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In this paper we study the classical and quantum mechanics of the 3-mode Baggot vibrational
Hamiltonian for HO. Our aim is to classify and assign highly-excited quantum states based upon
a knowledge of the classical phase space structure. In particular, we employ a classical template
formed by the primary resonance channels in action space, as determined by Chirikov resonance
analysis. More detailed analysis determining the exact periodic orbits and their bifurcations and
families of resonant 2-tori for the Baggot Hamiltonian confirms the essential correctness of the
Chirikov picture. It is emphasized that the primary periodic orbits alone do not define a suitable
phase space skeleton; it is important to consider higher dimensional invariant structures, such as
2-tori and 3-tori. Examining the manifold of quantum states for a given superpolyad ndmber
=n4,+n,+n,/2 reveals sequences of eigenstates that progress along the classical resonance zones.
These sequences provide insight into the nature of strongly mixed states found in the vicinity of the
resonance junction. To further explore the classical-quantum correspondence, we have also
computed eigenstate Husimi phase space distribution functions and inverse participation ratios. It is
thereby possible to provide dynamically based assignments for many states in the manifold of states
with superpolyad numbdP=16. © 1997 American Institute of Physics.
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I. INTRODUCTION and coworkers have made effdfts'’to understand IVR and
eigenstate localization in large systems by establishing con-

Understanding the nature of highly-excited Vlbr‘f"t'onalnections to the problem of Anderson localization in the

and rotanon—wbrangn states of polyatqmlc molgculeg is atheory of disordered metalé.
problem of central importance in chemical physicEradi- . | has b de in th vsis of
tional spectroscopic methods for assignment of levels based Considerable progress has been made In e analysis o
: ) o two modes coupled by a single resonant téfrin this case

on harmonic oscillatofnormal modgrigid rotor quantum ) S "
numbers and wavefunctichean break down for highly- there is a constant of -the motion in addition to thel total
excited rovibrational states as a result of strong modé&"er9Y: and the associated reduced phase space 1S a 2D
coupling®* Such mode coupling, due either to anharmonicSphere the so-c_alled p(_)lyad phase sphét€lassically, one
coupling terms in the potential or to rotation-vibration inter- can study the f|xe_d pomt_s of_a reduced 1 degree-qf-freedom
action, leads to the phenomenon of intramolecular vibra{dof) spectroscopic Hamiltonian on the sphere, which corre-
tional energy redistributionlVR),* and results in compli- SPOnd to periodic orbitgpos in the full phase space. These
cated energy level and intensity patterns. fundamer_ltal periodic orbits serve as organizing centers for

One source of apparent complexity in vibrational spectrdh® classical and quantum phase space. As parameters such
is strong mixing of manifolds of near-degenerate states by 8 energy or polyad number are changed, these periodic or-
single resonant coupling term; the corresponding classicdlits will bifurcate or merge, leading to qualitative changes in
problem is nevertheless integrable in this case. Another poghe phase space structure. Each distinct arrangement of peri-
sibility is strong mixing of states due to the presence of twoPdic orbits and associated stable and unstable maniffids
or more resonant coupling terms; classically, the problem i¢instable posdefines a@onein parameter space, and Kellman
nonintegrable and we have the possibility of cha@tate and coworker® have systematically studied the bifurcation
mixing can also occur as a result @fnamical tunneling a  of pos and the passage from one zone to another for both 1:1
nonclassical mixing of states localized in different regions inand 2:1 resonant systemsee also the recent work of
phase space that is associated either with symmetry relateldyeux?). Periodic orbit bifurcations in 1:1 and 2:1 resonant
or accidental degeneracies of levels. vibrational Hamiltonians have been studied using semiclas-

Many approaches have been proposed for the study afical energy-time analyssof level spectra®
complicated spectra beyond traditional methods: we mention It is of considerable importance to extend such ap-
statistical Fourier transform analysishierarchical tree§; proaches to deal with multi-modeNé&3) systems. More
periodic  orbits*'® semiclassical propagator based generally, we seek to develop qualitative methods for analy-
approaches! and bifurcation theory?**Recently, Wolynes sis of energy level patterns and wavefunctions in multimode
systems based on the underlying classical nonlinear dynam-

dpresent address: Department of Chemistry, IIT Kanpur, U.P. 208016!CS- . .
India. One possibility, following the success of the polyad
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phase sphere approach for 2-mode systems, is to determitiens of unstable pos can be found in Refs. 29-31.
fundamental pos for multimode Hamiltoniarisf. Appen- In multimode nonintegrable systems, an approximate
dix). Lu and Kellmaf* have recently examined fundamental partitioning of phase space can be obtained via Chrikov reso-
pos and their bifurcations in a classical version of thenance analysié’ A resonance channelr resonance zone is a
3-mode vibrational spectroscopic Hamiltonian fosHdue  region of phase space of full dimensionality consisting of
to Baggot?® The Baggot Hamiltoniaf has an extra constant trajectories that are strongly affected by a coupling term in
of the motion in addition to the energy, the so-called superthe Hamiltonian corresponding to a single resonance condi-
polyad number/ =2(1,+1,) +1, (see next sectionin the  tion on N zeroth-order frequencieé.Resonance channels
presence of this additional constant of the motion, the Bageefine regions of phase space characterized by particular dy-
got Hamiltonian has essentially 2 degrees of freedom. Folnamical behavior; it is therefore natural to use them as the
lowing the procedure used for 2-mode resonant problems, Lbasis for a partitioning of phase space in multimode systems.
and Kellman have determined critical points of the 2-modeThe totality of resonance channels forms the Arnold web.
reduced Hamiltonian for yD; these critical points corre- Phase points can drift along resonance channels, and
spond to the fundamental pos in the full phase spaé®. “change direction” at intersections between chanriélin
One can then attempt to use the fundamental pos as a framiree or more degrees of freedom systems this diffusion of
work for organizing the phase space structure and for undethe action variables in phase space leads to long time
standing the localization of quantum eigenstates. instability 3°:3¢

Another possibility, given the existence of a superpolyad  The location and width of resonance channels in a given
number, is to use the methods sifatified Morse theoryas  system can be determined approximately using the standard
developed in a series of papers by Zhilinskii andanalysis due to Chiriko%’ In their pioneering work, Oxtoby
coworkerst? In this approach a qualitative understanding ofand Rice mapped out resonance zones for 2- and multi-mode
the families of pos and their possible bifurcations is obtainednodel molecular Hamiltonians in order to correlate the onset
on rather general grounds using the powerful mathematicalf resonance overlap with statistical unimolecular decay
apparatus of Morse theory. dynamics®’ Resonance channels have since been mapped

In the present paper, we aim at the construction of aut for a number of molecular Hamiltoniaff;*® and con-
“classical template,” based on an approximate partition ofnections with the corresponding quantum systems
the classical phase space, that can be used to understand axa@mined®42434°0f particular interest in multimode clas-
organize highly-excited quantum eigenstates. The partitionsical systems is the possibility of chaotic motion at the inter-
ing of classical phase space is achieved using Chrikov resection of resonance chann&l$!4346atkins and Logaf®
nance analysié’ studied a three mode coupled Morse system with small an-

An important aspect of the study of the phase spacé&armonicities and demonstrated the possibility of chaos via
structure of multimode systems is the search for ways tdhe intersection of lowest order resonances. For the specific
partition (either approximately or exacilyphase spacé&ull set of parameters in their paper, various measures of local-
or reduced, at constar) into regions corresponding to ization (basis dependenprovided adequate means to distin-
qualitatively different dynamics. In the case that the Hamil-guish between different types of quantum states. No signifi-
tonian of interest has two degrees of freedom, the stable anthnt classical phase space transport of the Arnold diffusion
unstable manifolds of unstable pos have the appropriate dtype was however observed in their system. Moreover, At-
mensionality (codimension oneto divide the energy shell kins and Logan did not attempt to analyse in detail individual
into disjoint regions, and each zone in parameter space iguantum states and correlate eigenstate features with invari-
then associated with a different partitioning of the polyadant structures in phase space.
phase spher®. Such partitions have been used in theories of ~ The above studies have established close connections
phase space transport in systems with mixed phase ép&te. between classical overlapping resonance zones and the phe-
The relevant pos can be determined either as critical pointsomenon of IVR in the corresponding quantum systems. In
on the polyad phase sphere for the case of a single resonathie present paper, we further explore the correspondence at
coupling, or as fixed points on a Poincasection. ForN the level of analyzing individual quantum states based on a
=3 mode systems, however, the stable and unstable manilassical resonance template. Specifically, we examine the
folds of unstable pos do not have sufficiently high dimensiorproblem of assigning highly-excited eigenstates of the
to define a partition of phase space. The natural generaliz&mode Baggot vibrational Hamiltonian for,@ in the mani-
tion of an unstable periodic orbit fod=3 mode systems is fold of states withP=n;+n,+n,/2=16. Results of our
anormally hyperbolic invariant manifoldNHIM) (Ref. 29, analysis forP=8 have been presented elsewh¥re.
which has codimension two. Thus the stable and unstable Our analysis of the 45 eigenstates wkh=8 showed
manifolds associated with a NHIM have the right dimension-that each state in the manifold could be given a dynamical
ality to partition phase space in a manner analogous to thassignment based upon study of the distribution of amplitude
two mode case. Mapping out the NHIMs in a general multi-in action space and the quantum mechanical phase space
mode system is a difficult task and there are essential differdistribution functior?’” The only ambiguity in assignment
ences as compared to the unstable po in two dimensionsias associated with a narrowly avoided crossing of two lev-
Detailed discussions of the dimensionality issues of dividingels of the same symmetry. The relatively straightforward as-
surfaces in multimode systems and appropriate generalizagignment process foP=8 can be readily understood in
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terms of the underlying classical mechanics, in that the 1:1IPR) Ref. 49 studies do not show such a clear separation of
and 2:1 primary resonance channels hardly ovetap. eigenstates into various typ&sonresonant, resonant, mixed

In the present paper we extend the Baggot Hamiltoniaras observed in Ref. 4Gee section Y. Interestingly, IPR
beyond the limit of strict applicability to O (in particular, values seem to be sensitive to sharply avoided crossings,
well above the energy at which the molecule can becomalthough small values of the IPR, which are associated with
linean in order to study the dynamically interesting case withthe mixing of many zeroth-order eigenstates, do not neces-
P=16. Not only does this manifold contain many statessarily imply that the relevant eigenstate is delocalized in
(153), but the primary resonance zones overlap, so that wphase space. The classical-quantum correspondence for
are able to investigate assignment of states in the vicinity oigenstates of the Baggot Hamiltonian is studied in detail via
a resonance junctioft. the Husimi phase space distribution functtSnWe have

Our approach is based upon a close study of thdound several examples of eigenstates which are delocalized
classical-quantum correspondence, taking as our startingy action spacgand hence have small IPRbut are quite
point a Chirikov analysis of the resonance chanAéfShir- “clean” and localized in phase space. The Husimi functions
ikov's method is an approximate, perturbative approach tdogether with the classical resonance analysis enable us to
the phase space structure of multimode systems, in that tHgovide dynamical assignments for most states in fhe
different resonances are analyzed independently. The Chir 16 manifold.
ikov resonance analysis can however be refined by determin- It is important to observe that, although the Baggot
ing the location of families of resonan( 1)-tori (2-tori in Hamiltonian studied here is an effectively 2 degree of free-
the case of the 3-mode Baggot hamiltoniatetermined in  dom system due to the conservation. ¢f, the structure of
the single resonance approximation. We find that the resultée corresponding reduced phase space nevertheless exhibits
of the elementary Chirikov analysis and the more refinedsome complexities not present in 2-mode systems typically
analysis are in close agreement, confirming the essential cogtudied. In particular, the form of the contours.&f; in the
rectness of the Chirikov picture for the Baggot Hamiltonian.constant./”" plane can lead to some unusual state mixing
Using the classical resonance structure as a guide, we afsfects(discussed more fully below
able to organize eigenstates into families that form readily ~ This paper is organized as follows: In section Il we de-
recognizable sequencangthe resonance channels. Thesescribe the classical and quantum versions of the Baggot
sequences of states are found to exhibit a distinct periodicitylamiltonian for HO.?® Section IIl provides a survey of the
with respect to the distribution of amplitude in action space:classical phase space structure of the classical Baggot Hamil-
this periodicity has a simple origin in the slope of the clas-tonian. The locations of resonance zones, families of 2-tori,
sical resonance line. The sequences provide one way of d@nd periodic orbits are discussed. We also describe a useful

termining the “parentage” of mixed states near the reso-Poincaresection that provides a global view of the classical
nance junctior(see belowy phase space structure. Subtleties associated with the

We note that Rose and Kellman have very recenﬂy preZ—sheeted nature of the surface of section are discussed. In
sented a detailed Study of eigenstate assignment in tﬁigction IV we outline the methods used for analysis of quan-
P=8 manifold for the Baggot Hamiltonialf. There are sey- tum eigenstates: action space projection; inverse participa-
eral points of similarity between the Rose-Kellman approaction ratios; and Husimi phase space distributions. In section
and the analysis given in the present paper and in Ref. 4% we examine the quantum-classical correspondence for
For example, identification of resonance zones in the zerottgigenstates of Hamiltonians that are special cases of the Bag-
order action space is central to both approao(rmnpare got Hamiltonian, obtained by turning off one or more reso-
Figure 4 of Ref. 48 and Figure 1 of Ref. ¥7TRose and nant coupling terms. Section VI is devoted to analysis of
Kellman locate resonance zones and assign states using €igenstates of the Baggot Hamiltonian itself, while section
genva|ue correlation diagrams and examination of po|yad/|| concludes. Technical details Concerning Computation of
phase spheres in the single-resonance approximation; we efperiodic orbits and 2-tori are given in an appendix.
ploy Chrikov analysis and examination of action space and
Husimi phase space distribution functi6hésee below:

Both Rose and Kellmdfand wé’ agree on the straight- 1. BAGGOT HAMILTONIAN FOR H ,0
forward assignapility of states for the=8 mapifold of the A classical Hamiltonian
Baggot Hamiltonian. As noted above, the primary resonance
channels do not intersect in this case, greatly simplifying the ~ The classical version of the spectroscopic vibrational
dynamics. In the present paper, we tackle the rather morglamiltonian for HO derived by Baggét is a three degree
challenging case of th®=16 manifold, in which the pri- ©0f freedom local-mode/bend Hamiltonian which includes

. . . 21 .
mary resonance channels overlap. Eigenvalue correlatioV0 2:1 stretch-bend resonant termis; !, o=1 or 2, a 1:1
diagrams for this casécf. Figure 20 show many broad stretch-stretch resonant ter@''! and a 2:2 stretch-stretch

avoided level crossings, which render the diabat followingt€rm TP
employed by Rose and Kellman problematic. Further re-
marks on the relation between our approach and that of Rose 7= 7o+ 7%+ 742+ X, 721, (2.2)
and Kellman are given below. o=12
For the Baggot Hamiltonian, inverse participation ratiowhere. 7, is the zeroth order Hamiltonian
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TABLE I. Comparison of the parameters used in the paper and parametes

Ho=Qg 21 , l,+Qplp+ ag 21 , I(Zr—i— ablg from Baggot's fit to the spectroscopic Hamiltonian fos®
o=1, o=1,
Baggof Papef cm?
+esdilatesplp _E lys (2.2 B Q. 3885.57
=12 o Q, 1651.72
and the resonant interaction terms are Xs as —81.99
Xt ay -18.91
T = B1(141,)Y2 cog 0, — 6,), (2.39 Xss €ss -12.17
X €sp -19.12
T2= Bl 11, c0$2( 01— 6,)], (2.3b A B2 ~112.96
_ N A 6.04
T2 =B(1 12)2 cog 6, —26,). (2.30 N NG ~0.16
. . Y Baz —1.82
Here, {ls,60s,1,,60,)=(l,6) are canonical action-angle Kepdl Beo 18.79

variables for the two local mode stretches and the ben-ai: -
. o ’ " 25 rom Ref. 25.
mOde’. re_spectlvely, andy,=But N (1 F12) + A7y PMost of the values are same except 8f,, Bsp, ', \”, and y which
It is important to note that th.e resonance vect@rs reflect the correct classical limit of the quantum Hamiltonian in Ref. 25.

—-1,0, (1,0,—2) and (0,1;-2) are linearly dependent,so

that there is a constant of the motiofi” in addition to the

energy: Table | shows the correspondence between parameters used

here and Baggot's parameters.

N=2 1,+1,. (2.9
o=1,2

lll. CLASSICAL MECHANICS OF 3-MODE H ,0
It turns out that the 2:2 stretch-stretch resonance

(Darling-Dennison couplimtj) does not significantly affect In this section we examine the classical mechanics of the
the classical phase space structure in the regime of interestmode Baggot vibrational }0 Hamiltonian. The results of
for this paper, and it is omitted from the Hamiltonian in the our analysis are summarized in Figure 1, which shows the
resonance analysis described below. It is however straighglassical phase space structure in tHe,l;) plane for
forward to include this coupling term if required. All of the ./"=34.5 (P=16). Figure 1 shows contours o¥;, the lo-
exact numerical results presented in this paper, classical aredition of periodic orbits, resonance channels, and families of
quantum, do include the 2:2 stretch-stretch resonance. resonant 2-tori. Note that the physical region of the plot is
that for which the inequality, +1,<34.5 is satisfied.

B. Quantum Hamiltonian A. Periodic orbits and their bifurcations

The quantum version of the Baggot Hamiltonian is ob-  In studying the phase space structure gOa first step

tained via the standard correspondence between action-andfethe determination of the primageriodic orbits(pos. For
variables and creation-annihilation operators: a 3-mode system with 2 linearly independent resonance cou-

. . . . ling vectors, these pos can be located by finding the station-
aT<_>|1/2e|0’ aHllIZefla' (25) piing P y 9
Using the above correspondence and expressing the resultant
Hamiltonian in a basis of number stafesn,n,), we obtain

Baggot's HamiltoniafP with the following mapping of pa- 16
rameters: 14
! n i n 1 12
(B121ﬂ22!)\ A )HZ()\!Y!}\ A )1 Bst_kabi x
V2 107 3
(2-6) TRE X
I 8f 5

where\ andkg, are defined in Ref. 25. Values of the vari-
ous parameters are taken from Baggot’s fit to the vibrational 6F
levels of HO (Table Il of Ref. 25.

The superpolyad numbeP=2,_; ;ng+ny/2, is a con- 4
stant of the motion for the quantum Baggot Hamiltonian. A 2
given value ofP is associated with a corresponding classical /
invariant./'=2P+5/2. Our eigenenergies are shifted with % 2 a 8 10 12 14 16
respect to those reported in Ref. 25 by the ground state en- I

ergy

FIG. 1. Classical phase space structure of the Baggot Hamiltonian for

1 1 . T ;
E.=Q.+ = O+ — (2t an+2€n+ €.l). 2. H,O. Primary periodic orbit$®) and resonant 2-toriX) are shown. The
gs= s T o RTh T g (2astay sbT €s9) 2.7 multimode resonances are indicated by thin lines.
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another po lies outside the physical action region, and is also
a bend/normal mode po.

We see that, for fixed/", the primary pos appear at
isolatedpoints in the action plane. The probability of finding
one of the primary pos at an arbitrary value of the classical
energy is zero. The primary pos alone do not therefore form
a “skeleton” for the classical phase space structure. To map
out the classical phase space structure in a way that is useful
for studying the classical-quantum correspondence it is nec-
essary to consider higher dimensional classical objects; such
objects are resonance channels, the object of standard Chir-
ikov analysis, and families of resonant 2-tori.

B. Chirikov resonance analysis for .7,

Resonance conditions for the Baggot Hamiltonian are

i orbit bifureation di o - determined in the usual wayby analyzing 7%,. Zeroth or-
FIG. 2. Periodic orbit bifurcation diagram for the Baggot Hamiltonian in der frequencies are

(P,14,1,) space. The one parameter families of primary periodic orbits are

shown as dar_k lines. The two _pa_rameter families of integrable limit 2:1 (9_775/0
resonant 2-tori are shown as thin lines. w,= N =0+ 2agl ;4 €d1— 0,45 ) 5o+ €splpy s
g
o=1,2, (3.18
ary points of the effectively two-degree-of-freedom Hamil- _
tonian expressed in terms of 2 resonant angleg on= IHo =042+ € E . (3.1b
AppendiX. T b L TR

The primary POS appear _in 1-param_eter families ir‘The resonance conditions for the 1:1 and 2:1 cases are ob-
(P,11,1,) space; the relevant bifurcation diagram has bee'ﬁained by settingo;(1) = w,(1) andw,(1)=2w,(l), respec-

computed by Lu.and Kellmf'ﬁ?. Following Lu and Kgllman, tively, yielding immediately the resonance conditions in ac-
we have determined the primary pos for the classical Baggo[}On space

Hamiltonian(see Appendix Figure 2 shows the families of
periodic orbits and integrable limit 2-tofsee Section Il ¢ 2(€sp— @s)l o+ (2€5p— €59)l o/ (1= 45)

in the (/,14,l,) space. For small values of (P) there are L _

three pos, which are the nonlinear normal modes whose ex- = Qs 20p+ (€5 4ap)lp, (3.29
istence is predicted by the Weinstein-Moser theordfine  |,=1,, (3.2b

first bifurcation(pitchfork) leads to the creation of two local . . . L,

mode stretches. The local mode stretches undergo furth(fe?r tEe 2h.1 f?: 1:1 cases, respzt_:tt'lvelyav\?thr _1’|2' in th
bifurcations for larger/” due to the 2:1 resonance interac- 3D azgonospaecerzesgﬁsggepfg:e; '?:tzrsié?eti; Eoil?faf'r?t €
tions. The normal modes, meanwhile, also bifurcate due tolane in a line Which defines the center of the resonance
the 2:1 resonance interaction with the bending mode. Mor(%:)hannel Al th’ree resonance lines intersect at a pdint
important for the classical-quantum correspondence of the X

Baggot Hamiltonian in the manifold of quantum states Stud_vvhlch lies either inside or outside the physically allowed part

ied here is the periodic orbit structure for a given value ofo;:{he action planel, +1,=./'/2, depending on the value of

A . . . ) To estimate the resonance channel widths in action space
The families of pos intersect constarit” planes afiso- . : .
consider the generating function

lated points which are marked as circles in Figure 1. There
are 3 pairs of symmetry related €12) pairs of pos on the _ ; ;
I, andl, axes, respectivelfilled circles. Two are pairs of "%20:21,2 0515t Oply
2:1 bond stretch-bend pos, one stable and @magly) un-

stable. The remaining pair consists of a pair of local mode
stretch orbits, where all energy is in one or the other bond
D s 8 ich genertes e anonical rnsformat (3.0

with I, =1,=_/774 (filled circle), corresponding to stable and = ¥5.d.4) given by

+ > (6,—26,)3,+| Ab+B D 0,,).], (3.3
o=1,2 o=1,2

unstable (asymmetric and symmetric stretch, respectively Ue=0,—26y; 1,=1_+J,+BJ (3.49
normal mode pos. At/ '=34.5, there are two other pos on

the'dlagonal. Onéf|l!ed C|r(.:le) lies in the physical region of . y=A6,+B E 0, |b=|L+AJ_22 J,. (3.4b
action space, and is a 2:1 bend/normal mode resonant po; =12 -
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Bilinear terms of the formlJ in the new Hamiltonian can pendularform governing the motion af, or J; respectively.

be eliminated by suitable choice of the paramet&rsind

Thus the resonance widths for the two 2:1 resonancét at

B. In terms of the new variables defined by the generatingre given by

function.”, we transform our original Baggot Hamiltonian

to a new Hamiltonian centered Ht
TH— TN +T D, I2+T1013,+9(d)
o=1,2

+ B 1 1(N1 (Y2 cos oy — )

+ 2 Bopll (N2 cos (3.5
o=1,2
where
EE4ab_265b+ g, (363
ElZESva—4esb+ €gs- (36b)

The resulting Hamiltonian is cyclic in the angle so that the

conjugate action variabléis conserved. Expressing the con-
served actiod in terms of the original set of action variables
| leads to a constant of motion in addition to the total energ)f

N=2 1,41y,
o=12

3.7

which is the classical analog dfwice) the superpolyad

2:1__
A2~

(3.11

8 1/2
’g ﬁo’b(l :7) 1/2| [)} '

The resonance width for the 1:1 channel can be estimated in
a similar fashion by considering a further canonical transfor-
mation (J,¥)— (K, ¢) generated by

.f¢<K,¢>=U§12 Y I+ (Y1 — P Ko+ (P + ) Koy,
(3.12

and averaging the resultant Hamiltonian over the vari-
able. The resonance width is obtained as

8 1/2

S D rooprry2
Al <, Bi111%) (3.13
Resonance widths at points along the resonance lines away
rom the intersection point are determined, approximately,
by substituting"— 1 in the above expressions for the widths
(cf. Ref. 43. Thus we have approximately determined the
location and extent of the relevant classical resonance chan-
nels. Note that, sinc@,,<0 and\’>0, the 1:1 resonance
width actuallydecreasess the action$,,l, get larger, i.e.,

quantum numbeP. Conservation of/” means that we can for smaller values of the bend actiog.

follow the classical evolution of action variables for a given

(/,E) in the 2-dimensional action plang;(l,). Moreover,

Resonance lines and corresponding channels are plotted
in Figure 1. The diagondl, =1, is the 1:1 resonance line; in

we can eliminatel, to obtain equations for the resonance he apsence of any other resonances, the region of phase

lines in terms ofl; andl,

{ 2C
2 Ci, Crio 1 ( 3
L Cp
lo=55= 5%l (3.8b
=14, (3.89

wherel=20,— Q4+ (4ap— €5)./, and the location of the
resonance intersection is given by

b
2C+Cpy’

1=1)= (3.9

In accordance with standard approximatiéhsje ignore

space inside the associated resonance channel corresponds to
normal mode trajectories, the region outside to local mode
trajectories. The ling; +1,=const is then a projection of the
polyad phase sphere for the 1:1 resonafoomstant ) into

the (1,,1,) plane. The two symmetry related 2:1 resonance
zones slope inwards towards the 1:1 resonance zone. In the
absence of other resonances, each 2:1 resonance channel is a
region of phase space in which the bend mode and one of the
local stretch modes are strongly coupled. The widths of the
2:1 resonance channels decrease to zero near the center of
the action plane.

Of particular interest for the vibrational dynamics of the
H,O molecule are the regions of phase space where the pri-
mary resonance channels intersect. Such intersections are
characteristic of the dynamics of multimode systems, giving

the J,J, coupling and assume that the coefficients of therise to chaotic classical dynamits®* For ./ =185 (P

resonance terms are slowly varying functionsglofhe latter

=8), Chirikov resonance analysis shows that the primary

assumption is reasonable in the vicinity of the resonancgesonance channels hardly intersect; consistent with this is
intersection pointl” and leads to the following resonant the relative ease with which eigenstates for he8 mani-

Hamiltonian:

P B ot

1/2
+ 2 Banl1p) M} cos iy,
o=1,

(3.10

where I[=./"-2%,_1," . At this stage, averaging” '

fold can be assignetl.

Assignment of eigenstates f&#=8 has recently been
considered by Rose and Kellm&hEigenvalue correlation
diagrams are used in the single resonance approximation to
label each zeroth-order state as resonant or nonresonant with
respect to stretch-stretch and stretch-bend couplings,
respectively’® This “schematic” Chirikov-type analysitcf.
Figure 4 of Ref. 48 should be contrasted with the classical

over eithery, or ¢, leads to a Hamiltonian of the familiar resonance analysis presented here, where the classical action
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162 S. Keshavamurthy and G. S. Ezra: The Baggot H,0O Hamiltonian

space is partitioned into resonance zones by explicit compusingle resonance coupling term. There are in this case 2 ig-
tations using the classical Baggot Hamiltonian. norable angles, and 2 constants of the motion in addition to

In order to arrive at an unambiguous assignment othe energy; for example, if only the 1:1 resonance coupling
states, Rose and Kellman had to assume that normal moderm is present|, andl,;+1, are constants of the motion.
classification(N-N-B in their notation took precedence over The dynamics is then describeg b 1 degree of freedom
local mode(L-L-B) assignment® Moreover, it was noted reduced Hamiltonian, and stationaggquilibrium) points of
that no states were assigned both normal m@&&l-B) and  this Hamiltonian correspond to 2-tori in the full phase space.
Fermi resonanfL-R-R) labels. The explicit Chirikov analy- (In the absence of any coupling, almost all trajectories lie on
sis presented here and in Ref. 47 provides a clear dynamicabnresonant 3-topi.Details of the computations of resonant
justification for these empirical observations in terms of the2:1 tori for the 1:1 and 2:1 resonances in the Baggot Hamil-
location of the 1:1 and 2:1 classical resonance channels, essnian are given in the Appendix.
pecially the fact that foP=8 the resonance zones do not At fixed superpolyad number, the resonant 2-tori ap-
overlap appreciably. On the other hand, for=34.5 (P pear in continuous one-parameter families, as shown in Fig-
=16), the case studied here, three resonance channels intere 1(two parameter families in{",1,l,) space as shown
sect in the region arount,=1,=8. It is in this region of in Figure 2. For the 1:1 resonant case, there are 2 families of
action space that “mixed” or nominally chaotic states arenormal mode 2-tori along the diagongl=1,, and a sym-
found (see below. metry related pair of local mode 2-tori along theand |,

In addition to the primary 1:1 and 2:1 resonance zonesaxes. In addition, there are two families of resonant 2-tori
the location of higher-order multimode resonances can alsassociated with bend-local resonant motion; these families
be calculated at the next order of perturbation theory. In there marked with crosses in Figure 1, and are located close to
Baggot Hamiltonian, Poincarsurfaces of sectiofdiscussed the centers of the 2:1 resonance channels determined via
in section Il D) show a particular multimode resonance oc- Chirikov analysis. We stress again that our computations of
cupying a significant region of phase space at energies belothe resonant 2-tori are not exact, but are carried out within
that at which the primary 2:1 resonance islands appear. Sudhe single resonance approximation.
multimode resonances arise due to the interaction between Two conclusions are evident from our computation of
local modes and 1:1 resonant modes. They are indicated ime resonant 2-tori. First, from Figure 2 it is clear that the
Figure 1 as a pair of thin resonance zones. By Fourier analyprimary pos appear where families of 2-tori meet. Moreover,
sis of classical trajectories located in the relevant region ofhe location of the primary pos is given quite accurately by
phase spac¥:>® we have determined that these multimodethe intersection of the loci of the families of 2-tori deter-
resonances correspond to tteymmetry relatedresonance mined in the single-resonance approximation. Second, it is
vectors (2-1,—2) and (—1,2,—2). We have also esti- apparent that the 2-tori form the “skeleton” of the classical
mated the resonance width and location for the particulaphase space, and in fact follow very closely the Chirikov
multimode resonance by removing the 1:1 resonance to firsesonance channels. All this suggests that the Chirikov
order® (see also Ref. 57 This calculation is the first step in analysis is meaningful for the Baggot Hamiltonian.

a possible renormalization analy$iof higher order reso-
nances, which could lead to an accurate determination of the
threshold for onset of large-scale stochasticity. The widths oP- Poincare  surface of section

the corresponding multimode resonances are: In addition to the calculations outlined above, we have
88,0812 I |1/2 1/2 computed classical surfaces 01_‘ section for th_e Baggot Hamil-
Ap~ g ' (3.14 tonian. These surfaces of section are useful in order to deter-
ay(9artaz) (11=13) mine the significance of the classical phase space structures

wherea; ,=2C+¢;,. Note that this perturbative result does discussed above, and also to compare with quantum me-
not hold as one approaches the resonance intersdétion ~ chanical phase spacelusimi) distribution functions.
the (I,,1,) plane. As the Baggot Hamiltonian has one ignorable angle, we
can define a 2D surface of sectideog by plotting N,
=(l,—1,)/2 and¢,= 60, — 6, at constant values of the sec-
tioning angle ¢,=6,+ 6,— 46, with ¢,>0. The value of
Chirikov resonance analysis provides an approximatehe ignorable angle conjugate to the superpolyad adtion
picture of the phase space structure of th®©Hnolecule. It  is irrelevant. All trajectories in a given sos have the same
is a perturbative approach in that each resonance couplingnergyE; for given./" there is a range of possible sos en-
term is analysed independently. Moreover, the phase spaezgies.
structure in the vicinity of each resonance line is assumed to  The general structure of the classical sos is as follows: a
be pendulum-liké’ For systems with weak anharmonicities, normal-mode resonant region is present in the middle of the
there may be ranges & and./~ over which the local phase sos (,=1,), corresponding to “librational” motion.Local
space structure is more complicated. mode(above barrigrregions are found above and below the
A more detailed analysis of the phase space structureentral normal mode region. Large 2:1 bend/local-stretch
involves determination of the location of families tfso-  resonant islands appear in the local mode regiets., Fig-
nant 2-tori Consider the classical @ Hamiltonian with a ure 3h. Higher-order resonances also appear. At low ener-

C. Families of resonant 2-tori
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(a) 2

0.5

FIG. 3. Lower Poincaresurface of sections foP=16 as a function of
increasing energy(a) 41892 cm?. (b) 43488 cm’. (c) 48970 cm™. (d)
49157 cmL.

gies, the center of the normal mode islands correspond to
stable resonant 2-tori, while a “whiskered{unstable

2-torus appears at the center of the sos. Similarly, the 2:1
bend/local-stretch resonance is defined by the intersection of

stable and unstable resonant 2-tori with the sos. 0 6 O 8 1
The classical surface of section described above has an . .
additional feature which manifests itself at values of the su- ¢1

perpolyad number for which the resonance intersection
lies in the physical region of the action plane. This feature is
an apparently unavoidable “double-sheetedness” of the surFIG. 4. Poincarsurfaces of section fdP= 16 at energies corresponding to
face of section due to the closing of the contoursf, ~ Figure 3.(2) 48970 cm™. (b) 49157 cm™.
aroundI” (cf. Figure 1. Such a topological change in the
contours of 7, and thence of the phase space of the effec-
tive 2D reduced system, leads to the possibility of thewith large islands corresponding to the €2,,—2) and
creation/destruction of fixed points in phase space, as followé—1,2,—2) multimode resonances as discussed in the previ-
in general from the analysis of stratified Morse theotiesn ous sectior(cf. section Il B. At moderate energied-igure
interesting aspect of the two-sheeted structure of the surfacdb), the main features are the 2:1 and 1:1 islands with the
of section is that some quantum states can selectively locatlestruction of the multimode resonances. Although there is
ize on one sheet or the other whilst other states can delocahcreased stochasticity due to the higher order resonances,
ize over both sheets. Examples of such states are shown atitere are still invariant curves serving as barriers to transport
discussed below. Moreover, interaction between such statés phase space. In Figure 3c the surface of section corre-
can lead to very highly mixed states, thus complicating thesponds to energies close to that of the bifurcation of the
spectral assignments. normal mode periodic orbits due to the 2:1 resonances. At
In our calculations points on the classical sos are deterthese high energies, most of the sos is occupied by stochastic
mined to lie on the upper or lower sos via a simple criterion.orbits with the relatively small 2:1 islands embedded in the
The value of the bend actionf) corresponding to the reso- stochastic sea. The islands do not have enough phase space
nance intersection is obtained &s=./—2(1;+15%). The area to support even a single quantum state. At even higher
intersection point of the classical trajectory with the sos liesenergies as shown in Figure 3d the entire sos is filled with
on the lower or upper sos if the associated valug,a$ less  stochastic orbits. The 1:1 regions are completely destroyed
than or greater thafj,, respectively. In what follows, both with small islands of 2:1 resonances still persisting. At the
sheets of the surface of section are shawhen necessayy highest energy almost all of the invariant curves in the sos
with u and| denoting upper and lower sheets respectivelyare destroyed in marked contrast to the analogous case for
All (Nq,¢,) surface of sections shown in this paper corre-P=8.
spond to the angleb; measured in units of 8 The surfaces of section shown in Figures 3c and 3d are
In Figure 3 a series of 4 surfaces of section are showrat high enough energy so that the sos is double-sheeted; in
(N, versus¢,/87) as a function of increasing energy fBr  Figure 4 we show the corresponding upper sos. At the high-
=16. At low energies(Figure 3a most of the surface of est energies all of the invariant structures on the upper sos
section is occupied by regular normal mode orbits, togetheare also destroyed.
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IV. ANALYSIS OF EIGENSTATES: METHODS

24

Quantum eigenfunctions were generated by diagonaliz-
ing the Baggot Hamiltonian for a given polyad numisein
the number basim,,n,,n,), wheren,,n, are the quantum 18 |
numbers for the anharmonic local O-H stretch modes and
ny denotes the bend quantum number. The Hamiltonian is
block diagonal inP and the total number of states at fixed
is (P+1)(P+2)/2. To analyze the eigenstates of the Baggot
Hamiltonian, it is natural to project them onto the;(n,)
guantum numbefaction plane. The physical points in the 6l [
(n41,n,) lattice are those points for whidd—n; —n, is non- /N
negative. We represent the eigenstates by plotting at every S
physical lattice point a circle with radius equal to the square 0l %J/ e
of the coefficient of the corresponding zeroth-order basis 00 01 02 03 04 0|-_5 06 07 08 08 10
state in the eigenstate of interest. In the present paper, we
discuss the manifold of 153 state_s with= 16_' Analysis of FIG. 5. Smoothed histogram of average IPRsfor the full Baggot Hamil-
the casé®=8 has been presented in an earlier pdpén.the  tonian (solid), A" =0 (dotted, and 8,,=0 (dasheil P=16.
rest of this section we give a brief description of the methods
used for studying the classical-quantum correspondence.

A. Inverse participation ratios (IPR) Lyg=>, [pahs
j

To analyze the quantum wavefunctions, and to aid in (4.9
correlating with the classical resonance analysis, we have L =E |c-2:14
computed inverse participation ratid®R) for eigenstate$’ 21 7o e

If the state|'¥,) is expanded in an orthonormal bais;} as Here. cLi1

,cj;t andc?! are the coefficients in the expansion of
the eigenfunctiong¥ ) in the 1:1 and 2:1 resonance bases,
|‘I’a>:; |¢j>cia* (4.2) respectively. It follows from the definition of the IPR that
states with mostly 1:1 resonant character will have high val-
then the corresponding IPR is defined by ues ofL., and low values ot.,.; and vice versa. Strongly
mixed states influenced by both 1:1 and 2:1 resonances are
L,=> |cjal®. (4.2)  expected to have low values of the IPR in both bases. On the
] other hand, states that are completely outside either of the

The IPR is a measure of the delocalization|¥,) in the resonance zones will have the highest values of the IPR in

. L : . ! ._both bases. Thus we provisionally associate low values of
basis{¢;}: if |¥,) is essentially composed of a single basis he average IPR,, with mixed states, moderate values with
state, then the IPR will be about unity; on the other hand, ift g . ’

¥,  superpostion o b nctons wihcompaabie Soves P00 ST e 1L or ot o e 23 fesonance
coefficients, then the value IPR will be aboulN1/States

with low IPR values are therefore delocalized over the basiéjlny of the reson'ance Zones. —
Note that, with our present definitions, low valuesLof

19} :
The value of the IPR is of course by definition basis setShOUId only be found for states that are strongly mixediby

dependent. In addition to obtaining a rouah measure o¥esonant coupling terms. Thus, states that are mixed pre-
P ' 9 9 (il_ominantly by the two 2:1 resonances, and which might be

eigenstate delocalization, we are interested in using IPRs cal . o . X I
. . ) .in some sense “chaotic” in the semiclassical linfas the
culated in terms of one or more physically appropriate basis : ) i .
L ) ) corresponding 2-resonance classical system is nonintegrable

sets to distinguish between different classes of eigenstate.

Following the analysis by Atkins and Logan of a 3—modeWIII nevertheless have high values 0f,.

. . Figure 5 summarizes our IPR computations for the full
system with two resonant coupling terfffsye compute the oo . : N
. . . Baggot Hamiltonian(all coupling terms includedwith ./
IPR in two different basis and average over them. In our_ . ;
. . . ) =32. The results are displayed as a smoothed histogram
case, we compute the IPR in a basis of eigenfunctions of the

L ] .~ showing the number of states within a given rangé.oft is
zeroth-order Hamiltonian plus the 1:1 resonant couplmga arent from the histogram that the IPR values do not yield
term, and in the basis of eigenstates.af, plus both 2:1 PP 9 y

. ﬁclean separation of eigenstates into 3 classes: nonresonant,
resonant coupling terms. We then calculate an average IP ) .
singly-resonant and mixed, as they do for the case studied by

defined by Atkins and Logarf® The IPR appears to be too crude an
1 indicator of eigenstate delocalization to provide a basis for
L=5 (LiatLaa), (4.3 classification of eigenstates of the Baggot Hamiltonian.
Also shown in the Figure 5 are the effects of setting
where coupling parameters’ and+y to zero. The number of states
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with very low values of the IPR increases sharply wheérns
set equal to zero, indicating a significant increase in mixing  A(p®,q®)= >,

1 n
. Cnlnzan \/TM é’ﬂ#

of zeroth-order states; Baggohas stressed the importance a2
of the parametei’. If the 2:2 resonant coupling term is 1 i
removed by settingy=0, however, there is only a minor xex;{— > |§M|2+ > pi;k)qg() . 4.7

change in the form of the histogram.
In the above equation we have defined

B. Husimi distribution functions . i

In order to explore the quantum-classical correspon- ZME‘/—;QS()JFW Pl (4.8
dence for the Baggot Hamiltonian in more detail, and to ”
provide a dynamical basis for assignment of eigenstates, it iwith c2 the mode harmonic frequencies.
useful to have phase spaceepresentation of the quantum Note that the Husimi functions need only be computed
wavefunctions; such a representation facilitates comparisofor one quadrant of theN; , ¢;) surface of section due to the
of the structure of the quantum state with the important classymmetry of the full Baggot Hamiltonian. To explore the
sical phase space structufe¥wo well known representa- classical-quantum correspondence for eigenstates, contours
tions are the Wigné? and the Husim? functions. We use of the Husimi distribution functions are superimposed on the
the Husimi representation since the Wigner representationlassical surface of section at an energy corresponding that
can take negative values, thereby invalidating its use as #he particular quantum state. In computing the Husimi func-
probability distribution, and also exhibits oscillations on ations contributions from both upper and lower sheets of the
finer and finer scale aB—0.° The Husimi function is a sos(when presentare added incoherently.
Gaussian smoothed version of the Wigner function. It is non-
negative, and is well suited for study of the classical-y BAGGOT HAMILTONIAN: SPECIAL CASES
quantum corresponden&®Other related approaches to the ) S
definition of quantum phase space involve the construction ~Before tackling the full Baggot Hamiltonian, it is useful
of generalized coherent statsvhich take into account the 0 €xamine eigenstates of Hamiltonians obtained by keeping
underlying dynamical symmetry group of the problem. Foronly selected resonant coupling teritsee also Ref. 481n
present purposes, however, we use the following simpléhe case that a single resonant coupling term is present, the
method to obtain the necessary distribution function. Hamiltonian is classically completely integrable. When two

We start by laying down a grid in theN, ¢,) coordi- resonant coupling terms are preséetg., 1:1 plus 2:1, or
nates on the Poincarsurface of sectior(i.e., for a fixed both 2:1 termg the Hamiltonian is nonintegrable, but pos-
value of the sectioning angl¢2=¢72). For a given point on  SESSES & constant of the motion in addition to the energy.

this grid, denoted by N(® , ("), and the chosen value of This constant of the motion persists in the Baggot Hamil-

¢, we calculate the associated values of the original canonionan when all three coupling terms are present, as the three

cal variables (9, ). To compute (9, 99) we must pick  'esenance vectors are linearly dependént.

an arbitrary valugequal to zero for results reported in this A. .7, plus a single 2:1 stretch-bend resonance
papej of the ignorable anglg conjugate to the superpolyad Figure 6 shows projections onto the action lattice of sev-
action J, and ensure that the energy of the classical phasgraI

. . : ) eigenstates of the quantum Hamiltonian obtained by
space point equals that of the eigenstate under consideration,, . . ) : -
; . ) (k) . : adding a single 2:1 stretch-bend coupling term7g. The
Cartesian coordinatep(” ,q,,’), ©=1,2,b, associated with

. . X eigenstates are superimposed upon a plot of the 2:1 reso-
the grid point N, #{") are then calculated via the usual ¢ perimp P P

h . . et . i h I f the H nance zone in thel (,l,) action plane. In action space, the
f’]‘rf"‘;”'c ?C |or;-ang_e rar;sto:;,na lotns.h € value ot the tu'eigenstates are delocalized along the lme=const, i.e.,
S'r(T) tjk?c.'on or €lgens a§| ) at phase space poin J 1p=2n4+ Ny is conserved in accord with the classical be-

(p*™,q") is calculated by taking the square of the overlap of,

T with d £ mini ity G . havior of the action variables for a single 2:1 resonance.
[¥) with a product of minimum uncertainity Gaussians Figure 6 shows action projections for a sequence of

2\ 1/4 c? i states at constamt,, corresponding to increasing excitation
X(qﬂ)=<f) ex;{ - 7” (qM—Q§f>)2+ % Dilk)qﬂ ) transverse to the resonance channel. A precise dynamically
(4.5 based assignment of these eigenstates is obtained by exam-
. o ining associated Husimi functions: for resonant states, the
for each of the three modgs=1,2,b. Diagonalization of the 4,30t m phase space density is localized inside the relevant
Baggot Hamiltonian in a number basis gives the eigenstat€zgonance channel in the surface of section, whereas for non-
V) as Illnear c_:ombmatpns of a finite number of products ofyegonant states the quantum phase space density lies outside
harmonic oscillator basis functions, (d,.): (“separatrix” state§? occur at the boundary between the 2
classes of state, and have phase space density localized on
V(d)= 2 Conn,@n,(40)@n,(02)en (dy). (4.6  unstable objectdfixed pointd in the surface of section

12N Each resonant state can be assigned three quantum numbers:
The resulting Gaussian integrals are performed analytically./ ../, ,v), where the quantum number=0,1,2.., mea-
to give the Husimi distribution function d#\|?, where sures the degree of excitation within the resonance. For ex-
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ample, for the sequence of resonant states shown in Figure 6, Nonresonant states, whose phase space density lies out-
there are five resonant states with'=32, ./",=32, v side the classical resonance channel, can be assigned zeroth-
=0,1,2,3,4. Note that the state with=4 is a separatrix order quantum numbers/(,n.,n,), corresponding to the
state. The associated Husimi distribution functions aredominant zeroth-order state contributing to the eigenstate.
shown in Figure 7. Note the movement of the maxima of the ~ Our set of resonant quantum numbérs’,./ ", ,,v) for
Husimi distributions outwards from the center of the reso-the integrable 2:1 case is closely related to that used by Rose
nance as one increases the excitation, with the final statnd Kellman forL-R-R statesn,, {ng;,Ng,}.*® The super-
clearly localized about the unstable 2-torus. polyad quantum number is/"=2n,+2ng;+2ng,, the 2:1
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FIG. 7. Husimi distribution functions for the resonant eigenstates shown in
Figure 6.

85 06 07 08 09 1
© 1

resonance gquantum numberrig ,=2ng; +Ng,, While the  resonancessee, for example Ref. 63The 2:1 stretch-bend

guantum numbep can presumably be identified withg; . resonance channel studied here is large and contains many
There has been much discussion in the literature constates(as does the 1:1 resonanc&he situation is therefore

cerning the correspondence between classical and quantusnalogous to that studied by Ramchandran and Kay, who
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16 quence of the particular parameter values in our Hamil-
tonian. For example, if we set.= e;,=0 then the observed
14| periodicity isAn,=2. In each case, however, the apparent
periodicity in the location of isomorphic resonance states can
121 be understood in terms of the slope of the classical resonance
line. An analysis based solely on the properties of primary
10 L periodic orbits is, as far as we can see, unable to provide a
comparably simple explanation of these relatively subtle
I | properties of the eigenstate densities in action space.
2 8 ) A o .
To clarify the significance of the periodicity associated
6l with the slope of the resonance line in thel, action plane,
consider a simple, integrable Fermi resonant 2-mode Hamil-
tonian,
4+
H=Q,l,+Qplp+ a,l?+ egl ol p+ apl 2
’ + B1dpl Y2 cog 6, — 26}), (5.2)
s 5 14 16 With o=1 or 2. This Hamiltonian describes an integrable

subsystem of the Baggot Hamiltonian. The resonance line in
(I,,1,) space is found by setting the frequency ratio equal to

FIG. 8. Action space projections for a sequence of eigenstates in the singl%’ W;=20p. This equation may be written:

2:1 resonance system with constarst 0 andn,=0,3,6,9. _ >
y 2 Ib_p(la'_'ya')l (52)
where
examined the connection between the existence of avoided
; . . 2(€gp— )
level crossings and classical resonant dynafficdoncep- p=—-7°, (5.3
tual problems concerning the classical-quantum correspon- (€sp—4ap)

dence for narrow, high-order resonancesdth of order#) and

have been discussed by Roberts and’ Jafie particular,

these authors define quantum resonant eigenstates as those 7 = (Q,—20Qy) (5.9
formed by strong interaction between zeroth-order states that =7 2(egp— )’ '
may lie outside thénarrow classical resonance chanfiel.

From our perspective, such states hésfistorted but topo- denote the periodicity and one of the intercepts of the reso-

logically nonresonant phase space densitigse, for ex- nance line, respectively. The phase space structure of this
Hamiltonian has been studied in some detail including peri-

ample, Figure 2d of Ref. 47 . L 26 )
States localized in the 2:1 resonance channel with differ@dic orbit bifurcation&® and the quantumi, ) characteriza-

ent values ofn, form sequences, where each sequence ifon of_the energy spectrufif.Performing a canonical trans-
characterized by a particular value of the excitation quantunimation .1p,05,6y)—(12,4:1,¥) (Refs. 66, 67 and
numberv. In Figure 8 we show a sequence of states whicH!S""9 the variables

progresses along the 2:1 resonance zone. The 4 states in Q=24 —8a,, (5.53
Figure 8, for example, are assigned quantum numbers
=32,/1,=32r=0), (32,26,0, (32,20,0 and(32,14,0, re- V1= st dapt 2eg, (5.5p

spectively. The Husimi distributions for the above sequence
of states are all localized in the vicinity of a stable resonant Y2~ ®s+4ap— 2é€sp, (5.50
2-torus(cf. Figure 75')_ ' P=0Q,-2Q,, (5.50)

We shall investigate below the fate of these eigenstates
as the remaining resonant coupling terms are turned on. it follows that the primitive periodic orbitgapart from the

An important observation is that, /n, resonant states ones at North and South poles on the polyad phase sphere
with similar distributions of amplitudes over the resonantcan be obtained from the cubic equation:
region of action space, and the same valuev,0éppear at _
intervals ofAI2=3pin the actionl , (cf. Figure §. 'I[')r?is pe- Z3xe2%+eZ 7 e3=0. (5.6
riodicity is simply a consequence of the fact that the slope ofn the above equation we have defiriée (I +1,)2 and
the resonance line in the action plane is neatl$; hence,
the form of the stretch-bend Hamiltonian in the zeroth-order _ 6Bsp (5.73

basis near the center of the resonance zone is approximately L29%y,

invariant asn,— n,+ 3.5° The periodicity persists even upon

inclusion of additional resonant couplings. e,= P+(Q-27)! (5.7
The size of the intervahn,=3 is an accidental conse- 2,
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FIG. 9. Bifurcation diagrantif=cog(l,—1)/2I] versus/") as a function of
the periodicityp of the single 2:1 resonance line with fixed, , K, . Physi-
cal (solid line), reducedy (solid dot$ and zero anharmonicity of bend mode
(open circles

FIG. 10. Action space projections for a sequence of 1:1 resamanmal
mode states for the 1:12:2 integrable subsystem afd=16.

Quantum eigenfunctions for reduced bend anharmonicity are
strongly mixed and bear little resemblance to the eigenstates

284 analysed in this paper.
S
e3=2T?—. (57@
72 B. .77, plus the 1:1 and 2:2 stretch-stretch
One can express the coefficients of the cubic equation i >onances
terms of the variablesg(,.7,,,P) using the following rela- The Hamiltonian consisting of7,, plus the 1:1 and 2:2
tions: stretch-stretch resonant coupling terms is also completely in-

tegrable. Eigenstates are delocalized along the dine n,

_(2—p) p =const. Just as for the 2:1 resonance, we can classify the 1:1
Q= 07, (5.8 states as resonant or nonresonant according to whether the
phase space densities are localized inside or outside the 1:1
(2+p) resonance channel. States outside the 1:1 resonance zone can
Y= T]H : (5.9 be assigned zeroth-order local mode quantum numbers

(./",n1,n,). The linen;+n,=const is the projection into

We now study the evolution of the bifurcation diagram the action plane of the polyad phase sphere for 1:1 resonant
with varying ¢ and keeping7, constant. Contact with the systems studied by Kellman and cowork&$Ve note that
Baggot Hamiltonian studied in this paper is made by replacthe width of the 1:1 resonance decreases at higher values of
ing P by P'=P+ (€5 2€5,)K,, whereK, is the conserved [,=1,.
action corresponding to the nonresonant stretch mode. The Figure 10 shows a sequence of 1:1 reson@armal
superpolyad number for the Baggot Hamiltonian is related tanode, separatrijxstates which progress along the 1:1 reso-
the Fermi resonant polyad arg, through./ =4l +2K,. nance channel and can be assigned resommamimal mode
Figure 9 shows the bifurcation pléf=cosy(l,—1)/2I ver-  quantum numbergn,,./ 1,=n;+n,,v]. The particular se-
sus./", with =0, 7r) as one varies the periodicity for ~ quence shown in Figure 10 can be assignedias?l ,2] with
fixed value of7; andK,. For the physical value gf (solid k=0,1,...,7 and =8—k. (The correspondence with the 1:1
line), we have three roots for/” greater than 12, signaling resonant N-N-B quantum numbers of Rose and Kellthan
the presence of pendular resonance regions in phase €paces follows:./ ;,=ngs+n,, r=ng.)
The three roots correspond to a local mddeble 2-torus Isomorphic normal mode states appear along the 1:1
and a pair of stable/unstable 2:1 resonant 2-tori, in agreemenésonance zone at intervals/;,=2, where all states in a
with our analysis of the 2-tori of the integrable subsystemgiven sequence have either a node or an antinode along the
given earlier(cf. also Appendix On reducingy by half  diagonal. This well known alternation can be viewed as a
(dots we are still in the Chirikov regime. For the particular consequence of the slopel of the 1:1 resonance line. Fig-
choice of Baggot parameters the periodicigy>0 in the ure 11 shows 4 of the corresponding Husimi distribution
(I,,1,) plane. Eliminating the bend anharmonicity, i.e., set-functions. The Husimi functions are all localized around the
ting «,=0 in the Baggot Hamiltonian leads to a different unstable normal mode 2-torus. The characteristic x-shape of
bifurcation structure as shown in Figure (flled circles. Husimis localized in the vicinity of an unstable fixed p8?nt
Now one clearly sees values.of for which there are fewer is clearly evident in Figures 11c, 11d. The effect of the weak
than three roots and hence a non-pendular phase spa@?2 resonance can be clearly seen in Figure 11d. Bifurcations
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FIG. 11. Husimi distribution functions for the normal mode sequence with
v=2 shown in Figure 10.
FIG. 12. Sequence of action space projections for eigenstates of two 2:1
resonance channel Hamiltonian with=0 and./ =32. In order to distin-

; uish the states in a sequence we plot them with different line thicknesses.
occur which affect the t0p0|09y of phase space and the COL?’erminal states have the thickest line, and the same holds for all multireso-

responding Husimi distributions. Although we have not in-zce action space plots shown in the rest of the paper.
vestigated the possible bifurcations in this subsystem in full
detail, we note that the form of the Husimi distribution in

Figure 11d is consistent with a bifurcation in the underlying In Figure 13 we show the corresponding Husimi distri-

classical surface of section. butions. Note that the Husimis, including the terminal state

shown in Figure 13c, all show the common feature of local-
C. J#, plus two 2:1 stretch-bend resonant coupling ized density atp; =67. The terminal state phase space dis-
terms tribution also has some similarity to the corresponding inte-

The Hamiltonian consisting of7, plus two 2:1 resonant grablle limit norma[ mode state Husimi s.howr} in Figure 11d,
coupling terms is classically nonintegrable. It nevertheles@/Peit somewhat distorted and phase shiftegjn and could
be assigned the normal mode quantum numpér$4,2, .

conserves the quantity/=2(n,;+n,)+n,. In the rest of \ : _ _
the figures involving action space projections for sequence&n€ terminal state is thus a mixed state for whisbre than

of eigenstates we show the different states with varying
thickness. The terminal state is shown with the largest thick-
ness in the figures. @ = -
We now show action space projections for 3 sequences
of eigenstates that progress along the 2:1 resonance channel.
For example, in Figure 12 we show a sequence of states with
v=0 and symmetric with respect to reflection in the diago-
nall;=1,. Proceeding inwards from the edges of the action
plane, the first two states in the sequence bear a close resem-
blance to the first two states in Figure 8 la=0 andl,
=3, respectively. The next state in the sequence is however
of symmetric “normal mode” character, and is localized in
the vicinity of the resonance intersectith There is there-
fore an effective 1:1 mixing along the direction ;5
= const arising from the two 2:1 stretch-bend coupling terms.
In fact, analysis of the interaction of the two 2:1 resonant

coupling terms using classical perturbation theory gives an (©) ¢

estimate of the effective strength of the induced 1:1 " @

coupling®® 0s
One can assign these states using labels which are essen- Nlog

tially the same as in the integrable 2:1 case, but augmented 4 3l 196 |

with a £ subscript and ¥ superscript. The label describes -15 @

the state symmetry with respect to exchange2 while the 05 08 °-7¢1°-5 0s

T symbol denotes a state with “normal mode” character.
The three states in Figure 12 Cain thereforle be Iabe”eﬁlG. 13. Husimi distributions corresponding to the=0 2:1 resonance
(32,32,0, , (32,26,0, and(32,20,07 , respectively. sequence shown in Figure 12.
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(@ 5

FIG. 14. Sequence of action space projections for eigenstates of the two 2:1
resonance channel Hamiltonian witt 1.

one set of quantum number labels is possibl&e observe
that the resonance excitation quantum numbés different
in each set of quantum numbers, i.2= 0 (2:1 labe) versus
v=2 (1:1 labe).

Figure 14 shows a sequence of 2 sta{88,30,2 ., ,
(32,24,2, that leads to a mixed normal mode-type state
(32,18,2* in the vicinity of I". The associated Husimis are
shown in Figure 15. The parent statat n,=1) Husimi
shown in Figure 15a correspondsi#te=1 as is clearly seen
by comparing to the integrable case in Figure 7b. The parent
state is relatively far away from the resonance junction and
hence the close resemblance of the corresponding Husimi
distributions. The Husimi for the next state in the sequence,
Figure 15b, is localized in angle space but delocalized in
action. We provisionally associate this delocalization in ac-
tion space with the destruction of barriers to classical phase
space transport.

The terminal state, which resembles a “normal mode”
state in action space, localizes entirely on the upper sheet of
the sos(Figure 15¢. The Husimi function, however, is sig-
nificantly distorted as compared to the corresponding inte- 05 06 07 08 09
grable normal mode Husimi. Most noticeable is a shift in ¢
phase angleb; from the integrable 1:1 case. 1

For the Hamiltonian with two 2:1 resonant stretch-bend
coupling terms, we are therefore able to identify sequenceBIG. 15. Husimi distributions corresponding to the=1 2:1 resonance
of resonant states that define the “parentage” of particulaeduence shown in Figure 14.
mixed states. The terminal states are mixed, as suggested by

their Husimi distribution functions, and can be viewed 8Stained here and in the next section is a consequence of the
lpegt"(.)f onfe hor m_or?j sequenlies. This Ileadﬁ ma“ﬂ'qfe intersection of the primary 1:1 and 2:1 resonance channels.
abelling of the mixed states. For example, the terminal statery,;q g, /g of dynamical complexity is not present in the rela-

of the sequence shown in Figure 12. can be ag,sign_e_d either ﬁ§ely straightforwardP=8 case treated previously by“is
(32,20,0. or as[4,14,2... The basis for our identification 4 5ther2448 Our analysis and assignments therefore go
of sequences is a study of amplitude distribution in aCtio%eyond this earlier work

space, guided by the classical resonance channel template

obtained via Chlrlkov an_alygs. It.|s not clear how an anaIyS|sV|_ FULL BAGGOT HAMILTONIAN

based upon primary periodic orbit bifurcations altheould

enable such patterns to be identified. The Chirikov resonance analysis of the Baggot Hamil-
We emphasize that the nonunique labelling of states obtonian given in section Ill B suggests the existence of four

J. Chem. Phys., Vol. 107, No. 1, 1 July 1997

Downloaded-26-0ct-2002-t0-203.197.196.1.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



172 S. Keshavamurthy and G. S. Ezra: The Baggot H,O Hamiltonian

classes of eigenstatef. Ref. 37%: (1) Nonresonant states, 16

unaffected by any primary resonance. Phase space densities

for such states are located outside any of the resonance chan- "y oo

nels, and good quantum numbers are the zeroth-order quan- Y

tum numbersn;, n, and n,. States are labelled as Y

(nqy,n5,np). (2) Normal mode(1:1) resonant states, with P - o\-\.\\- R

phase space densities located in the 1:1 resonance channel. I s - 8 \':\/ )

Approximate good quantum numbers aré, ./ ,=n;+n, S g/‘i;f/ ¥

and a third quantum numberdescribing the level of exci- 6 EEE TS s e \ -

tation inside the 1:1 resonance. The relevant states are la- IR ’ e N

belled as[./",./"5,v] or [ny,./15,v]. (3) Local-stretch/ ar o . 9)) s o). e\ -

bend resonant states, with phase space densities located in , e :/:/j/ \f oQe ~ -

the 2:1 resonance channel. Approximate good quantum num- O I RN

bers are./ ./ ,,=2n,+n,, and a resonant excitation 0 A FA N A
0 2 4 8 8 10 12 14 16

guantum numberv. States are therefore labelled by
(NN o, v). (4) “Mixed” eigenstates, located in the vicin-
ity of the resonance channel intersection. A similar classifi+c. 16. Sequence of action space projections for the full Baggot Hamil-
cation has been proposed by Lu and Kellifaand by Rose  tonian with»=0.

and Kellman® in either case without reference to the actual

location of the resonance channels in action space.

Our classification scheme provides a framework withinBaggot Hamiltonian witlP=16. We focus our attention on
which to analyze the eigenstates of the Baggot Hamiltoniarthe fate of the three sequences presented in the last subsec-
In regions of phase space in which there is strong couplingion as we turn on the remaining primary 1:1 resonance.
between modes, the zeroth-order invariant structures that Figures 16 and 17 show the sequence of states progress-
provide the basis of the classification scheme may be ddng along the 2:1 resonance channels and their respective
stroyed. Nevertheless, examination of quantum phase spattisimi distributions. This sequence is to be compared to the
densities often enables us to provide an unambiguous dysimilar one shown in the previous sectigef. Figures 12,
namical assignment. Such an approach has previously bed®). The first and second states are quite similar to their
successful for th®=8 manifold*” and we examine here the partners in the previous sequence. The terminal state is again
set of states withP=16. a mixed state with nonunique labels; there are nevertheless
clear differences in the forms of the Husimi due to the dif-
ferent phases of the induced 1:1 and primary 1:1 resonant

In the case of the integrable single resonance cases diseupling terms. In the full Hamiltonian the terminal Husimi
cussed in the previous section, the zeroth-order and/or resés almost completely localized on the upper sos whereas in
nance quantum numbers provide a rigorous and complete stite 2x2:1 resonance case the terminal state is delocalized
of state labels. For the full Baggot Hamiltonian, which con-on both sheets of the sos.
tains three linearly dependent resonance coupling terms and In Figures 18 and 19 we show the=1 sequence and
which is classically nonintegrable, states far away from thehe corresponding Husimis analogous to the sequence shown
resonance intersection region of action space can be assignedFigure 14. For the full Hamiltonian, the form of the Hu-
using labels appropriate to the first 3 classes discussesimi of the second state is indicative of an avoided crossing
above. As one approaches the overlap region the approxwith another state. Computation of an energy level correla-
mate labels may break down and we have a possibility ofion diagram as a function @8, confirms this surmise. The
states belonging to class 4. resonant+ parity state is involved in an avoided crossing

Nevertheless, as noted in the previous section, it is poswith a nearby normal mode state. The terminal state is some-
sible to identify sequences of states that progress along resethat more localized in phase space than the counterpart
nance channels, so that specific states in the resonance inteshown in the previous section. The terminal state for the full
section region can be identified as the terminus of @re Hamiltonian also looks ‘“cleaner” in action space as com-
more sequence) of regular(assignablestates. It is impor- pared to the X2:1 case.
tant to note that it is quite possible for two different se- The sequences considered here show how groups of
guences to have a common terminal state; the two sets @fuantum states can organize around the classical resonance
associated labels then approximately describe the santemplate in action space. In the case of the Baggot Hamil-
eigenstate. Such ambiguity in the labelling of eigenfunctiongonian, explicit computations of the Husimi distribution
distinguishes thé&=16 case currently under study from the functions further illuminate the phase space significance of
dynamically  simpler P=8 manifold analyzed such sequences. The local-bend resonant sequences are gen-
previously?*47:48 eralizations of the more familiar sequence of normal mode

We now proceed to combine insights gained from studystates. We have studied sequences in addition to those pre-
of surfaces of section, Husimi phase space densities and tlsented in this paper. For example, it is possible to find se-
classical resonance template to analyze eigenstates of the fgliences which show an initially resonant state going out of

A. Progressions of states along resonance channels
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FIG. 18. Sequence of action space projections for the full Baggot Hamil-
tonian withv=1.

states. The width of a particular resonance in action space
determines the number of quantum states that can fit within
the the resonance channel. In the Baggot case we have based
our classical resonance analysis on the primary resonances
(2:1 and 1:}, which have significant width&ompared td:).
High-order resonances will have narrow widths, in which
case quantum states strongly influenced by the resonance lie
outside the classical resonance zéhelowever, such inter-
acting quantum states will nevertheless organize themselves
in accordance with the approximate periodicity of the reso-

© 15 R f*f'-“nv nance line, just as for the sequences of states inside the pri-
1 0 ' 0 mary resonance channels. The corresponding Husimi func-
o o tions will exhibit distorted but topologically non-resonant
0.5 features. The periodicities in the form of the “quantum reso-
nant” states analyzed by Roberts and Jafe clearly ob-
N]_ 0 servable in Figure 6 of Ref. 45.
~-0.5 , , i
o, o B. Energy level correlation diagrams and avoided
-1 0 0 crossings
] 5 .8 . . .
15 0 N0 We have studied energy level correlation diagrams for
05 0.6 07 08 09 the Baggot Hamiltonian under variation of the parameter
¢ Bsp, Which controls the strength of the 2:1 resonances. It is
1 found that almost all of the narrowly avoided crossings that

occur close to or at the physical value@f;,, corresponding
FIG. 17. Husimi distributions corresponding to the sequence shown in Figtqg the full Baggot Hamiltonian studied in the rest of the
ure 16. paper, involve three states. Two of the states have the same

[£] symmetry and are involved in either a broad or sharp

crossing, while the third state, of opposite symmetry, is a
resonance and becoming a local nonresonant gtaté&ref.  partner state to one of the two states. Interaction between the
62). Aided by the Husimi distributions, one can usefully two states of the same symmetry results in delocalization of
identify the parentage of very highly mixed states. Insightthe Husimi distribution for one of the partner states. Typi-
can be thereby obtained into the nature of mixed states in theally, at high energies and values.df’ such thatl" lies in
vicinity of the resonance intersection by their identificationthe physical region of action space, the two states involved in
as terminal states of a seque(gef regular states. the crossing are localized on one of the two sheets of the

It is also apparent from the above examples that the apsurface of section, with the other state delocalized over both

proximate periodicity of the form of resonant eigenstates assheets. An example would be a state with a very small hum-
sociated with the value of the slope of the resonance line iber of bend quanta that interacts with a state with a large
an important aid in identification of sequences of relatechumber of bend quanta. Another possibility is that all three
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FIG. 20. Evolution of the energy spectrum as a function of the Baggot
parameteiB,,. “Diabats” are shown as thick lines.

05 06 07 08 09 fact, as pointed out by Berfi the fragility of one parameter

crossings is partially responsible for the inconclusive results.
The results of Ramachandran and Raynd Ozorio de
© 45 Almeida®® make it clear that there is no necessary connection
between the existence of avoided crossings of quantum en-
1 ergy levels and classical resonant dynamics.
05 It is nevertheless interesting to ask which features of the
) energy level correlation diagram might be associated with
N]. 0 classical resonances. The results in this paper and in Ref. 64
suggest such a feature in the case when the classical reso-
0.5 nances have significant widths in action space. Ramachan-
-1 dran and Kay noted that, under variation of a parameter cor-
responding to the frequency of one of 2 oscillators involved
-1.5 ~! bnd in a resonance, states deep inside the resonance zone exhibit
05 06 07 08 09 nearly parallel curves in the correlation diagram. Figure 20

¢1 shows the energy correlation obtained by varying the param-
eter, By, that controls the width of the 2:1 resonance zone.
FIG. 19. Husimi distributions corresponding to the sequence shown in Fig-\/a”atlons O.f th(_? Stat,es in the classical resonance zone are
ure 18. shown as thick linegdiabatg. Note that these states undergo
the largest amount of variation upon changing the resonance
width parameter; groups of such states form a set of “fans.”
The states within each group correspond to different levels of
states can localize/delocalize on one sheet of the surface ekcitation inside the resonance zone, as discussed previously.
section. An example for the latter case has been presentdthe number of states in each group decreases with increasing
earlier (cf. Figure 4 in Ref. 4Y. energy, correlating with the decrease in the classical reso-
A considerable amount of work has been devoted in thenance width. It is significant to observe that a state from any
recent literature to determining the quantal signatures of given group of resonant states has many avoided crossings
classical nonlinear resonant&Most of the studies have with local modes and normal modes. These avoided cross-
concentrated on the evolution of the eigenenergies of a quatings are not in general associated with classical resonant mo-
tum system under the variation of a parameter of the Hamiltion as also pointed out by several authts.
tonian. Attempts to correlate the type and number of avoided It is also relevant to point out that the sequences of states
crossings to classical resonances have been unsatisfactory.that progress along the 2:1 resonance channel consist pre-
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cisely of those states corresponding to nearly parallel linesvith the slope of the classical resonance line in action space
from different groups in Figure 20. does influence the quantum states irrespective of the widths
Finally, we note that the existence of many broadof the resonances, and is an important parameter in the stud-
avoided crossings in the eigenvalue correlation diagrams wies of quantum-classical correspondence of resonant Hamil-
have computed foP=16 means that it is often impossible to tonians.
follow diabats in order to correlate eigenstates of the full  The existence of the superpolyad quantum numisér
Hamiltonian with those of zeroth-order single resonancaeduces the 3-mode Baggot Hamiltonian to an effectively
Hamiltonians, as done by Rose and Kellman Ror 8.4 two degree of freedom problem, and we have made extensive
use throughout of the technology developed for studying the
classical mechanics and classical-quantum correspondence
of such systems. Despite being effectively a two degree of

In this paper we have studied the classical and quanturfieedom problem, however, the phase space structure exhib-
mechanics of the Baggot vibrational Hamiltonian for its complexities not usually found in 2-mode systefhsu-
H,0.%® We have shown first of all that standard Chirikov ture work will investigate the consequences of breaking the
resonance analysis provides a useful approximate map of tH@nstancy of/, thereby obtaining a true 3-mode problem.
classical phase space structure. This conclusion is support&€ry little is currently known concerning detailed classical
by more rigorous analysis of classical phase space structuf/namics and/or quantum-classical correspondence for
in terms of families of resonant 2-tori, and by examination of3-mode molecular Hamiltonians. Most techniques that are
classical surfaces of section. We point out that determinatiodseful for 2 degree of freedom systems are either inappropri-
of the location of primary periodic orbits alone is not suffi- ate or need to be suitably generalized in order to study mul-
cient to establish detailed correlations between the form ofimode problems. A number of very rich problems pertaining
the quantum eigenstates of the Baggot Hamiltonian and clag0 the nature of classical phase space transport, dynamical
sical phase space structure. Whereas the primary periodfgnneling, chaos assisted tunnefihgnd multimode effects
orbits intersect constant  (superpolyad numbgsurfaces in ~ arise, however, and the undoubtedly subtle interplay between
isolated points, resonant 2-tori determined within the singleclassical transport and quantum mechanisms leading to delo-
resonance approximation appear in 1-parameter familiegalization and/or localization has to be understood in order to
The resonant 2-tori are thus suitable generalizations of th@ain insights into the spectrum and dynamics of realistic mo-
primary periodic orbits to 3D systems, and form a usefu”eCUlar Hamiltonians. The present work provides the founda-
framework for understanding both the classical phase spadion for future work towards these important yet difficult
and quantum-classical correspondence of the system. goals.

An essential aspect of our study is the examination of
q_uantum phase spacgiusimi) _distr_ibution func_tions for  ACKNOWLEDGMENTS
eigenstates of the Baggot Hamiltonian. Comparison of quan-
tum phase space distributions with corresponding classical This work is supported by NSF Grant CHE-9403572.
surfaces of section enables us to define resonant and nofomputations reported here were performed in part on the
resonant states as localized inside or outside a given res&ornell Supercomputer Facility, which is supported by NSF
nance channel, respectively. Quantum states are found to cdnd IBM corporation.
ganize into sequences of states that progress along the
resonance chanpels. An importar}t observation is that the; AXPPENDIX: PRIMARY PERIODIC ORBITS AND
tion space amplitudes for states in such sequences exhibit@g=goNANT 2-TORI
periodicity, which is determined by the slope of the classical ) ) o
resonance line. The existence of these sequences enablesly&ifurcation analysis of the Baggot Hamiltonian:
to provide labels for terminal “mixed” states in the vicinity ©eriodic orbits
of resonance intersections. In terms of variablesN, ¢), with N=K +J", the Baggot

For the manifold of states examinédll states withP Hamiltonian is
=16), it is found that most states can be assigned toone of 4 __
distinct classes of eigenstate; these assignments are made 26N+ asNT+ N3+ B1AN,)
with thg aid of the Husimi function and the identification of X[(Ny+BJ)2—N2]Y2 cos by + B, (No+ BJ)2— N2
the various sequences. The study of the energy spectrum
with the variation of a resonant coupling parame(ghich X €S 2p;+ Bp(AJ—4Np)[ (N + Ny +BJ)M
determines the width of a resonance chahmebvides a 12
characteristic quantum signature of states dgzp in the reso- X 0S¢+ (N=Ny +BJ)™ cos ], (A1)
nance regions. A similar signature had been studied earlienith B1(No)=pB1+ uiNo+us, ¢.=(h1+¢,)/2, and
by Ramachandran and Kay in a simpler sysfé@ur stud-  B1p,=B2n=p8p. The various constants are functions of the
ies strengthen the notion that there is no necessary connegriginal Baggot parameters:

VII. CONCLUSIONS

tion between. the .eX|stence of avqlded crossings in energy B=0.-2Q,, (A2a)
level correlation diagrams and particular classical non-linear
resonances. However, the approximate periodicity associated a4 ,=2C+ C1,, (A2Db)
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m1=2(N"=2\"), (A2¢)

wo=(2N"B+\"A)J. (A2d)

In terms of the original action variablesA{—4N,)=1, and
(Nzi Nl+ BJ) =| 1,2-
Hamilton’s equations of motion are:

$1=2a;N; =N B f (N +BJ)?— N3]~ 12

1
X coq 1) —2N1 B2, COg2¢1) + > Bo(AJ—4N,)

X[(N2+Ny+BJ)~"?cog ¢)

—(N,—N;+BJ) Y2 cog¢_)], (A3a)

hr=20+2a,Ny+ 2B, Ny+BJ)cog2¢q) + [ mw1[ (N,
+BJ)?— N5]"2+ B1o(No+BI)[(N,+BI)2— N3] 2]
X cog ¢1) —4Bp[ (Ny+N;+BI) Y2 cog ¢ ) + (N

—N;+BJ)Y2 cod ¢p_)]+ % Bp(AJ—4N,)[(Na+ Ny

+BJ) M cog ¢, )+ (N,—N;+BJI) Y2 cog ¢ )],

(A3b)

N1 = B14 (No+BJ)%— N3] sin( ¢y )

+2B2 (N +BJ)?—Ni]sin(2¢,)

1 1/2 «;

+ 5 Bo(AJ—=4N2)[(No+ Ny +BJ) ™ sin(¢)

+(N,—N;+BJ)¥2 sin(¢_)], (A3c)
szg Bo(AJ—4N,)[(N,+N;+BI)Y2 sin(¢ )

—(N,—N; +B)¥?sin(¢_)]. (A3d)

a. Normal mode periodic orbits

We are interested in finding the equilibrium points of the

above set of equation®,=0= ¢, , k=1,2) since they cor-
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N1=B12(Ny+BJI)Sin( ) + 28,4 No+BJ)? sin(2,)
+ Bp(AJ—4Ny) (N +BJ) M2 sin( ¢p1/2)cog ¢,/2),
(Adc)

N,= Bp(AJ—4N,)(No+BJI)Y2 cog ¢,/2)sin( ¢,/2), (Add)

where we have used the standard trigonometric identities to
rewrite terms involvings.. . Note thatg,, is a function of

N,. Let us consider the equation fod, and note that it
vanishes for the following cases:

(& N,=AJ4,
(b) N,#AJ4, ¢=+m,
(© N,#AJ4, ¢,=0+27.

We have not considered the possibility d§+BJ=0 since
this corresponds th,=J, | 1=1,=0, i.e., a pure bend critical
point.

Case a:In this caseN,=AJ/4 which implies that the
action in the bend mode is zero. Wigh =0,+ 7 we see that
N.=0=¢, (k=1,2) and

. 1 1
br=20+ > (arA+ B2+ 2 #1d+ B

—4BpIY? cog ¢,/2). (A5)

Although the time derivativep, is in general nonzero, the
solution withl,= 0 is nevertheless a periodic orbit, agd is

just the rotation rate around the periodic orbit. There are,
however, certain values @f,= ¢V such thatp,=0, signal-
ling the bifurcation of the normal mode periodic orbit due to
2:1 resonance with the bend mode. This valuepgfis de-
termined by:

1
cog ¢5) = =17 (Co+C4J), (A6)
48,
where
Co=2w+ Bio+ uz, (A7)
1 1

If both ¢1=0=¢2 when 1,=0 then ¢,=6,—6, and ¢,

respond to periodic orbits of the full system, i.e., 1-tori with = 61+ 6,—46,. Thus, vanishing of both time derivatives

the angle variable being the ignorable angle=Ad,
+B(6,+ 6,) conjugate to the polyad numb&r We first
look for solutions corresponding té; =0, which are normal
mode type solutions in the full system. If we $¢t=0 in the
above equations then we get the system of equations:

¢1= — Bp(AJ—4N,) (N +BJ) "2 sin(¢4/2)sin( ¢,/2),
(A4a)

¢2: 2w+ 2a,Ny+[m1(No+BJ) + Byo]cog ¢q)
+2B2(Ny+BJ)? cog2¢1) —[8B,(N,+BJ)M?

+ Bp(AJ—4N,) (N, +BJ) ~Y?]cod ¢,/2)coq ¢,/2),
(A4db)

implies thatd,=0,=26,.

Case b: It is easy to convince oneself that in case b
bothN; and ¢, cannot vanish with a single choice &% and
hence we disregard this case.

Case c:In this case with a choice op;=0,+27 we
haveN,=0= ¢, k=1,2, and the equation we are left with
is as follows:

b= 25+ 2a,No+ p1(Noy+BJ)+ Bro+ 2 8o Ny+ BJ)
F8B,(N,+BJ)Y2+ B (AJ—4N,)(N,+BJ) "2,
(A8)

We cannot havé\,=AJ/4 here since this was considered in
the previous case and moreover, this solutionNgigives us
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precisely the periodic orbits corresponding to the bifurcatiorthe variablest=x, +x_, s=x2+x% with x.=(N,*N;

of the normal mode periodic orbit family resulting from case +BJ)¥2. The two cases are related by changes in the sign of
a) due to the 2:1 resonances. Simplifying the above equatiog, and the nonlinear equations to be solved are:

and denoting<=(N,+ BJ) we get a cubic equation i

dyt3+dots+dgt =28,5+ B,J=0, (A15a)
x3¥2x px+gx2+r=0, (A9) .
where e t*F 28,13+ e,st2— e,82+ egt?+ Bts+ €48t Bplt=0,
128, 0 (A15b)
P= 2(at 1t B2’ (A0 where
Co— (u1+2a,)BJ di= a1~ B2, (Al63)
_ =0 (p1 2) , (A10b)
2(azt pa1t B2 d g 1 } (AL6D)
= — + — ,
B (Al0c) 2 v
r=—7—7———-, [o
2(apt+p1t B2 dy= 1B~ Bl iz, (A160)
with the condition thak+# 0. 1
&= K1, (A16d)
b. Local mode periodic orbits
Referring back to the full system of Hamilton’s equa- 1
= + —
tions of motion we observe that witk,=AJ/4 and ¢, =0, &=7 (@t Bor— ), (Al6e)
+ 7 we haveN, =0, and the equation fo$, becomes: 3= — a,BJ, (A16)
) 72 , —-1/2
$1=Nq| 2(a;— > (——N ) } (A11) 1
1=Ng 17 B22) + P12 16 N1 =5 ds—es. (A169)

Foerth_l with
N—_[JZ B
Y116 4(ay—B2)?

we haveg,=0 and so obtain local mode periodic orbit so- 2. Integrable limit 2-tori

lutions. Note, again that the finite value ¢4 here does not Consider the Baggot Hamiltonian with only the 1:1 and

matter asl,=0. As before there are certain values #§  the 2:2 resonance interactions included, i,=0. Using

= ¢$?) such thaip,=0 and this indicates that the local mode the generating function:

periodic orbits can bifurcate due to the influence of the 221 __

resonances. In the case wheép=0 we have: T 1= (017 0) Lo+ (011 62)Lo+ Oy, (AL7)
the Hamiltonian becomes:

The pair of nonlinear equations are solved numerically with

172 the conditionsx.. # 0.

, (A12)

f1(J)
2y = L _
Coqd)Z /2) fz(J)' (A13) '%int: ZQSL2+QbLb+(2aS_ 6SS)L§+(2aS+ ess)l-g
where +apli+ 2egplplo+ Bra(L3— L3 Y2 cog xq)
1 2_ 2
F1(3)= 28+ = (aAtapd+ P2 (a14q + Boo L3~ L) cos 2xy). (A18)
2 2(a1—B2)

It is clear that both_, andL, are constants of the motion,

J —\¥2 and the superpolyad numbé#4L,+L,. Thus, finding the

a4 Nl) } (A14b) equilibrium points of the above Hamiltonian determines
resonant 2-tori since there asgo ignorable angles. It is easy

with a similar equat.|on.for the case vyheﬁq= * 7. In_order_ to solve the pair of equationis,=0= y; and the solutions
to calculate the periodic orbits resulting from the blfurcauonare with y,=0,% 7

of the local mode solutions due to the 2:1 resonances we

have to consider the full system of equations and solve them @) Li1=0, (A193
with the conditionN,# AJ/4. Let us consider the equations 52 112

for Ny (k=1,2) and remember that the allowed ranges for  b) L,==|L2- 12 ,
the conjugate angles arep,e(—2m,2m) and ¢, 4H2as~ €55~ B22)
e (—8m,4m). Of all the possible combinations, it is suffi- The first solution corresponds to normal mode 2-tori and the
cient to consider two cases with &,=0=¢, and h ¢;  second solution represents local mode 2-tori.

=0, ¢,=2m. These choices for the angles imply thdt Now, consider the Baggot Hamiltonian with a single 2:1
=0; k=1,2 and the relevant equations for the time deriva-resonance interaction only and perform a canonical transfor-
tive of the angles reduces to a pair of nonlinear equations imation

1/2
+

J —
7N

f2(J) =48

(A19D)
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