignmen
was associated with a narrowly avoided crossing of two l
els of the same symmetry. The relatively straightforward
signment process forP58 can be readily understood i
7, No. 1, 1 July 1997
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158 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
terms of the underlying classical mechanics, in that the
and 2:1 primary resonance channels hardly overlap.47

In the present paper we extend the Baggot Hamilton
beyond the limit of strict applicability to H2O ~in particular,
well above the energy at which the molecule can beco
linear! in order to study the dynamically interesting case w
P516. Not only does this manifold contain many stat
~153!, but the primary resonance zones overlap, so that
are able to investigate assignment of states in the vicinity
a resonance junction.43

Our approach is based upon a close study of
classical-quantum correspondence, taking as our sta
point a Chirikov analysis of the resonance channels.27 Chir-
ikov’s method is an approximate, perturbative approach
the phase space structure of multimode systems, in tha
different resonances are analyzed independently. The C
ikov resonance analysis can however be refined by deter
ing the location of families of resonant (N21)-tori ~2-tori in
the case of the 3-mode Baggot hamiltonian! determined in
the single resonance approximation. We find that the res
of the elementary Chirikov analysis and the more refin
analysis are in close agreement, confirming the essential
rectness of the Chirikov picture for the Baggot Hamiltonia
Using the classical resonance structure as a guide, we
able to organize eigenstates into families that form rea
recognizable sequencesalong the resonance channels. The
sequences of states are found to exhibit a distinct period
with respect to the distribution of amplitude in action spa
this periodicity has a simple origin in the slope of the cla
sical resonance line. The sequences provide one way o
termining the ‘‘parentage’’ of mixed states near the re
nance junction~see below!.

We note that Rose and Kellman have very recently p
sented a detailed study of eigenstate assignment in
P58 manifold for the Baggot Hamiltonian.48 There are sev-
eral points of similarity between the Rose-Kellman approa
and the analysis given in the present paper and in Ref.
For example, identification of resonance zones in the zer
order action space is central to both approaches~compare
Figure 4 of Ref. 48 and Figure 1 of Ref. 47!; Rose and
Kellman locate resonance zones and assign states usin
genvalue correlation diagrams and examination of pol
phase spheres in the single-resonance approximation; we
ploy Chrikov analysis and examination of action space a
Husimi phase space distribution functions47 ~see below!.

Both Rose and Kellman48 and we47 agree on the straight
forward assignability of states for theP58 manifold of the
Baggot Hamiltonian. As noted above, the primary resona
channels do not intersect in this case, greatly simplifying
dynamics. In the present paper, we tackle the rather m
challenging case of theP516 manifold, in which the pri-
mary resonance channels overlap. Eigenvalue correla
diagrams for this case~cf. Figure 20! show many broad
avoided level crossings, which render the diabat follow
employed by Rose and Kellman problematic. Further
marks on the relation between our approach and that of R
and Kellman are given below.

For the Baggot Hamiltonian, inverse participation ra
J. Chem. Phys., Vol. 10
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~IPR! Ref. 49 studies do not show such a clear separatio
eigenstates into various types~nonresonant, resonant, mixed!
as observed in Ref. 43~see section IV!. Interestingly, IPR
values seem to be sensitive to sharply avoided crossi
although small values of the IPR, which are associated w
the mixing of many zeroth-order eigenstates, do not nec
sarily imply that the relevant eigenstate is delocalized
phase space. The classical-quantum correspondence
eigenstates of the Baggot Hamiltonian is studied in detail
the Husimi phase space distribution function.50 We have
found several examples of eigenstates which are delocal
in action space~and hence have small IPRs! but are quite
‘‘clean’’ and localized in phase space. The Husimi functio
together with the classical resonance analysis enable u
provide dynamical assignments for most states in theP
516 manifold.

It is important to observe that, although the Bagg
Hamiltonian studied here is an effectively 2 degree of fre
dom system due to the conservation ofN , the structure of
the corresponding reduced phase space nevertheless ex
some complexities not present in 2-mode systems typic
studied. In particular, the form of the contours ofH0 in the
constantN plane can lead to some unusual state mix
effects~discussed more fully below!.

This paper is organized as follows: In section II we d
scribe the classical and quantum versions of the Bag
Hamiltonian for H2O.

25 Section III provides a survey of the
classical phase space structure of the classical Baggot Ha
tonian. The locations of resonance zones, families of 2-t
and periodic orbits are discussed. We also describe a us
Poincare´ section that provides a global view of the classic
phase space structure. Subtleties associated with
2-sheeted nature of the surface of section are discusse
section IV we outline the methods used for analysis of qu
tum eigenstates: action space projection; inverse partic
tion ratios; and Husimi phase space distributions. In sec
V we examine the quantum-classical correspondence
eigenstates of Hamiltonians that are special cases of the
got Hamiltonian, obtained by turning off one or more res
nant coupling terms. Section VI is devoted to analysis
eigenstates of the Baggot Hamiltonian itself, while sect
VII concludes. Technical details concerning computation
periodic orbits and 2-tori are given in an appendix.

II. BAGGOT HAMILTONIAN FOR H 2O

A. Classical Hamiltonian

The classical version of the spectroscopic vibratio
Hamiltonian for H2O derived by Baggot25 is a three degree
of freedom local-mode/bend Hamiltonian which includ
two 2:1 stretch-bend resonant termsHs

2:1, s51 or 2, a 1:1
stretch-stretch resonant termH1:1 and a 2:2 stretch-stretc
termH2:2:

H5H01H1:11H2:21 (
s51,2

Hs
2:1, ~2.1!

whereH0 is the zeroth order Hamiltonian
7, No. 1, 1 July 1997
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159S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
H05Vs (
s51,2

I s1VbI b1as (
s51,2

I s
21abI b

2

1essI 1I 21esbI b (
s51,2

I s , ~2.2!

and the resonant interaction terms are

H1:15b128 ~ I 1I 2!
1/2 cos~u12u2!, ~2.3a!

H2:25b22I 1I 2 cos@2~u12u2!#, ~2.3b!

Hs
2:15bsb~ I sI b

2!1/2 cos~us22ub!. ~2.3c!

Here, ($I s ,us%,I b ,ub)[(I ,u) are canonical action-angl
variables for the two local mode stretches and the b
mode, respectively, andb128 [b121l8(I 11I 2)1l9I b .

25

It is important to note that the resonance vectors~1,
21,0!, (1,0,22) and (0,1,22) are linearly dependent,51 so
that there is a constant of the motionN in addition to the
energy:

N 52 (
s51,2

I s1I b . ~2.4!

It turns out that the 2:2 stretch-stretch resonan
~Darling-Dennison coupling52! does not significantly affec
the classical phase space structure in the regime of inte
for this paper, and it is omitted from the Hamiltonian in th
resonance analysis described below. It is however strai
forward to include this coupling term if required. All of th
exact numerical results presented in this paper, classical
quantum, do include the 2:2 stretch-stretch resonance.

B. Quantum Hamiltonian

The quantum version of the Baggot Hamiltonian is o
tained via the standard correspondence between action-a
variables and creation-annihilation operators:

â†↔I 1/2eiu, â↔I 1/2e2 iu. ~2.5!

Using the above correspondence and expressing the resu
Hamiltonian in a basis of number statesun1n2nb&, we obtain
Baggot’s Hamiltonian25 with the following mapping of pa-
rameters:

~b12,b22,l8,l9!↔2~l,g,l8,l9!, bsb↔
1

&

ksbb,

~2.6!

wherel andksbb are defined in Ref. 25. Values of the var
ous parameters are taken from Baggot’s fit to the vibratio
levels of H2O ~Table II of Ref. 25!.

The superpolyad number, P5(s51,2ns1nb/2, is a con-
stant of the motion for the quantum Baggot Hamiltonian.
given value ofP is associated with a corresponding classi
invariantN 52P15/2. Our eigenenergies are shifted wi
respect to those reported in Ref. 25 by the ground state
ergy

Egs5Vs1
1

2
Vb1

1

4
~2as1ab12esb1ess!. ~2.7!
J. Chem. Phys., Vol. 10
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Table I shows the correspondence between parameters
here and Baggot’s parameters.

III. CLASSICAL MECHANICS OF 3-MODE H 2O

In this section we examine the classical mechanics of
3-mode Baggot vibrational H2O Hamiltonian. The results o
our analysis are summarized in Figure 1, which shows
classical phase space structure in the (I 1 ,I 2) plane for
N 534.5 (P516). Figure 1 shows contours ofH0 , the lo-
cation of periodic orbits, resonance channels, and familie
resonant 2-tori. Note that the physical region of the plot
that for which the inequalityI 11I 2<34.5 is satisfied.

A. Periodic orbits and their bifurcations

In studying the phase space structure of H2O, a first step
is the determination of the primaryperiodic orbits~pos!. For
a 3-mode system with 2 linearly independent resonance c
pling vectors, these pos can be located by finding the stat

FIG. 1. Classical phase space structure of the Baggot Hamiltonian
H2O. Primary periodic orbits~d! and resonant 2-tori~3! are shown. The
multimode resonances are indicated by thin lines.

TABLE I. Comparison of the parameters used in the paper and param
from Baggot’s fit to the spectroscopic Hamiltonian for H2O.

Baggota Paperb cm21

ṽs Vs 3885.57
ṽb Vb 1651.72
xs as 281.99
xb* ab 218.91
xss ess 212.17
xsb* esb 219.12
l b12 2112.96
l8 l8 6.04
l9 l9 20.16
g b22 21.82

uksbbu bsb 18.79

aFrom Ref. 25.
bMost of the values are same except forb12 , bsb , l8, l9, andg which
reflect the correct classical limit of the quantum Hamiltonian in Ref. 25
7, No. 1, 1 July 1997
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160 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
ary points of the effectively two-degree-of-freedom Ham
tonian expressed in terms of 2 resonant angles~cf.
Appendix!.

The primary pos appear in 1-parameter families
(P,I 1 ,I 2) space; the relevant bifurcation diagram has be
computed by Lu and Kellman.26 Following Lu and Kellman,
we have determined the primary pos for the classical Bag
Hamiltonian~see Appendix!. Figure 2 shows the families o
periodic orbits and integrable limit 2-tori~see Section III C!
in the (N ,I 1 ,I 2) space. For small values ofN (P) there are
three pos, which are the nonlinear normal modes whose
istence is predicted by the Weinstein-Moser theorem.53 The
first bifurcation~pitchfork! leads to the creation of two loca
mode stretches. The local mode stretches undergo fur
bifurcations for largerN due to the 2:1 resonance intera
tions. The normal modes, meanwhile, also bifurcate due
the 2:1 resonance interaction with the bending mode. M
important for the classical-quantum correspondence of
Baggot Hamiltonian in the manifold of quantum states st
ied here is the periodic orbit structure for a given value
N .

The families of pos intersect constantN planes atiso-
lated points, which are marked as circles in Figure 1. The
are 3 pairs of symmetry related (1↔2) pairs of pos on the
I 1 and I 2 axes, respectively~filled circles!. Two are pairs of
2:1 bond stretch-bend pos, one stable and one~singly! un-
stable. The remaining pair consists of a pair of local mo
stretch orbits, where all energy is in one or the other bo
stretching mode. In addition, pos appear along the diago
I 15I 2 . For example, for all values ofN there aretwo pos
with I 15I 25N /4 ~filled circle!, corresponding to stable an
unstable~asymmetric and symmetric stretch, respective!
normal mode pos. AtN 534.5, there are two other pos o
the diagonal. One~filled circle! lies in the physical region o
action space, and is a 2:1 bend/normal mode resonant

FIG. 2. Periodic orbit bifurcation diagram for the Baggot Hamiltonian
(P,I 1 ,I 2) space. The one parameter families of primary periodic orbits
shown as dark lines. The two parameter families of integrable limit
resonant 2-tori are shown as thin lines.
J. Chem. Phys., Vol. 10
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another po lies outside the physical action region, and is a
a bend/normal mode po.

We see that, for fixedN , the primary pos appear a
isolatedpoints in the action plane. The probability of findin
one of the primary pos at an arbitrary value of the class
energy is zero. The primary pos alone do not therefore fo
a ‘‘skeleton’’ for the classical phase space structure. To m
out the classical phase space structure in a way that is us
for studying the classical-quantum correspondence it is n
essary to consider higher dimensional classical objects; s
objects are resonance channels, the object of standard C
ikov analysis, and families of resonant 2-tori.

B. Chirikov resonance analysis for H0

Resonance conditions for the Baggot Hamiltonian
determined in the usual way27 by analyzingH0 . Zeroth or-
der frequencies are

vs[
]H0

]I s
5Vs12asI s1ess~12dss8!I s81esbI b ,

s51,2, ~3.1a!

vb[
]H0

]I b
5Vb12abI b1esb (

s51,2
I s . ~3.1b!

The resonance conditions for the 1:1 and 2:1 cases are
tained by settingv1(I )5v2(I ) andvs(I )52vb(I ), respec-
tively, yielding immediately the resonance conditions in a
tion space

2~esb2as!I s1~2esb2ess!I s8~12dss8!

5Vs22Vb1~esb24ab!I b , ~3.2a!

I 15I 2 , ~3.2b!

for the 2:1 and 1:1 cases, respectively, withs,s851,2.
Each of the resonance conditions defines a plane in

3D action space. These planes intersect the constantN

plane in a line, which defines the center of the resona
channel. All three resonance lines intersect at a pointI r ,
which lies either inside or outside the physically allowed p
of the action plane,I 11I 2<N /2, depending on the value o
N .

To estimate the resonance channel widths in action sp
consider the generating function

F 5 (
s51,2

usI s
r 1ubI b

r

1 (
s51,2

~us22ub!Js1SAub1B (
s51,2

usD J, ~3.3!

which generates the canonical transformation (I ,u)→(J,c)
[(Js ,cs ,J,c) given by

cs5us22ub ; I s5I s
r 1Js1BJ ~3.4a!

c5Aub1B (
s51,2

us ; I b5I b
r 1AJ22(

s
Js . ~3.4b!

e
1

7, No. 1, 1 July 1997
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161S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
Bilinear terms of the formJsJ in the new Hamiltonian can
be eliminated by suitable choice of the parametersA and
B. In terms of the new variables defined by the generat
function F , we transform our original Baggot Hamiltonia
to a new Hamiltonian centered atI r :

H→H0~ I
r !1 c̃ (

s51,2
Js
21 c̃12J1J21g~J!

1b128 @ I 1~J!I 2~J!#1/2 cos~c12c2!

1 (
s51,2

bsb@ I s~J!I b
2~J!#1/2 coscs , ~3.5!

where

c̃[4ab22esb1as , ~3.6a!

c̃12[8ab24esb1ess. ~3.6b!

The resulting Hamiltonian is cyclic in the anglec, so that the
conjugate action variableJ is conserved. Expressing the co
served actionJ in terms of the original set of action variable
I leads to a constant of motion in addition to the total ene

N 52 (
s51,2

I s1I b , ~3.7!

which is the classical analog of~twice! the superpolyad
quantum numberP. Conservation ofN means that we can
follow the classical evolution of action variables for a giv
(N ,E) in the 2-dimensional action plane (I 1 ,I 2). Moreover,
we can eliminateI b to obtain equations for the resonan
lines in terms ofI 1 and I 2

I 25
z

c̃12
2
2c̃

c̃12
I 1 , ~3.8a!

I 25
z

2c̃
2
c̃12
2c̃

I 1 , ~3.8b!

I 25I 1 , ~3.8c!

wherez[2Vb2Vs1(4ab2esb)N , and the location of the
resonance intersection is given by

I 1
r 5I 2

r 5
z

2c̃1 c̃12
. ~3.9!

In accordance with standard approximations,27 we ignore
the J1J2 coupling and assume that the coefficients of
resonance terms are slowly varying functions ofJ. The latter
assumption is reasonable in the vicinity of the resona
intersection pointI r and leads to the following resonan
Hamiltonian:

H r' c̃ (
s51,2

Js
21b128 ~ I 1

r I 2
r !1/2 cos~c12c2!

1 (
s51,2

bsb~ I s
r !1/2I b

r coscs , ~3.10!

where I b
r 5N 22(s51,2I s

r . At this stage, averagingH r

over eitherc1 or c2 leads to a Hamiltonian of the familia
J. Chem. Phys., Vol. 10
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Thus the resonance widths for the two 2:1 resonances aI r

are given by

DI s
2:1'F8c̃ bsb~ I s

r !1/2I b
r G1/2. ~3.11!

The resonance width for the 1:1 channel can be estimate
a similar fashion by considering a further canonical transf
mation (J,c)→(K ,f) generated by

G ~K ,c!5 (
s51,2

csJs
r 1~c12c2!K11~c11c2!K2 ,

~3.12!

and averaging the resultant Hamiltonian over thef2 vari-
able. The resonance width is obtained as

DI 1:1'F 8

2c̃2 c̃12
b128 ~ I 1

r I 2
r !1/2G1/2. ~3.13!

Resonance widths at points along the resonance lines a
from the intersection pointI r are determined, approximately
by substitutingI r→I in the above expressions for the width
~cf. Ref. 43!. Thus we have approximately determined t
location and extent of the relevant classical resonance c
nels. Note that, sinceb12,0 andl8.0, the 1:1 resonance
width actuallydecreasesas the actionsI 1 ,I 2 get larger, i.e.,
for smaller values of the bend actionI b .

Resonance lines and corresponding channels are plo
in Figure 1. The diagonalI 15I 2 is the 1:1 resonance line; in
the absence of any other resonances, the region of p
space inside the associated resonance channel correspo
normal mode trajectories, the region outside to local mo
trajectories. The lineI 11I 25const is then a projection of th
polyad phase sphere for the 1:1 resonance~constantI b! into
the (I 1 ,I 2) plane. The two symmetry related 2:1 resonan
zones slope inwards towards the 1:1 resonance zone. In
absence of other resonances, each 2:1 resonance chann
region of phase space in which the bend mode and one o
local stretch modes are strongly coupled. The widths of
2:1 resonance channels decrease to zero near the cen
the action plane.

Of particular interest for the vibrational dynamics of th
H2O molecule are the regions of phase space where the
mary resonance channels intersect. Such intersections
characteristic of the dynamics of multimode systems, giv
rise to chaotic classical dynamics.32,34 For N 518.5 (P
58), Chirikov resonance analysis shows that the prim
resonance channels hardly intersect; consistent with thi
the relative ease with which eigenstates for theP58 mani-
fold can be assigned.47

Assignment of eigenstates forP58 has recently been
considered by Rose and Kellman.48 Eigenvalue correlation
diagrams are used in the single resonance approximatio
label each zeroth-order state as resonant or nonresonant
respect to stretch-stretch and stretch-bend couplin
respectively.48 This ‘‘schematic’’ Chirikov-type analysis~cf.
Figure 4 of Ref. 48! should be contrasted with the classic
resonance analysis presented here, where the classical a
7, No. 1, 1 July 1997
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162 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
space is partitioned into resonance zones by explicit com
tations using the classical Baggot Hamiltonian.

In order to arrive at an unambiguous assignment
states, Rose and Kellman had to assume that normal m
classification~N-N-B in their notation! took precedence ove
local mode~L-L-B ! assignment.48 Moreover, it was noted
that no states were assigned both normal mode~N-N-B! and
Fermi resonant~L-R-R! labels. The explicit Chirikov analy-
sis presented here and in Ref. 47 provides a clear dynam
justification for these empirical observations in terms of
location of the 1:1 and 2:1 classical resonance channels
pecially the fact that forP58 the resonance zones do n
overlap appreciably. On the other hand, forN 534.5 (P
516), the case studied here, three resonance channels
sect in the region aroundI 15I 258. It is in this region of
action space that ‘‘mixed’’ or nominally chaotic states a
found ~see below!.

In addition to the primary 1:1 and 2:1 resonance zon
the location of higher-order multimode resonances can
be calculated at the next order of perturbation theory. In
Baggot Hamiltonian, Poincare´ surfaces of section~discussed
in section III D! show a particular multimode resonance o
cupying a significant region of phase space at energies be
that at which the primary 2:1 resonance islands appear. S
multimode resonances arise due to the interaction betw
local modes and 1:1 resonant modes. They are indicate
Figure 1 as a pair of thin resonance zones. By Fourier an
sis of classical trajectories located in the relevant region
phase space,54,55 we have determined that these multimo
resonances correspond to the~symmetry related! resonance
vectors (2,21,22) and (21,2,22). We have also esti
mated the resonance width and location for the particu
multimode resonance by removing the 1:1 resonance to
order56 ~see also Ref. 57!. This calculation is the first step in
a possible renormalization analysis58 of higher order reso-
nances, which could lead to an accurate determination of
threshold for onset of large-scale stochasticity. The width
the corresponding multimode resonances are:

Dm'F 8bsbb12

a1~9a11a2!

I bI 1,2
1/2

~ I 12I 2!
G1/2, ~3.14!

wherea1,2[2c̃7 c̃12. Note that this perturbative result doe
not hold as one approaches the resonance intersectionI r in
the (I 1 ,I 2) plane.

C. Families of resonant 2-tori

Chirikov resonance analysis provides an approxim
picture of the phase space structure of the H2O molecule. It
is a perturbative approach in that each resonance coup
term is analysed independently. Moreover, the phase s
structure in the vicinity of each resonance line is assume
be pendulum-like.27 For systems with weak anharmonicitie
there may be ranges ofE andN over which the local phase
space structure is more complicated.

A more detailed analysis of the phase space struc
involves determination of the location of families ofreso-
nant 2-tori. Consider the classical H2O Hamiltonian with a
J. Chem. Phys., Vol. 10
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single resonance coupling term. There are in this case 2
norable angles, and 2 constants of the motion in addition
the energy; for example, if only the 1:1 resonance coupl
term is present,I b and I 11I 2 are constants of the motion
The dynamics is then described by a 1 degree of freedom
reduced Hamiltonian, and stationary~equilibrium! points of
this Hamiltonian correspond to 2-tori in the full phase spa
~In the absence of any coupling, almost all trajectories lie
nonresonant 3-tori.! Details of the computations of resona
2:1 tori for the 1:1 and 2:1 resonances in the Baggot Ham
tonian are given in the Appendix.

At fixed superpolyad numberN , the resonant 2-tori ap
pear in continuous one-parameter families, as shown in F
ure 1 ~two parameter families in (N ,I 1 ,I 2) space as shown
in Figure 2!. For the 1:1 resonant case, there are 2 families
normal mode 2-tori along the diagonalI 15I 2 , and a sym-
metry related pair of local mode 2-tori along theI 1 and I 2
axes. In addition, there are two families of resonant 2-t
associated with bend-local resonant motion; these fam
are marked with crosses in Figure 1, and are located clos
the centers of the 2:1 resonance channels determined
Chirikov analysis. We stress again that our computations
the resonant 2-tori are not exact, but are carried out wit
the single resonance approximation.

Two conclusions are evident from our computation
the resonant 2-tori. First, from Figure 2 it is clear that t
primary pos appear where families of 2-tori meet. Moreov
the location of the primary pos is given quite accurately
the intersection of the loci of the families of 2-tori dete
mined in the single-resonance approximation. Second,
apparent that the 2-tori form the ‘‘skeleton’’ of the classic
phase space, and in fact follow very closely the Chirik
resonance channels. All this suggests that the Chiri
analysis is meaningful for the Baggot Hamiltonian.

D. Poincaré surface of section

In addition to the calculations outlined above, we ha
computed classical surfaces of section for the Baggot Ha
tonian. These surfaces of section are useful in order to de
mine the significance of the classical phase space struct
discussed above, and also to compare with quantum
chanical phase space~Husimi! distribution functions.

As the Baggot Hamiltonian has one ignorable angle,
can define a 2D surface of section~sos! by plotting N1

[(I 12I 2)/2 andf1[u12u2 at constant values of the sec
tioning anglef2[u11u224ub with ḟ2.0. The value of
the ignorable angle conjugate to the superpolyad action~N !
is irrelevant. All trajectories in a given sos have the sa
energyE; for givenN there is a range of possible sos e
ergies.

The general structure of the classical sos is as follow
normal-mode resonant region is present in the middle of
sos (I 1.I 2), corresponding to ‘‘librational’’ motion.5 Local
mode~above barrier! regions are found above and below th
central normal mode region. Large 2:1 bend/local-stre
resonant islands appear in the local mode regions~e.g., Fig-
ure 3b!. Higher-order resonances also appear. At low en
7, No. 1, 1 July 1997
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163S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
gies, the center of the normal mode islands correspon
stable resonant 2-tori, while a ‘‘whiskered’’~unstable!
2-torus appears at the center of the sos. Similarly, the
bend/local-stretch resonance is defined by the intersectio
stable and unstable resonant 2-tori with the sos.

The classical surface of section described above ha
additional feature which manifests itself at values of the
perpolyad number for which the resonance intersectionI r

lies in the physical region of the action plane. This feature
an apparently unavoidable ‘‘double-sheetedness’’ of the
face of section due to the closing of the contours ofH0

around I r ~cf. Figure 1!. Such a topological change in th
contours ofH0 , and thence of the phase space of the eff
tive 2D reduced system, leads to the possibility of t
creation/destruction of fixed points in phase space, as foll
in general from the analysis of stratified Morse theories.13 An
interesting aspect of the two-sheeted structure of the sur
of section is that some quantum states can selectively lo
ize on one sheet or the other whilst other states can delo
ize over both sheets. Examples of such states are shown
discussed below. Moreover, interaction between such st
can lead to very highly mixed states, thus complicating
spectral assignments.

In our calculations points on the classical sos are de
mined to lie on the upper or lower sos via a simple criterio
The value of the bend action (I b

r ) corresponding to the reso
nance intersection is obtained asI b

r 5N 22(I 1
r 1I 2

r ). The
intersection point of the classical trajectory with the sos l
on the lower or upper sos if the associated value ofI b is less
than or greater thanI b

r , respectively. In what follows, both
sheets of the surface of section are shown~when necessary!
with u and l denoting upper and lower sheets respective
All ( N1 ,f1) surface of sections shown in this paper cor
spond to the anglef1 measured in units of 8p.

In Figure 3 a series of 4 surfaces of section are sho
(N1 versusf1/8p! as a function of increasing energy forP
516. At low energies~Figure 3a! most of the surface o
section is occupied by regular normal mode orbits, toget

FIG. 3. Lower Poincare´ surface of sections forP516 as a function of
increasing energy.~a! 41892 cm21. ~b! 43488 cm21. ~c! 48970 cm21. ~d!
49157 cm21.
J. Chem. Phys., Vol. 10
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with large islands corresponding to the (2,21,22) and
(21,2,22) multimode resonances as discussed in the pr
ous section~cf. section III B!. At moderate energies~Figure
3b!, the main features are the 2:1 and 1:1 islands with
destruction of the multimode resonances. Although there
increased stochasticity due to the higher order resonan
there are still invariant curves serving as barriers to trans
in phase space. In Figure 3c the surface of section co
sponds to energies close to that of the bifurcation of
normal mode periodic orbits due to the 2:1 resonances
these high energies, most of the sos is occupied by stoch
orbits with the relatively small 2:1 islands embedded in t
stochastic sea. The islands do not have enough phase s
area to support even a single quantum state. At even hig
energies as shown in Figure 3d the entire sos is filled w
stochastic orbits. The 1:1 regions are completely destro
with small islands of 2:1 resonances still persisting. At t
highest energy almost all of the invariant curves in the
are destroyed in marked contrast to the analogous case
P58.

The surfaces of section shown in Figures 3c and 3d
at high enough energy so that the sos is double-sheete
Figure 4 we show the corresponding upper sos. At the hi
est energies all of the invariant structures on the upper
are also destroyed.

FIG. 4. Poincare´ surfaces of section forP516 at energies corresponding t
Figure 3.~a! 48970 cm21. ~b! 49157 cm21.
7, No. 1, 1 July 1997
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164 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
IV. ANALYSIS OF EIGENSTATES: METHODS

Quantum eigenfunctions were generated by diagona
ing the Baggot Hamiltonian for a given polyad numberP in
the number basisun1 ,n2 ,nb&, wheren1 ,n2 are the quantum
numbers for the anharmonic local O-H stretch modes
nb denotes the bend quantum number. The Hamiltonia
block diagonal inP and the total number of states at fixedP
is (P11)(P12)/2. To analyze the eigenstates of the Bag
Hamiltonian, it is natural to project them onto the (n1 ,n2)
quantum number~action! plane. The physical points in th
(n1 ,n2) lattice are those points for whichP2n12n2 is non-
negative. We represent the eigenstates by plotting at e
physical lattice point a circle with radius equal to the squ
of the coefficient of the corresponding zeroth-order ba
state in the eigenstate of interest. In the present paper
discuss the manifold of 153 states withP516. Analysis of
the caseP58 has been presented in an earlier paper.47 In the
rest of this section we give a brief description of the metho
used for studying the classical-quantum correspondence

A. Inverse participation ratios (IPR)

To analyze the quantum wavefunctions, and to aid
correlating with the classical resonance analysis, we h
computed inverse participation ratios~IPR! for eigenstates.49

If the stateuCa& is expanded in an orthonormal basis$f j% as

uCa&5(
j

uf j&cja , ~4.1!

then the corresponding IPR is defined by

La5(
j

ucjau4. ~4.2!

The IPR is a measure of the delocalization ofuCa& in the
basis$f j%: if uCa& is essentially composed of a single ba
state, then the IPR will be about unity; on the other hand
uCa& is a superposition ofN basis functions with comparabl
coefficients, then the value IPR will be about 1/N. States
with low IPR values are therefore delocalized over the ba
$f j%.

The value of the IPR is of course by definition basis
dependent. In addition to obtaining a rough measure
eigenstate delocalization, we are interested in using IPRs
culated in terms of one or more physically appropriate ba
sets to distinguish between different classes of eigens
Following the analysis by Atkins and Logan of a 3-mo
system with two resonant coupling terms,43 we compute the
IPR in two different basis and average over them. In o
case, we compute the IPR in a basis of eigenfunctions of
zeroth-order Hamiltonian plus the 1:1 resonant coupl
term, and in the basis of eigenstates ofH0 plus both 2:1
resonant coupling terms. We then calculate an average
defined by

L5
1

2
~L1:11L2:1!, ~4.3!

where
J. Chem. Phys., Vol. 10
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L1:15(
j

ucja
1:1u4,

~4.4!

L2:15(
j

ucja
2:1u4.

Here,cja
1:1 and cja

2:1 are the coefficients in the expansion
the eigenfunctionsuCa& in the 1:1 and 2:1 resonance base
respectively. It follows from the definition of the IPR tha
states with mostly 1:1 resonant character will have high v
ues ofL1:1 and low values ofL2:1 and vice versa. Strongly
mixed states influenced by both 1:1 and 2:1 resonances
expected to have low values of the IPR in both bases. On
other hand, states that are completely outside either of
resonance zones will have the highest values of the IPR
both bases. Thus we provisionally associate low values
the average IPR,L, with mixed states, moderate values wi
states being in either the 1:1 or both of the 2:1 resona
zones and high values with states outside the influence
any of the resonance zones.

Note that, with our present definitions, low values ofL
should only be found for states that are strongly mixed byall
resonant coupling terms. Thus, states that are mixed
dominantly by the two 2:1 resonances, and which might
in some sense ‘‘chaotic’’ in the semiclassical limit~as the
corresponding 2-resonance classical system is nonintegra!
will nevertheless have high values ofL2:1.

Figure 5 summarizes our IPR computations for the f
Baggot Hamiltonian~all coupling terms included! with N
532. The results are displayed as a smoothed histog
showing the number of states within a given range ofL. It is
apparent from the histogram that the IPR values do not y
a clean separation of eigenstates into 3 classes: nonreso
singly-resonant and mixed, as they do for the case studie
Atkins and Logan.43 The IPR appears to be too crude a
indicator of eigenstate delocalization to provide a basis
classification of eigenstates of the Baggot Hamiltonian.

Also shown in the Figure 5 are the effects of setti
coupling parametersl8 andg to zero. The number of state

FIG. 5. Smoothed histogram of average IPRs,L, for the full Baggot Hamil-
tonian ~solid!, l850 ~dotted!, andb2250 ~dashed!. P516.
7, No. 1, 1 July 1997
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165S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
with very low values of the IPR increases sharply whenl8 is
set equal to zero, indicating a significant increase in mix
of zeroth-order states; Baggot25 has stressed the importanc
of the parameterl8. If the 2:2 resonant coupling term i
removed by settingg50, however, there is only a mino
change in the form of the histogram.

B. Husimi distribution functions

In order to explore the quantum-classical corresp
dence for the Baggot Hamiltonian in more detail, and
provide a dynamical basis for assignment of eigenstates,
useful to have aphase spacerepresentation of the quantum
wavefunctions; such a representation facilitates compar
of the structure of the quantum state with the important c
sical phase space structures.9 Two well known representa
tions are the Wigner59 and the Husimi50 functions. We use
the Husimi representation since the Wigner representa
can take negative values, thereby invalidating its use a
probability distribution, and also exhibits oscillations on
finer and finer scale as\→0.59 The Husimi function is a
Gaussian smoothed version of the Wigner function. It is n
negative, and is well suited for study of the classic
quantum correspondence.60 Other related approaches to th
definition of quantum phase space involve the construc
of generalized coherent states61 which take into account the
underlying dynamical symmetry group of the problem. F
present purposes, however, we use the following sim
method to obtain the necessary distribution function.

We start by laying down a grid in the (N1 ,f1) coordi-
nates on the Poincare´ surface of section~i.e., for a fixed
value of the sectioning anglef25f̄2!. For a given point on
this grid, denoted by (N1

(k) ,f1
(k)), and the chosen value o

f̄2 , we calculate the associated values of the original can
cal variables (I (k),u(k)). To compute (I (k),u(k)) we must pick
an arbitrary value~equal to zero for results reported in th
paper! of the ignorable anglec conjugate to the superpolya
action J, and ensure that the energy of the classical ph
space point equals that of the eigenstate under considera
Cartesian coordinates (pm

(k) ,qm
(k)), m51,2,b, associated with

the grid point (N1
(k) ,f1

(k)) are then calculated via the usu
harmonic action-angle transformations. The value of the H
simi function for eigenstateuC& at phase space poin
(p(k),q(k)) is calculated by taking the square of the overlap
uC& with a product of minimum uncertainity Gaussians

x~qm!5S cm
2

p D 1/4 expF2
cm
2

2
~qm2qm

~k!!21
i

\
pm

~k!qmG ,
~4.5!

for each of the three modesm51,2,b. Diagonalization of the
Baggot Hamiltonian in a number basis gives the eigenst
uC& as linear combinations of a finite number of products
harmonic oscillator basis functionswnm

(qm):

C~qm!5 (
n1n2nb

Cn1n2nb
wn1

~q1!wn2
~q2!wnb

~qb!. ~4.6!

The resulting Gaussian integrals are performed analytic
to give the Husimi distribution function asuAu2, where
J. Chem. Phys., Vol. 10
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A~p~k!,q~k!!5 (
n1n2nb

Cn1n2nb)
1

Anm

zm
nm

3expF2
1

2
uzmu21

i

2\
pm

~k!qm
~k!G . ~4.7!

In the above equation we have defined

zm[
cm

&

qm
~k!1

i

cm\&
pm

~k! , ~4.8!

with cm
2 the mode harmonic frequencies.

Note that the Husimi functions need only be comput
for one quadrant of the (N1 ,f1) surface of section due to th
symmetry of the full Baggot Hamiltonian. To explore th
classical-quantum correspondence for eigenstates, con
of the Husimi distribution functions are superimposed on
classical surface of section at an energy corresponding
the particular quantum state. In computing the Husimi fun
tions contributions from both upper and lower sheets of
sos~when present! are added incoherently.

V. BAGGOT HAMILTONIAN: SPECIAL CASES

Before tackling the full Baggot Hamiltonian, it is usefu
to examine eigenstates of Hamiltonians obtained by keep
only selected resonant coupling terms~see also Ref. 48!. In
the case that a single resonant coupling term is present
Hamiltonian is classically completely integrable. When tw
resonant coupling terms are present~e.g., 1:1 plus 2:1, or
both 2:1 terms!, the Hamiltonian is nonintegrable, but po
sesses a constant of the motion in addition to the ene
This constant of the motion persists in the Baggot Ham
tonian when all three coupling terms are present, as the t
resonance vectors are linearly dependent.51

A. H0 plus a single 2:1 stretch-bend resonance

Figure 6 shows projections onto the action lattice of s
eral eigenstates of the quantum Hamiltonian obtained
adding a single 2:1 stretch-bend coupling term toH0 . The
eigenstates are superimposed upon a plot of the 2:1 r
nance zone in the (I 1 ,I 2) action plane. In action space, th
eigenstates are delocalized along the linen25const, i.e.,
N 1b[2n11nb is conserved in accord with the classical b
havior of the action variables for a single 2:1 resonance.

Figure 6 shows action projections for a sequence
states at constantn2 , corresponding to increasing excitatio
transverse to the resonance channel. A precise dynamic
based assignment of these eigenstates is obtained by e
ining associated Husimi functions: for resonant states,
quantum phase space density is localized inside the rele
resonance channel in the surface of section, whereas for
resonant states the quantum phase space density lies ou
~‘‘separatrix’’ states62 occur at the boundary between the
classes of state, and have phase space density localize
unstable objects@fixed points# in the surface of section!.
Each resonant state can be assigned three quantum num
^N ,N sb ,n&, where the quantum numbern50,1,2..., mea-
sures the degree of excitation within the resonance. For
7, No. 1, 1 July 1997
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Dow
FIG. 6. Action space projections for eigenstates of the single 2:1 reson
channel system with constantn250, increasingn. ~a! n50. ~b! n51. ~c!
n52. ~d! n53. ~e! n54 ~separatrix state!.
re

ar
th
o
ta

out-
roth-

e.

ose
ample, for the sequence of resonant states shown in Figu
there are five resonant states with^N 532, N 1b532, n
50,1,2,3,4&. Note that the state withn54 is a separatrix
state. The associated Husimi distribution functions
shown in Figure 7. Note the movement of the maxima of
Husimi distributions outwards from the center of the res
nance as one increases the excitation, with the final s
clearly localized about the unstable 2-torus.
J. Chem. Phys., Vol. 10
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Nonresonant states, whose phase space density lies
side the classical resonance channel, can be assigned ze
order quantum numbers (N ,n1 ,n2), corresponding to the
dominant zeroth-order state contributing to the eigenstat

Our set of resonant quantum numbers^N ,N s,b ,n& for
the integrable 2:1 case is closely related to that used by R
and Kellman forL-R-R states:nl , $nR1 ,nR2%.

48 The super-
polyad quantum number isN 52nl12nR112nR2 , the 2:1
7, No. 1, 1 July 1997
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FIG. 7. Husimi distribution functions for the resonant eigenstates show
Figure 6.
o
nt

any

ho
resonance quantum number isns,b52nR11nR2 , while the
quantum numbern can presumably be identified withnR1 .

There has been much discussion in the literature c
cerning the correspondence between classical and qua
J. Chem. Phys., Vol. 10

Downloaded¬26¬Oct¬2002¬to¬203.197.196.1.¬Redistribution¬subject
n-
um

resonances~see, for example Ref. 63!. The 2:1 stretch-bend
resonance channel studied here is large and contains m
states~as does the 1:1 resonance!. The situation is therefore
analogous to that studied by Ramchandran and Kay, w
7, No. 1, 1 July 1997

¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



d

o

th
h

e

c
s

c
n

t

n

o

e
t

il-

nt
can
nce
ary
e a
tle

ed

mil-

le
e in
l to

so-
this
eri-

-

ere

n

168 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
examined the connection between the existence of avoi
level crossings and classical resonant dynamics.64 Concep-
tual problems concerning the classical-quantum corresp
dence for narrow, high-order resonances~width of order\!
have been discussed by Roberts and Jaffe´.45 In particular,
these authors define quantum resonant eigenstates as
formed by strong interaction between zeroth-order states t
may lie outside the~narrow! classical resonance channel.45

From our perspective, such states have~distorted but! topo-
logically nonresonant phase space densities~see, for ex-
ample, Figure 2d of Ref. 47!.

States localized in the 2:1 resonance channel with diff
ent values ofn2 form sequences, where each sequence
characterized by a particular value of the excitation quantu
numbern. In Figure 8 we show a sequence of states whi
progresses along the 2:1 resonance zone. The 4 state
Figure 8, for example, are assigned quantum numbers^N
532,N 1b532,n50&, ^32,26,0&, ^32,20,0& and^32,14,0&, re-
spectively. The Husimi distributions for the above sequen
of states are all localized in the vicinity of a stable resona
2-torus~cf. Figure 7a!.

We shall investigate below the fate of these eigensta
as the remaining resonant coupling terms are turned on.

An important observation is thatn1 /nb resonant states
with similar distributions of amplitudes over the resona
region of action space, and the same value ofn, appear at
intervals ofDI 253 in the actionI 2 ~cf. Figure 8!. This pe-
riodicity is simply a consequence of the fact that the slope
the resonance line in the action plane is nearly23; hence,
the form of the stretch-bend Hamiltonian in the zeroth-ord
basis near the center of the resonance zone is approxima
invariant asn2→n213.65 The periodicity persists even upon
inclusion of additional resonant couplings.

The size of the intervalDn253 is an accidental conse-

FIG. 8. Action space projections for a sequence of eigenstates in the si
2:1 resonance system with constantn50 andn250,3,6,9.
J. Chem. Phys., Vol. 10
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quence of the particular parameter values in our Ham
tonian. For example, if we setess5esb50 then the observed
periodicity isDn252. In each case, however, the appare
periodicity in the location of isomorphic resonance states
be understood in terms of the slope of the classical resona
line. An analysis based solely on the properties of prim
periodic orbits is, as far as we can see, unable to provid
comparably simple explanation of these relatively sub
properties of the eigenstate densities in action space.

To clarify the significance of the periodicity associat
with the slope of the resonance line in theI 1 ,I 2 action plane,
consider a simple, integrable Fermi resonant 2-mode Ha
tonian,

H5VsI s1VbI b1asI s
21esbI sI b1abI b

2

1b12I bI s
1/2 cos~us22ub!, ~5.1!

with s51 or 2. This Hamiltonian describes an integrab
subsystem of the Baggot Hamiltonian. The resonance lin
(I s ,I b) space is found by setting the frequency ratio equa
2, vs52vb . This equation may be written:

I b5`~ I s2I s!, ~5.2!

where

`[
2~esb2as!

~esb24ab!
, ~5.3!

and

I s[
~Vs22Vb!

2~esb2as!
, ~5.4!

denote the periodicity and one of the intercepts of the re
nance line, respectively. The phase space structure of
Hamiltonian has been studied in some detail including p
odic orbit bifurcations66 and the quantum (E,t) characteriza-
tion of the energy spectrum.67 Performing a canonical trans
formation (I s ,I b ,us ,ub)→(I z ,c;I ,C) ~Refs. 66, 67! and
using the variables

Q52as28ab , ~5.5a!

g15as14ab12esb , ~5.5b!

g25as14ab22esb , ~5.5c!

P5Vs22Vb , ~5.5d!

it follows that the primitive periodic orbits~apart from the
ones at North and South poles on the polyad phase sph!
can be obtained from the cubic equation:

Z36e1Z
21e2Z7e350. ~5.6!

In the above equation we have definedZ[(I1I z)
1/2 and

e15
6bsb

23/2g2
, ~5.7a!

e25
P1~Q22g2!I

2g2
, ~5.7b!

gle
7, No. 1, 1 July 1997
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169S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
e35
2bsbI

21/2g2
. ~5.7c!

One can express the coefficients of the cubic equation
terms of the variables (̀,I s ,P) using the following rela-
tions:

Q5
~22` !

`I s
P, ~5.8!

g252
~21` !

2`I s
P. ~5.9!

We now study the evolution of the bifurcation diagra
with varying ` and keepingI s constant. Contact with the
Baggot Hamiltonian studied in this paper is made by repl
ing P by P8[P1(ess22esb)K2 , whereK2 is the conserved
action corresponding to the nonresonant stretch mode.
superpolyad number for the Baggot Hamiltonian is related
the Fermi resonant polyad andK2 throughN 54I12K2 .
Figure 9 shows the bifurcation plot~f[cosc(Iz2I)/2I ver-
susN , with c50, p! as one varies the periodicitỳ for
fixed value ofI s andK2 . For the physical value of̀ ~solid
line!, we have three roots forN greater than 12, signaling
the presence of pendular resonance regions in phase sp67

The three roots correspond to a local mode~stable! 2-torus
and a pair of stable/unstable 2:1 resonant 2-tori, in agreem
with our analysis of the 2-tori of the integrable subsyst
given earlier~cf. also Appendix!. On reducing` by half
~dots! we are still in the Chirikov regime. For the particula
choice of Baggot parameters the periodicity`.0 in the
(I s ,I b) plane. Eliminating the bend anharmonicity, i.e., s
ting ab50 in the Baggot Hamiltonian leads to a differe
bifurcation structure as shown in Figure 9~filled circles!.
Now one clearly sees values ofN for which there are fewer
than three roots and hence a non-pendular phase sp

FIG. 9. Bifurcation diagram~f[cos@(Iz2I)/2I # versusN ! as a function of
the periodicity` of the single 2:1 resonance line with fixedI s , K2 . Physi-
cal ~solid line!, reduced̀ ~solid dots! and zero anharmonicity of bend mod
~open circles!.
J. Chem. Phys., Vol. 10
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Quantum eigenfunctions for reduced bend anharmonicity
strongly mixed and bear little resemblance to the eigenst
analysed in this paper.

B. H0 plus the 1:1 and 2:2 stretch-stretch
resonances

The Hamiltonian consisting ofH0 plus the 1:1 and 2:2
stretch-stretch resonant coupling terms is also completely
tegrable. Eigenstates are delocalized along the linen11n2
5const. Just as for the 2:1 resonance, we can classify the
states as resonant or nonresonant according to whethe
phase space densities are localized inside or outside the
resonance channel. States outside the 1:1 resonance zon
be assigned zeroth-order local mode quantum numb
(N ,n1 ,n2). The line n11n25const is the projection into
the action plane of the polyad phase sphere for 1:1 reso
systems studied by Kellman and coworkers.20 We note that
the width of the 1:1 resonance decreases at higher value
I 15I 2 .

Figure 10 shows a sequence of 1:1 resonant~normal
mode, separatrix! states which progress along the 1:1 res
nance channel and can be assigned resonant~normal mode!
quantum numbers:@nb ,N 125n11n2 ,n#. The particular se-
quence shown in Figure 10 can be assigned as@4k,2l ,2# with
k50,1,...,7 andl582k. ~The correspondence with the 1:
resonant N-N-B quantum numbers of Rose and Kellman48 is
as follows:N 125ns1na , n5ns .!

Isomorphic normal mode states appear along the
resonance zone at intervalsDN 1252, where all states in a
given sequence have either a node or an antinode along
diagonal. This well known alternation can be viewed as
consequence of the slope11 of the 1:1 resonance line. Fig
ure 11 shows 4 of the corresponding Husimi distributi
functions. The Husimi functions are all localized around t
unstable normal mode 2-torus. The characteristic x-shap
Husimis localized in the vicinity of an unstable fixed point60

is clearly evident in Figures 11c, 11d. The effect of the we
2:2 resonance can be clearly seen in Figure 11d. Bifurcat

FIG. 10. Action space projections for a sequence of 1:1 resonant~normal
mode! states for the 1:112:2 integrable subsystem andP516.
7, No. 1, 1 July 1997
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170 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
occur which affect the topology of phase space and the
responding Husimi distributions. Although we have not
vestigated the possible bifurcations in this subsystem in
detail, we note that the form of the Husimi distribution
Figure 11d is consistent with a bifurcation in the underlyi
classical surface of section.

C. H0 plus two 2:1 stretch-bend resonant coupling
terms

The Hamiltonian consisting ofH0 plus two 2:1 resonan
coupling terms is classically nonintegrable. It neverthel
conserves the quantityN 52(n11n2)1nb . In the rest of
the figures involving action space projections for sequen
of eigenstates we show the different states with vary
thickness. The terminal state is shown with the largest th
ness in the figures.

We now show action space projections for 3 sequen
of eigenstates that progress along the 2:1 resonance cha
For example, in Figure 12 we show a sequence of states
n50 and symmetric with respect to reflection in the diag
nal I 15I 2 . Proceeding inwards from the edges of the act
plane, the first two states in the sequence bear a close re
blance to the first two states in Figure 8 atI 250 and I 2
53, respectively. The next state in the sequence is how
of symmetric ‘‘normal mode’’ character, and is localized
the vicinity of the resonance intersectionI r . There is there-
fore an effective 1:1 mixing along the directionN 12

5const arising from the two 2:1 stretch-bend coupling term
In fact, analysis of the interaction of the two 2:1 resona
coupling terms using classical perturbation theory gives
estimate of the effective strength of the induced 1
coupling.56

One can assign these states using labels which are e
tially the same as in the integrable 2:1 case, but augme
with a 6 subscript and ‡ superscript. The6 label describes
the state symmetry with respect to exchange 1↔2 while the
‡ symbol denotes a state with ‘‘normal mode’’ charact
The three states in Figure 12 can therefore be labe
^32,32,0&1 , ^32,26,0&1 and ^32,20,0&1

‡ , respectively.

FIG. 11. Husimi distribution functions for the normal mode sequence w
n52 shown in Figure 10.
J. Chem. Phys., Vol. 10
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In Figure 13 we show the corresponding Husimi dist
butions. Note that the Husimis, including the terminal st
shown in Figure 13c, all show the common feature of loc
ized density atf156p. The terminal state phase space d
tribution also has some similarity to the corresponding in
grable limit normal mode state Husimi shown in Figure 11
albeit somewhat distorted and phase shifted inf1 , and could
be assigned the normal mode quantum numbers@4,14,2#1 .
The terminal state is thus a mixed state for whichmore than

h

FIG. 12. Sequence of action space projections for eigenstates of two
resonance channel Hamiltonian withn50 andN 532. In order to distin-
guish the states in a sequence we plot them with different line thicknes
Terminal states have the thickest line, and the same holds for all multir
nance action space plots shown in the rest of the paper.

FIG. 13. Husimi distributions corresponding to then50 2:1 resonance
sequence shown in Figure 12.
7, No. 1, 1 July 1997
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171S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
one set of quantum number labels is possible.We observe
that the resonance excitation quantum numbern is different
in each set of quantum numbers, i.e.,n50 ~2:1 label! versus
n52 ~1:1 label!.

Figure 14 shows a sequence of 2 states^32,30,1&1 ,
^32,24,1&1 that leads to a mixed normal mode-type sta
^32,18,1&1

‡ in the vicinity of I r . The associated Husimis ar
shown in Figure 15. The parent state~at n251! Husimi
shown in Figure 15a corresponds ton51 as is clearly seen
by comparing to the integrable case in Figure 7b. The pa
state is relatively far away from the resonance junction a
hence the close resemblance of the corresponding Hu
distributions. The Husimi for the next state in the sequen
Figure 15b, is localized in angle space but delocalized
action. We provisionally associate this delocalization in
tion space with the destruction of barriers to classical ph
space transport.

The terminal state, which resembles a ‘‘normal mod
state in action space, localizes entirely on the upper she
the sos~Figure 15c!. The Husimi function, however, is sig
nificantly distorted as compared to the corresponding in
grable normal mode Husimi. Most noticeable is a shift
phase anglef1 from the integrable 1:1 case.

For the Hamiltonian with two 2:1 resonant stretch-be
coupling terms, we are therefore able to identify sequen
of resonant states that define the ‘‘parentage’’ of particu
mixed states. The terminal states are mixed, as suggeste
their Husimi distribution functions, and can be viewed
part of one or more sequences. This leads to anonunique
labelling of the mixed states. For example, the terminal st
of the sequence shown in Figure 12 can be assigned eith
^32,20,0&1 or as@4,14,2#1 . The basis for our identification
of sequences is a study of amplitude distribution in act
space, guided by the classical resonance channel tem
obtained via Chirikov analysis. It is not clear how an analy
based upon primary periodic orbit bifurcations alone20 would
enable such patterns to be identified.

We emphasize that the nonunique labelling of states

FIG. 14. Sequence of action space projections for eigenstates of the tw
resonance channel Hamiltonian withn51.
J. Chem. Phys., Vol. 10
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tained here and in the next section is a consequence o
intersection of the primary 1:1 and 2:1 resonance chann
This level of dynamical complexity is not present in the re
tively straightforwardP58 case treated previously by us47

and others.24,48 Our analysis and assignments therefore
beyond this earlier work.

VI. FULL BAGGOT HAMILTONIAN

The Chirikov resonance analysis of the Baggot Ham
tonian given in section III B suggests the existence of fo

2:1

FIG. 15. Husimi distributions corresponding to then51 2:1 resonance
sequence shown in Figure 14.
7, No. 1, 1 July 1997
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172 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
classes of eigenstate~cf. Ref. 37!: ~1! Nonresonant states
unaffected by any primary resonance. Phase space den
for such states are located outside any of the resonance c
nels, and good quantum numbers are the zeroth-order q
tum numbers n1 , n2 and nb . States are labelled a
(n1 ,n2 ,nb). ~2! Normal mode~1:1! resonant states, with
phase space densities located in the 1:1 resonance cha
Approximate good quantum numbers areN , N 125n11n2
and a third quantum numbern describing the level of exci-
tation inside the 1:1 resonance. The relevant states ar
belled as@N ,N 12,n# or @nb ,N 12,n#. ~3! Local-stretch/
bend resonant states, with phase space densities locat
the 2:1 resonance channel. Approximate good quantum n
bers areN ,N sb52ns1nb , and a resonant excitatio
quantum numbern. States are therefore labelled b
^N ,N sb ,n&. ~4! ‘‘Mixed’’ eigenstates, located in the vicin
ity of the resonance channel intersection. A similar class
cation has been proposed by Lu and Kellman24 and by Rose
and Kellman,48 in either case without reference to the actu
location of the resonance channels in action space.

Our classification scheme provides a framework with
which to analyze the eigenstates of the Baggot Hamilton
In regions of phase space in which there is strong coup
between modes, the zeroth-order invariant structures
provide the basis of the classification scheme may be
stroyed. Nevertheless, examination of quantum phase s
densities often enables us to provide an unambiguous
namical assignment. Such an approach has previously
successful for theP58 manifold,47 and we examine here th
set of states withP516.

A. Progressions of states along resonance channels

In the case of the integrable single resonance cases
cussed in the previous section, the zeroth-order and/or r
nance quantum numbers provide a rigorous and complet
of state labels. For the full Baggot Hamiltonian, which co
tains three linearly dependent resonance coupling terms
which is classically nonintegrable, states far away from
resonance intersection region of action space can be ass
using labels appropriate to the first 3 classes discus
above. As one approaches the overlap region the appr
mate labels may break down and we have a possibility
states belonging to class 4.

Nevertheless, as noted in the previous section, it is p
sible to identify sequences of states that progress along r
nance channels, so that specific states in the resonance
section region can be identified as the terminus of one~or
more! sequence~s! of regular~assignable! states. It is impor-
tant to note that it is quite possible for two different s
quences to have a common terminal state; the two set
associated labels then approximately describe the s
eigenstate. Such ambiguity in the labelling of eigenfunctio
distinguishes theP516 case currently under study from th
dynamically simpler P58 manifold analyzed
previously.24,47,48

We now proceed to combine insights gained from stu
of surfaces of section, Husimi phase space densities and
classical resonance template to analyze eigenstates of th
J. Chem. Phys., Vol. 10
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Baggot Hamiltonian withP516. We focus our attention on
the fate of the three sequences presented in the last su
tion as we turn on the remaining primary 1:1 resonance.

Figures 16 and 17 show the sequence of states prog
ing along the 2:1 resonance channels and their respec
Husimi distributions. This sequence is to be compared to
similar one shown in the previous section~cf. Figures 12,
13!. The first and second states are quite similar to th
partners in the previous sequence. The terminal state is a
a mixed state with nonunique labels; there are neverthe
clear differences in the forms of the Husimi due to the d
ferent phases of the induced 1:1 and primary 1:1 reson
coupling terms. In the full Hamiltonian the terminal Husim
is almost completely localized on the upper sos wherea
the 232:1 resonance case the terminal state is delocal
on both sheets of the sos.

In Figures 18 and 19 we show then51 sequence and
the corresponding Husimis analogous to the sequence sh
in Figure 14. For the full Hamiltonian, the form of the Hu
simi of the second state is indicative of an avoided cross
with another state. Computation of an energy level corre
tion diagram as a function ofbsb confirms this surmise. The
resonant1 parity state is involved in an avoided crossin
with a nearby normal mode state. The terminal state is so
what more localized in phase space than the counter
shown in the previous section. The terminal state for the
Hamiltonian also looks ‘‘cleaner’’ in action space as com
pared to the 232:1 case.

The sequences considered here show how group
quantum states can organize around the classical reson
template in action space. In the case of the Baggot Ham
tonian, explicit computations of the Husimi distributio
functions further illuminate the phase space significance
such sequences. The local-bend resonant sequences are
eralizations of the more familiar sequence of normal mo
states. We have studied sequences in addition to those
sented in this paper. For example, it is possible to find
quences which show an initially resonant state going ou

FIG. 16. Sequence of action space projections for the full Baggot Ha
tonian withn50.
7, No. 1, 1 July 1997
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173S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
resonance and becoming a local nonresonant state~cf. Ref.
62!. Aided by the Husimi distributions, one can usefu
identify the parentage of very highly mixed states. Insig
can be thereby obtained into the nature of mixed states in
vicinity of the resonance intersection by their identificati
as terminal states of a sequence~s! of regular states.

It is also apparent from the above examples that the
proximate periodicity of the form of resonant eigenstates
sociated with the value of the slope of the resonance lin
an important aid in identification of sequences of rela

FIG. 17. Husimi distributions corresponding to the sequence shown in
ure 16.
J. Chem. Phys., Vol. 10
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states. The width of a particular resonance in action sp
determines the number of quantum states that can fit wi
the the resonance channel. In the Baggot case we have b
our classical resonance analysis on the primary resona
~2:1 and 1:1!, which have significant widths~compared to\!.
High-order resonances will have narrow widths, in whi
case quantum states strongly influenced by the resonanc
outside the classical resonance zone.45 However, such inter-
acting quantum states will nevertheless organize themse
in accordance with the approximate periodicity of the re
nance line, just as for the sequences of states inside the
mary resonance channels. The corresponding Husimi fu
tions will exhibit distorted but topologically non-resona
features. The periodicities in the form of the ‘‘quantum res
nant’’ states analyzed by Roberts and Jaffe´ are clearly ob-
servable in Figure 6 of Ref. 45.

B. Energy level correlation diagrams and avoided
crossings

We have studied energy level correlation diagrams
the Baggot Hamiltonian under variation of the parame
bsb , which controls the strength of the 2:1 resonances. I
found that almost all of the narrowly avoided crossings t
occur close to or at the physical value ofbsb , corresponding
to the full Baggot Hamiltonian studied in the rest of th
paper, involve three states. Two of the states have the s
@6# symmetry and are involved in either a broad or sha
crossing, while the third state, of opposite symmetry, is
partner state to one of the two states. Interaction between
two states of the same symmetry results in delocalization
the Husimi distribution for one of the partner states. Ty
cally, at high energies and values ofN such thatI r lies in
the physical region of action space, the two states involve
the crossing are localized on one of the two sheets of
surface of section, with the other state delocalized over b
sheets. An example would be a state with a very small nu
ber of bend quanta that interacts with a state with a la
number of bend quanta. Another possibility is that all thr

g-

FIG. 18. Sequence of action space projections for the full Baggot Ha
tonian withn51.
7, No. 1, 1 July 1997

¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



e
n

th
f

ua
i

de
ry

r
lts.

tion
en-

the
ith
f. 64
reso-
an-
or-
ed
xhibit
20
am-
ne.
are
o
nce
s.’’
s of
usly.
sing
so-
ny
ings
ss-
mo-

tes
pre-

Fi

got

174 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
states can localize/delocalize on one sheet of the surfac
section. An example for the latter case has been prese
earlier ~cf. Figure 4 in Ref. 47!.

A considerable amount of work has been devoted in
recent literature to determining the quantal signatures o
classical nonlinear resonance.63 Most of the studies have
concentrated on the evolution of the eigenenergies of a q
tum system under the variation of a parameter of the Ham
tonian. Attempts to correlate the type and number of avoi
crossings to classical resonances have been unsatisfacto

FIG. 19. Husimi distributions corresponding to the sequence shown in
ure 18.
J. Chem. Phys., Vol. 10
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fact, as pointed out by Berry,68 the fragility of one paramete
crossings is partially responsible for the inconclusive resu
The results of Ramachandran and Kay64 and Ozorio de
Almeida69make it clear that there is no necessary connec
between the existence of avoided crossings of quantum
ergy levels and classical resonant dynamics.

It is nevertheless interesting to ask which features of
energy level correlation diagram might be associated w
classical resonances. The results in this paper and in Re
suggest such a feature in the case when the classical
nances have significant widths in action space. Ramach
dran and Kay noted that, under variation of a parameter c
responding to the frequency of one of 2 oscillators involv
in a resonance, states deep inside the resonance zone e
nearly parallel curves in the correlation diagram. Figure
shows the energy correlation obtained by varying the par
eter,bsb , that controls the width of the 2:1 resonance zo
Variations of the states in the classical resonance zone
shown as thick lines~diabats!. Note that these states underg
the largest amount of variation upon changing the resona
width parameter; groups of such states form a set of ‘‘fan
The states within each group correspond to different level
excitation inside the resonance zone, as discussed previo
The number of states in each group decreases with increa
energy, correlating with the decrease in the classical re
nance width. It is significant to observe that a state from a
given group of resonant states has many avoided cross
with local modes and normal modes. These avoided cro
ings are not in general associated with classical resonant
tion as also pointed out by several authors.70

It is also relevant to point out that the sequences of sta
that progress along the 2:1 resonance channel consist

g-

FIG. 20. Evolution of the energy spectrum as a function of the Bag
parameterbsb . ‘‘Diabats’’ are shown as thick lines.
7, No. 1, 1 July 1997
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175S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
cisely of those states corresponding to nearly parallel li
from different groups in Figure 20.

Finally, we note that the existence of many bro
avoided crossings in the eigenvalue correlation diagrams
have computed forP516 means that it is often impossible
follow diabats in order to correlate eigenstates of the
Hamiltonian with those of zeroth-order single resonan
Hamiltonians, as done by Rose and Kellman forP58.48

VII. CONCLUSIONS

In this paper we have studied the classical and quan
mechanics of the Baggot vibrational Hamiltonian f
H2O.

25 We have shown first of all that standard Chiriko
resonance analysis provides a useful approximate map o
classical phase space structure. This conclusion is suppo
by more rigorous analysis of classical phase space struc
in terms of families of resonant 2-tori, and by examination
classical surfaces of section. We point out that determina
of the location of primary periodic orbits alone is not suf
cient to establish detailed correlations between the form
the quantum eigenstates of the Baggot Hamiltonian and c
sical phase space structure. Whereas the primary peri
orbits intersect constantN ~superpolyad number! surfaces in
isolated points, resonant 2-tori determined within the sin
resonance approximation appear in 1-parameter fami
The resonant 2-tori are thus suitable generalizations of
primary periodic orbits to 3D systems, and form a use
framework for understanding both the classical phase sp
and quantum-classical correspondence of the system.

An essential aspect of our study is the examination
quantum phase space~Husimi! distribution functions for
eigenstates of the Baggot Hamiltonian. Comparison of qu
tum phase space distributions with corresponding class
surfaces of section enables us to define resonant and
resonant states as localized inside or outside a given r
nance channel, respectively. Quantum states are found t
ganize into sequences of states that progress along
resonance channels. An important observation is that the
tion space amplitudes for states in such sequences exhi
periodicity, which is determined by the slope of the classi
resonance line. The existence of these sequences enab
to provide labels for terminal ‘‘mixed’’ states in the vicinit
of resonance intersections.

For the manifold of states examined~all states withP
516!, it is found that most states can be assigned to one
distinct classes of eigenstate; these assignments are
with the aid of the Husimi function and the identification
the various sequences. The study of the energy spec
with the variation of a resonant coupling parameter~which
determines the width of a resonance channel! provides a
characteristic quantum signature of states deep in the r
nance regions. A similar signature had been studied ea
by Ramachandran and Kay in a simpler system.64 Our stud-
ies strengthen the notion that there is no necessary con
tion between the existence of avoided crossings in ene
level correlation diagrams and particular classical non-lin
resonances. However, the approximate periodicity associ
J. Chem. Phys., Vol. 10
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with the slope of the classical resonance line in action sp
does influence the quantum states irrespective of the wi
of the resonances, and is an important parameter in the s
ies of quantum-classical correspondence of resonant Ha
tonians.

The existence of the superpolyad quantum numberN

reduces the 3-mode Baggot Hamiltonian to an effectiv
two degree of freedom problem, and we have made exten
use throughout of the technology developed for studying
classical mechanics and classical-quantum correspond
of such systems. Despite being effectively a two degree
freedom problem, however, the phase space structure ex
its complexities not usually found in 2-mode systems.13 Fu-
ture work will investigate the consequences of breaking
constancy ofN , thereby obtaining a true 3-mode problem
Very little is currently known concerning detailed classic
dynamics and/or quantum-classical correspondence
3-mode molecular Hamiltonians. Most techniques that
useful for 2 degree of freedom systems are either inappro
ate or need to be suitably generalized in order to study m
timode problems. A number of very rich problems pertaini
to the nature of classical phase space transport, dynam
tunneling, chaos assisted tunneling71 and multimode effects
arise, however, and the undoubtedly subtle interplay betw
classical transport and quantum mechanisms leading to d
calization and/or localization has to be understood in orde
gain insights into the spectrum and dynamics of realistic m
lecular Hamiltonians. The present work provides the foun
tion for future work towards these important yet difficu
goals.

ACKNOWLEDGMENTS

This work is supported by NSF Grant CHE-940357
Computations reported here were performed in part on
Cornell Supercomputer Facility, which is supported by N
and IBM corporation.

APPENDIX: PRIMARY PERIODIC ORBITS AND
RESONANT 2-TORI

1. Bifurcation analysis of the Baggot Hamiltonian:
Periodic orbits

In terms of variables (N,f), with N5K1Jr , the Baggot
Hamiltonian is

H52ṽN21a1N1
21a2N2

21b12~N2!

3@~N21BJ!22N1
2#1/2 cosf11b22@~N21BJ!22N1

2#

3cos 2f11bb~AJ24N2!@~N21N11BJ!1/2

3cosf11~N22N11BJ!1/2 cosf2#, ~A1!

with b12(N2)[b128 1m1N21m2 , f6[(f16f2)/2, and
b1b5b2b[bb . The various constants are functions of t
original Baggot parameters:

ṽ5Vs22Vb , ~A2a!

a1,252c̃7 c̃12, ~A2b!
7, No. 1, 1 July 1997
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176 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
m152~l822l9!, ~A2c!

m25~2l8B1l9A!J. ~A2d!

In terms of the original action variables, (AJ24N2)5I b and
(N26N11BJ)5I 1,2.

Hamilton’s equations of motion are:

ḟ152a1N12N1b12@~N21BJ!22N1
2#21/2

3cos~f1!22N1b22 cos~2f1!1
1

2
bb~AJ24N2!

3@~N21N11BJ!21/2 cos~f1!

2~N22N11BJ!21/2 cos~f2!#, ~A3a!

ḟ252ṽ12a2N212b22~N21BJ!cos~2f1!1@m1@~N2

1BJ!22N1
2#1/21b12~N21BJ!@~N21BJ!22N1

2#21/2#

3cos~f1!24bb@~N21N11BJ!1/2 cos~f1!1~N2

2N11BJ!1/2 cos~f2!#1
1

2
bb~AJ24N2!@~N21N1

1BJ!21/2 cos~f1!1~N22N11BJ!21/2 cos~f2!#,

~A3b!

Ṅ15b12@~N21BJ!22N1
2#1/2 sin~f1!

12b22@~N21BJ!22N1
2#sin~2f1!

1
1

2
bb~AJ24N2!@~N21N11BJ!1/2 sin~f1!

1~N22N11BJ!1/2 sin~f2!#, ~A3c!

Ṅ25
1

2
bb~AJ24N2!@~N21N11BJ!1/2 sin~f1!

2~N22N11BJ!1/2 sin~f2!#. ~A3d!

a. Normal mode periodic orbits

We are interested in finding the equilibrium points of t
above set of equations~Ṅk505ḟk , k51,2! since they cor-
respond to periodic orbits of the full system, i.e., 1-tori w
the angle variable being the ignorable anglec[Aub
1B(u11u2) conjugate to the polyad numberJ. We first
look for solutions corresponding toN150, which are normal
mode type solutions in the full system. If we setN150 in the
above equations then we get the system of equations:

ḟ152bb~AJ24N2!~N21BJ!21/2 sin~f1/2!sin~f2/2!,
~A4a!

ḟ252ṽ12a2N21@m1~N21BJ!1b12#cos~f1!

12b22~N21BJ!2 cos~2f1!2@8bb~N21BJ!1/2

1bb~AJ24N2!~N21BJ!21/2#cos~f1/2!cos~f2/2!,

~A4b!
J. Chem. Phys., Vol. 10
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Ṅ15b12~N21BJ!sin~f1!12b22~N21BJ!2 sin~2f1!

1bb~AJ24N2!~N21BJ!1/2 sin~f1/2!cos~f2/2!,

~A4c!

Ṅ25bb~AJ24N2!~N21BJ!1/2 cos~f1/2!sin~f2/2!, ~A4d!

where we have used the standard trigonometric identitie
rewrite terms involvingf6 . Note thatb12 is a function of
N2 . Let us consider the equation forṄ2 and note that it
vanishes for the following cases:

~a! N25AJ/4,
~b! N2ÞAJ/4, f156p,
~c! N2ÞAJ/4, f250,62p.

We have not considered the possibility ofN21BJ50 since
this corresponds toI b5J, I 15I 250, i.e., a pure bend critica
point.

Case a: In this caseN25AJ/4 which implies that the
action in the bend mode is zero. Withf150,6p we see that
Ṅk505ḟ1 (k51,2) and

ḟ252ṽ1
1

2
~a2A1b22!J1

1

4
m1J1b12

24bbJ
1/2 cos~f2/2!. ~A5!

Although the time derivativeḟ2 is in general nonzero, the
solution withI b50 is nevertheless a periodic orbit, andḟ2 is
just the rotation rate around the periodic orbit. There a
however, certain values off2[f2

(1) such thatḟ250, signal-
ling the bifurcation of the normal mode periodic orbit due
2:1 resonance with the bend mode. This value off2 is de-
termined by:

cos~f2
~1!!5

1

4bbJ
1/2 ~C01C1J!, ~A6!

where

C052ṽ1b128 1m2 , ~A7a!

C15
1

2
~a2A1b22!1

1

4
m1~11A!. ~A7b!

If both ḟ1505ḟ2 when I b50 thenf15u12u2 and f2

5u11u224ub . Thus, vanishing of both time derivative
implies thatu̇15 u̇252u̇b .

Case b: It is easy to convince oneself that in case!
bothṄ1 andḟ1 cannot vanish with a single choice off2 and
hence we disregard this case.

Case c: In this case with a choice off150,62p we
haveṄk505ḟ1 , k51,2, and the equation we are left wit
is as follows:

ḟ252ṽ12a2N21m1~N21BJ!1b1212b22~N21BJ!

78bb~N21BJ!1/26bb~AJ24N2!~N21BJ!21/2.

~A8!

We cannot haveN25AJ/4 here since this was considered
the previous case and moreover, this solution forN2 gives us
7, No. 1, 1 July 1997

¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



io
se
tio

a-

o-

e
2:

on
w
e
s
fo

-

a
s

n of

ith

nd

,

es
y

the

:1
for-

177S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
precisely the periodic orbits corresponding to the bifurcat
of the normal mode periodic orbit family resulting from ca
a! due to the 2:1 resonances. Simplifying the above equa
and denotingx[(N21BJ) we get a cubic equation inx1/2:

x3/27px1qx1/26r50, ~A9!

where

p5
12bb

2~a21m11b22!
, ~A10a!

q5
C02~m112a2!BJ

2~a21m11b22!
, ~A10b!

r5
bbJ

2~a21m11b22!
, ~A10c!

with the condition thatxÞ0.

b. Local mode periodic orbits

Referring back to the full system of Hamilton’s equ
tions of motion we observe that withN25AJ/4 andf150,
6p we haveṄk50, and the equation forḟ1 becomes:

ḟ15N1F2~a12b22!7b12S J2162N1
2D 21/2G . ~A11!

For N156N̄1 with

N̄15F J2162 b12
2

4~a12b22!
2G1/2, ~A12!

we haveḟ150 and so obtain local mode periodic orbit s
lutions. Note, again that the finite value ofḟ2 here does not
matter asI b50. As before there are certain values off2

[f2
(2) such thatḟ250 and this indicates that the local mod

periodic orbits can bifurcate due to the influence of the
resonances. In the case whenf150 we have:

cos~f2
~2!/2!5

f 1~J!

f 2~J!
, ~A13!

where

f 1~J!52ṽ1
1

2
~a2A1a1!J1

m1b12

2~a12b22!
, ~A14a!

f 2~J!54bbF S J41N̄1D 1/21S J42N̄1D 1/2G , ~A14b!

with a similar equation for the case whenf156p. In order
to calculate the periodic orbits resulting from the bifurcati
of the local mode solutions due to the 2:1 resonances
have to consider the full system of equations and solve th
with the conditionN2ÞAJ/4. Let us consider the equation
for Ṅk (k51,2) and remember that the allowed ranges
the conjugate angles aref1P(22p,2p) and f2

P(28p,4p). Of all the possible combinations, it is suffi
cient to consider two cases with a! f1505f2 and b! f1

50, f252p. These choices for the angles imply thatṄk

50; k51,2 and the relevant equations for the time deriv
tive of the angles reduces to a pair of nonlinear equation
J. Chem. Phys., Vol. 10
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2 with x6[(N26N1

1BJ)1/2. The two cases are related by changes in the sig
bb and the nonlinear equations to be solved are:

d1t
31d2ts1d3t62bbs6bbJ50, ~A15a!

e1t
472bbt

31e2st
22e2s

21e3t
26bbts1e4s6

1

2
bbJt50,

~A15b!

where

d15a12b22, ~A16a!

d252Fd11 1

2
m1G , ~A16b!

d35m1BJ2b128 2m2 , ~A16c!

e15
1

4
m1 , ~A16d!

e25
1

2
~a21b222m1!, ~A16e!

e35ṽ2a2BJ, ~A16f!

e452
1

2
d32e3 . ~A16g!

The pair of nonlinear equations are solved numerically w
the conditionsx6Þ0.

2. Integrable limit 2-tori

Consider the Baggot Hamiltonian with only the 1:1 a
the 2:2 resonance interactions included, i.e.,bb50. Using
the generating function:

F r5~u12u2!L11~u11u2!L21ubLb , ~A17!

the Hamiltonian becomes:

H int52VsL21VbLb1~2as2ess!L1
21~2as1ess!L2

2

1abLb
212esbLbL21b12~L2

22L1
2!1/2 cos~x1!

1b22~L2
22L1

2!cos~2x1!. ~A18!

It is clear that bothL2 andLb are constants of the motion
and the superpolyad numberJ54L21Lb . Thus, finding the
equilibrium points of the above Hamiltonian determin
resonant 2-tori since there aretwo ignorable angles. It is eas
to solve the pair of equationsL̇1505ẋ1 and the solutions
are withx150,6p:

a) L150, ~A19a!

b) L156FL222 b12
2

4~2as2ess2b22!
2G1/2. ~A19b!

The first solution corresponds to normal mode 2-tori and
second solution represents local mode 2-tori.

Now, consider the Baggot Hamiltonian with a single 2
resonance interaction only and perform a canonical trans
mation
7, No. 1, 1 July 1997
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178 S. Keshavamurthy and G. S. Ezra: The Baggot H2O Hamiltonian
G r5~u122ub!K11u2K21~u112ub!Kb , ~A20!

which gives the transformed Hamiltonian:

H int5C̃K11B̃K1
21h~K2 ,Kb!12bb~Kb2K1!

3~Kb1K1!
1/2 cos~z1!. ~A21!

Here, B̃[as22esb14ab , C̃[Ṽ1ÃKb1(ess22esb)K2 ,
Ṽ[Vs22Vb , Ã[2(as24ab), and h(Kb ,K2) is a con-
stant due to the fact that the new Hamiltonian is ignorable
the angles conjugate toKb ,K2 .

Again, solving the pair of equationsK̇1505 ż1 is rela-
tively straightforward and one obtains:

a) K15Kb , cos~z1!5
1

2bb~2Kb!
1/2 ~C̃12B̃Kb!,

~A22a!

b) 2B̃y3/273bby1~C̃22B̃Kb!y
1/262bbKb50,

x150,6p. ~A22b!

Solution a! corresponds to 2-tori with no bend quanta (I b
50), while solutions b! are local-mode/bend resonant 2-to
In this case one hasJ52K214Kb .

Thus, one gets 2-parameter families of resonant 2-t
and we can plot the location of these solutions in act
space as a function of one of the constants of motion and
polyad number. The results are summarized in Figure
where we show the families of periodic orbits and 2-tori
(N ,I 1 ,I 2) space.

From Figure 2 it is clear that the local mode period
orbits ~I 150 or I 250! of the full system lie at the bound
aries of the families of 2-tori of the integrable subsyste
Moreover, the locus of periodic orbits resulting from the b
furcation of the normal mode solutions is given to reasona
approximation by the intersection of the sheets of reson
2-tori. This confirms the appropriateness of the Chirik
analysis for the Baggot Hamiltonian.
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