PROJECTIONS IN THE CONVEX HULL OF THREE SURJECTIVE ISOMETRIES ON $C(\Omega)$

A. B. ABUBAKER AND S. DUTTA

Abstract

Let Ω be a compact connected Hausdorff space. We define generalized n-circular projection on $C(\Omega)$ as a natural analogue of generalized bi-circular projection and show that such a projection P can always be represented as $P=\frac{I+T+T^{2}+\cdots+T^{n-1}}{n}$ where I is the identity operator and T is a surjective isometry on $C(\Omega)$ such that $T^{n}=I$. We next show that if convex combination of three distinct surjective isometries on $C(\Omega)$ is a projection, then it is a generalized 3-circular projection.

1. Introduction

Let X be a complex Banach space and \mathbb{T} denote the unit circle in the complex plane. A projection P on X is said to be a generalized bi-circular projection (hence forth GBP) if there exists a $\lambda \in \mathbb{T} \backslash\{1\}$ such that $P+\lambda(I-P)$ is a surjective isometry on X. Here I denotes the identity operator on X.

The notion of GBP was introduced in [7]. In [2] it was shown that a projection on $C(\Omega)$, where Ω is a compact connected Hausdorff space, is a GBP if and only if $P=\frac{I+T}{2}$, where T is a surjective involution of $C(\Omega)$, that is $T^{2}=I$. Similar result was obtained for GBP in $C(\Omega, X)$ when X is a complex Banach space for which vector-valued Banach Stone Theorem holds true. In [4] it was shown that the set of GBP's on $C(\Omega)$ is algebraically reflexive and a description of the algebraic closure of GBP's in $C(\Omega, X)$ was also obtained.

In [1] an interesting characterization of GBP's on $C(\Omega)$ was obtained. It was shown that if P is any projection on $C(\Omega)$ such that $P=\alpha T_{1}+(1-\alpha) T_{2}, \alpha \in$ $(0,1), T_{1}, T_{2}$ are two surjective isometries on $C(\Omega)$, then $\alpha=\frac{1}{2}$ and P can be written as $\frac{I+T}{2}$ for some surjective isometry T such and $T^{2}=I$. This shows any projection which is convex combination of two surjective isometries on $C(\Omega)$ is indeed a GBP. Motivated by this, in the same paper, the author introduced the notion of generalized n-circular projection as follows. A projection P on a Banach space X is a generalized n-circular projection if there exists a surjective isometry L on X of order n, that is $L^{n}=I$, such that $P=\frac{I+L+L^{2}+\cdots+L^{n-1}}{n}$. It was suggested

[^0]in [1] that any projection which is in the convex hull of 3 surjective isometries on $C(\Omega)$ should be a generalized 3 -circular projection. It was proved in [3] that if $P=\frac{T_{1}+T_{2}+T_{3}}{3}$, where $T_{i}, i=1,2,3$ are surjective isometries on $C(\Omega)$ and P is a projection then there exists a surjective isometry T such that $P=\frac{I+T+T^{2}}{3}$ and $T^{3}=I$, hence P is a generalized 3 -circular projection.

In this paper we try to complete this circle of ideas on generalized 3-circular projections on $C(\Omega)$ as obtained in [1] for GBP's. We start with the following definition of a generalized n-circular projection which is a more natural one to start with if we want to put the definition of GBP in this general set up.

Definition 1.1. Let X be a complex Banach space. A projection P_{0} on X is said to be a generalized n-circular projection, $n \geq 3$, if there exist $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n-1} \in$ $\mathbb{T} \backslash\{ \pm 1\}, \lambda_{i}, i=1,2, \cdots, n-1$ are of finite order and projections $P_{1}, P_{2}, \cdots, P_{n-1}$ on X such that
(a) If $i \neq j, i, j=1,2, \cdots, n-1$ then $\lambda_{i} \neq \pm \lambda_{j}$
(b) $P_{0} \oplus P_{1} \oplus \cdots \oplus P_{n-1}=I$
(c) $P_{0}+\lambda_{1} P_{1}+\cdots+\lambda_{n-1} P_{n-1}$ is a surjective isometry.

Note that in the case of GBP, if $P+\lambda(I-P)$ is a surjective isometry and $\lambda \in \mathbb{T} \backslash\{1\}$ is of infinite order then P is a hermitian projection (see [8]). Such projections were called trivial in $[4,8]$. Thus in Definition 1.1 it is natural to start with λ_{i} 's which are of finite order.

If P is a projection on $C(\Omega)$ such that $P=\frac{I+T+T^{2}+\cdots+T^{n-1}}{n}$ for a surjective isometry T such that $T^{n}=I$ then it is easy to show that P is a generalized n-circular projection in the sense of Definition 1.1. To see this, let $\lambda_{0}=1, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n-1}$ be the n distinct roots of identity. For $i=1,2, \cdots, n-1$, we define $P_{i}=$ $\frac{I+\overline{\lambda_{i}} T+{\overline{\lambda_{i}}}^{2} T^{2}+\cdots+{\overline{\lambda_{i}}}^{n-1} T^{n-1}}{n}$. Then each P_{i} is a projection, $P \oplus P_{1} \oplus P_{2} \oplus \cdots \oplus P_{n-1}=I$ and $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{n-1} P_{n-1}=T$.

Our first result shows that the definition of generalized n-circular projection given in Definition 1.1 is equivalent to the one considered in $[1,3]$ for the space $C(\Omega)$. We prove our result for $n=3$ and the proof in the general case follows the same line of argument. In particular we show

Theorem 1.2. Let Ω be a compact connected Hausdorff space and P_{0} a generalized 3-circular projection on $C(\Omega)$. Then there exists an surjective isometry L on $C(\Omega)$ such that
(a) $P_{0}+\omega P_{1}+\omega^{2} P_{2}=L$ where P_{1} and P_{2} are as in Definition 1.1 and ω is a cube root of identity,
(b) $L^{3}=I$.

Hence $P_{0}=\frac{I+L+L^{2}}{3}$.

Next we prove that a projection in the convex hull of 3 isometries is either a GBP or a generalized 3-circular projection.

Theorem 1.3. Let Ω be a compact connected Hausdorff space. Let P be a projection on $C(\Omega)$ such that $P=\alpha_{1} T_{1}+\alpha_{2} T_{2}+\alpha_{3} T_{3}$ where T_{1}, T_{2}, T_{3} are surjective isometries of $C(\Omega), \alpha_{i}>0, i=1,2,3 \alpha_{1}+\alpha_{2}+\alpha_{3}=1$. Then either,
(a) $\alpha_{i}=\frac{1}{2}$ for some $i=1,2,3 \alpha_{j}+\alpha_{k}=\frac{1}{2}, j, k \neq i$ and $T_{j}=T_{k}$
or
(b) $\alpha_{1}=\alpha_{2}=\alpha_{3}=\frac{1}{3}$ and T_{1}, T_{2}, T_{3} are distinct surjective isometries. Moreover in this case there exists a surjective isometry L on $C(\Omega)$ such that $L^{3}=I$ and $P=\frac{I+L+L^{2}}{3}$.

A few remarks are in order.
Remark 1.4. (a) If P is a proper projection which can be written as $P=$ $\alpha T_{1}+(1-\alpha) T_{2}$ where T_{1}, T_{2} are surjective isometries on $C(\Omega)$, then $\alpha=\frac{1}{2}$. To see this, since P is proper, there exists $f \in C(\Omega), f \neq 0$, such that $P f=0$. Thus $\alpha T_{1} f=-(1-\alpha) T_{2} f$. Since T_{1}, T_{2} are isometries, taking norms on both sides we observe that $\alpha=\frac{1}{2}$.
(b) As mentioned above, in [3] it was already proved that if a projection P on $C(\Omega)$ can be written as $P=\frac{T_{1}+T_{2}+T_{3}}{3}$ for 3 distinct surjective isometries, then it is indeed a generalized 3 -circular projection in the sense of definition in [1] and hence a generalized 3-circular projection by Theorem 1.2. Our proof for this part of Theorem 1.3 essentially follows the same idea as in [3].
(c) Throughout the next section where we present the proofs of Theorem 1.2 and Theorem 1.3 we will use standard Banach Stone Theorem, that is a surjective isometry T of $C(\Omega)$ is given by $T f(\omega)=u(\omega) f(\phi(\omega)), f \in C(\Omega)$, where ϕ is a homeomorphism of Ω and u is a continuous function $u: \Omega \rightarrow \mathbb{T}$ (see [5]).
(d) For the case of $C(\Omega, X), X$ is a complex Banach space where vectorvalued Banach stone Theorem holds true (see [6]), same proof with obvious modification will give us the corresponding results.
(e) The assumption of connectedness is essential. In [3], a GBP on ℓ_{∞} was constructed which is not given by average of identity and a surjective isometry of order 2. For generalized 3 -circular projections, a similar example can easily be constructed on ℓ_{∞}.
(f) Although the proof of Theorem 1.3 suggests that similar result should be true for $n \geq 4$ (and this is also mentioned in $[1,3]$), the number of cases occurring in the proof becomes increasingly difficult to handle. It seems that one needs some other approach to prove Theorem 1.3 for general n.

2. Proof of main Results

We will need the following lemma in the proof of Theorem 1.2.
Lemma 2.1. Let Ω be a compact connected Hausdorff space and P_{0}, P_{1}, P_{2} are projections on $C(\Omega)$ such that $P_{0} \oplus P_{1} \oplus P_{2}=I$. Let $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ be of finite order such that $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}$ is a surjective isometry on $C(\Omega)$. Then λ_{1} and λ_{2} are of same order.

Proof. Let $\lambda_{1}^{m}=\lambda_{2}^{n}=1$ and $m \neq n$. Without loss of generality we assume that $m<n$. Let $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=L$ where L is a surjective isometry on $C(\Omega)$. Then $P_{0}+\lambda_{1}^{m} P_{1}+\lambda_{2}^{m} P_{2}=\left(P_{0}+P_{1}\right)+\lambda_{2}^{m} P_{2}=L^{m}$. Since L^{m} is again a surjective isometry and $P_{2}=I-\left(P_{0}+P_{1}\right)$, by [2, Theorem 1] we have $\lambda_{2}^{m}=-1$. Hence n divides $2 m$. Similarly we obtain $\lambda_{1}^{n}=-1$ and m divides $2 n$. Thus $2 n=m k_{1}, 2 m=n k_{2}$. Thus, $k_{1} k_{2}=4$. Since we have assumed $m<n$, this implies $k_{1}=4, k_{2}=1$. But then $-1=\lambda_{1}^{n}=\lambda_{1}^{2 m}=1$ - A contradiction. Hence $m=n$.

Proof of the Theorem 1.2:

Let $P_{0} \oplus P_{1} \oplus P_{2}=I$ and $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=L$ where L is a surjective isometry on $C(\Omega)$. Note that this implies $P_{0}+\lambda_{1}^{2} P_{1}+\lambda_{2}^{2} P_{2}=L^{2}$. Thus eliminating P_{1}, P_{2} we obtain

$$
\begin{equation*}
P_{0}=\frac{\left(L^{2}-\lambda_{1}^{2} I\right)-\left(\lambda_{1}+\lambda_{2}\right)\left(L-\lambda_{1} I\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)} \tag{i}
\end{equation*}
$$

By classical Banach Stone Theorem there exists a homeomorphism ϕ of Ω and a continuous function $u: \Omega \rightarrow \mathbb{T}$ such that for any $f \in C(\Omega), L f(\omega)=u(\omega) f(\phi(\omega))$.

Next we observe that $\left(L-\lambda_{2} I\right)\left(L-\lambda_{1} I\right)(L-I)=0$. Taking $\lambda_{1}+\lambda_{2}=a$ and $\lambda_{1} \lambda_{2}=b$ this implies,

$$
\begin{equation*}
L^{3}-(1+a) L^{2}+(a+b) L-b I=0 \tag{*}
\end{equation*}
$$

We consider the following cases:
(I) $\omega=\phi^{2}(\omega), \omega \neq \phi(\omega)$. Then we have $\phi(\omega)=\phi^{3}(\omega)$. We consider a function $f \in C(\Omega)$ such that $f(\omega)=1, f(\phi(\omega))=0$. Then Equation $(*)$ becomes $-(1+$ a) $u(\omega) u(\phi(\omega))-b=0$, hence $u(\omega) u(\phi(\omega))=-\frac{b}{1+a}$. Similarly considering a $f \in$ $C(\Omega)$ such that $f(\omega)=0, f(\phi(\omega))=1$, the Equation $(*)$ gives $u(\omega) u(\phi(\omega))=$ $-(a+b)$. Thus we have $\frac{b}{1+a}=a+b$.

That is, $\left(1+\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{1} \lambda_{2}\right)=\lambda_{1} \lambda_{2}$,
or
$2+\lambda_{1}+\lambda_{2}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}}=0$.

By Lemma 2.1, there exists an n such that both λ_{1} and λ_{2} are nth roots of identity. Hence we may assume $\lambda_{2}=\lambda_{1}^{m}$ for some m.

Thus the above equation can written as,

$$
\lambda_{1}^{2 m}+\lambda_{1}^{2 m-1}+\lambda_{1}^{m+1}+2 \lambda_{1}^{m}+\lambda_{1}^{m-1}+\lambda_{1}+1=0,
$$

or
$\left(\lambda_{1}+1\right)\left(\lambda_{1}^{m-1}+1\right)\left(\lambda_{1}^{m}+1\right)=0$.
Since $\lambda_{1} \neq-1$, we will have $\lambda_{1}^{m}=-1$ or $\lambda_{1}^{m-1}=-1$. If $\lambda_{1}^{m}=-1$ then $\lambda_{2}=-1$ which is a contradiction on the assumptions on λ_{2} and if $\lambda_{1}^{m-1}=-1$ then $\lambda_{2}=\lambda_{1}^{m}=-\lambda_{1}-\mathrm{A}$ contradiction again.

Thus this case is not possible.
(II) $\omega=\phi^{3}(\omega), \omega \neq \phi(\omega) \neq \phi^{2}(\omega) \neq \omega$. We choose respectively, $f \in C(\Omega)$ such that $f(\omega)=1, f(\phi(\omega))=0, f\left(\phi^{2}(\omega)\right)=0, f \in C(\Omega)$ such that $f(\omega)=$ $0, f(\phi(\omega))=1, f\left(\phi^{2}(\omega)\right)=0$ and $f \in C(\Omega)$ such that $f(\omega)=0, f(\phi(\omega))=$ $0, f\left(\phi^{2}(\omega)\right)=1$ to get $a=-1$ and $b=1$. Also we have $u(\omega) u(\phi(\omega)) u\left(\phi^{2}(\omega)\right)=1$. Thus λ_{1} and λ_{2} are the cube roots of identity and $u(\omega) u(\phi(\omega)) u\left(\phi^{2}(\omega)\right)=1$.
(III) $\omega=\phi(\omega)$. In this case Equation $(*)$ gives $u^{3}(\omega)-(1+a) u^{2}(\omega)+(a+$ b) $u(\omega)-b=0$. Thus for each $\omega \in \Omega, u(\omega)$ has 3 possible values. Now if $\omega=\phi(\omega)$ is the entire set then from connectedness of Ω it follows that u is a constant function. By Equation (i), in this case P_{0} is constant multiple of the identity operator and since P_{0} is a projection, it is either I or 0 operator.

In conclusion we have λ_{1} and λ_{2} are cube roots of identity and $L^{3}=I$.
It is now straight forward to see that $P_{0}=\frac{I+L+L^{2}}{3}$.
This completes the proof of Theorem 1.2.

Proof of Theorem 1.3: We start by observing the following fact. If P is a proper projection, then $\exists f \in C(\Omega), f \neq 0$ such that $P f=0$. Hence, $\alpha_{1} T_{1} f+\alpha_{2} T_{2} f=$ $-\alpha_{3} T_{3} f$. Since T_{1}, T_{2}, T_{3} are isometries, by taking norms we have $\alpha_{1}+\alpha_{2} \geq \alpha_{3}$. Similarly, $\alpha_{2}+\alpha_{3} \geq \alpha_{1}$ and $\alpha_{1}+\alpha_{3} \geq \alpha_{2}$. Thus, if P is a proper projection then $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the lengths of sides of a triangle. It is also evident that $\alpha_{i} \leq 1 / 2, i=$ $1,2,3$.

Let $T_{i} f(\omega)=u_{i}(\omega) f\left(\phi_{i}(\omega)\right), i=1,2,3$, where u_{i} and ϕ_{i} are given by the Banach Stone Theorem.
P is a projection if and only if

$$
\begin{aligned}
& \alpha_{1} u_{1}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)\right]+ \\
& \alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+
\end{aligned}
$$

$\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right) f\left(\phi_{1} \circ \phi_{3}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right) f\left(\phi_{2} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]$
$=\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right)$.
We partition Ω as follows:

$$
\begin{aligned}
& A=\left\{\omega \in \Omega: \phi_{1}(\omega)=\phi_{2}(\omega)=\phi_{3}(\omega)\right\} \\
& B_{i}=\left\{\omega \in \Omega: \omega=\phi_{j}(\omega)=\phi_{k}(\omega) \neq \phi_{i}(\omega)\right\}, \\
& C_{i}=\left\{\omega \in \Omega: \omega=\phi_{i}(\omega) \neq \phi_{j}(\omega)=\phi_{k}(\omega)\right\}, \\
& D_{i}=\left\{\omega \in \Omega: \omega=\phi_{i}(\omega) \neq \phi_{j}(\omega) \neq \phi_{k}(\omega) \neq \omega\right\}, \\
& E_{i}=\left\{\omega \in \Omega: \omega \neq \phi_{i}(\omega) \neq \phi_{j}(\omega)=\phi_{k}(\omega) \neq \omega\right\} \text { and } \\
& F=\left\{\omega \in \Omega: \text { none of } \omega, \phi_{1}(\omega), \phi_{2}(\omega), \phi_{3}(\omega) \text { are equal }\right\},
\end{aligned}
$$

where $i, j, k=1,2,3$.
Suppose $A \neq \emptyset$. If $\omega \in A$, i.e, $\phi_{1}(\omega)=\phi_{2}(\omega)=\phi_{3}(\omega)$, then Equation $(* *)$ is reduced to

$$
\begin{align*}
& {\left[\alpha_{1} u_{1}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right]\left[\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\right.} \\
& \left.\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\left[\alpha_{1} u_{1}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] f\left(\phi_{1}(\omega)\right) \tag{A}
\end{align*}
$$

Let $A_{1}=\left\{\omega \in A: \alpha_{1} u_{1}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) \neq 0\right\}$ and $A_{2}=A \backslash A_{1}$. If $\omega \in A_{1}$, then

$$
\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)=f\left(\phi_{1}(\omega)\right)
$$

First evaluating at constant function 1 we observe that $\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right)+$ $\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right)=1$. Hence $u_{i}\left(\phi_{i}(\omega)\right)=1, i=1,2,3$. Thus we obtain, $\alpha_{1} f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} f\left(\phi_{3}^{2}(\omega)\right)=f\left(\phi_{1}(\omega)\right)$. Now if, $\phi_{1}(\omega)$ is not equal to any of $\phi_{i}^{2}(\omega), i=1,2,3$, then choosing an $f \in C(\Omega)$ such that $f\left(\phi_{1}(\omega)\right)=1$ and $f\left(\phi_{i}^{2}(\omega)=0\right.$, we get a contradiction. Similarly if $\phi_{1}(\omega)$ is equal to one or two among $\phi_{i}^{2}(\omega) i=1,2,3$ then choosing an appropriate f we get either $\alpha_{i}=1$ or $\alpha_{j}+\alpha_{k}=1$, both contradicting the choices of $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

Thus in this case, we must have, $\phi_{1}^{2}(\omega)=\phi_{2}^{2}(\omega)=\phi_{3}^{2}(\omega)=\phi_{1}(\omega)$ or $\omega=$ $\phi_{1}(\omega)=\phi_{2}(\omega)=\phi_{3}(\omega)$. Hence, $P f(\omega)=f(\omega)$ if $\omega \in A_{1}$ and $P f(\omega)=0$ if $\omega \in A_{2}$. In particular, for the constant function $1, P 1$ is a 0,1 valued function. By the connectedness of Ω we have $\Omega \neq A$.

Lemma 2.2. If P is a projection, then for $i=1,2,3, E_{i}=\emptyset$ and $F=\emptyset$.
Proof. We show $E_{1}=\emptyset$. For the case of E_{2} and E_{3} the proof is exactly the same. Let $\omega \in E_{1}$, i.e $\omega \neq \phi_{1}(\omega) \neq \phi_{2}(\omega)=\phi_{3}(\omega) \neq \omega$.
Then Equation $(* *)$ reduces to

$$
\begin{gathered}
\alpha_{1} u_{1}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)\right] \\
+\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right]\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\right.
\end{gathered}
$$

$$
\begin{equation*}
\left.\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right)+\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] f\left(\phi_{2}(\omega)\right) \tag{E1}
\end{equation*}
$$

We claim $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) \neq 0$. To see the claim, if $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)=0$, then Equation (E1) further reduces to

$$
\begin{gathered}
\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right) \\
=f\left(\phi_{1}(\omega)\right) .
\end{gathered}
$$

An argument similar to case (A) above shows that $\phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega)=\phi_{2} \circ \phi_{1}(\omega)=$ $\phi_{1}^{2}(\omega)$, which is clearly a contradiction to the choice of $w \in E_{1}$.

We choose a continuous function $f \in C(\Omega)$ such that $f\left(\phi_{1}(\omega)\right)=1$ and $f\left(\phi_{2}(\omega)\right)=f\left(\phi_{1} \circ \phi_{2}(\omega)\right)=f\left(\phi_{1}^{2}(\omega)\right)=0$. Equation (E1) now reduces to

$$
\begin{gather*}
\alpha_{1} u_{1}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)\right]+\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] \\
{\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\alpha_{1} u_{1}(\omega)} \tag{E2}
\end{gather*}
$$

If $\phi_{1}(\omega)$ is not equal to any of the points $\phi_{2} \circ \phi_{1}(\omega), \phi_{3} \circ \phi_{1}(\omega), \phi_{2}^{2}(\omega)$ and $\phi_{3}^{2}(\omega)$, then we could have chosen our f to have value 0 at these points and this would have lead us to a contradiction. If $\phi_{1}(\omega)=\phi_{2} \circ \phi_{1}(\omega)$ then clearly we could choose $f\left(\phi_{2}^{2}(\omega)\right)=0$. If both $\phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{3}^{2}(\omega)$ are not equal to $\phi_{1}(\omega)$, then choosing f to take value 0 at $\phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{3}^{2}(\omega)$ we have

$$
\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}\left(\phi_{1}(\omega)\right)=\alpha_{1} u_{1}(\omega)
$$

and hence $\alpha_{2}=1$, a contradiction again. Thus either of $\phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{3}^{2}(\omega)$ is equal to $\phi_{1}(\omega)$. Similar consideration with $\phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega), \phi_{1}(\omega)=\phi_{2}^{2}(\omega)$ and $\phi_{1}(\omega)=\phi_{3}^{2}(\omega)$ lead us to the conclusion that $\phi_{1}(\omega)$ will be equal to exactly two elements of the set

$$
\left\{\phi_{2} \circ \phi_{1}(\omega), \phi_{3} \circ \phi_{1}(\omega), \phi_{2}^{2}(\omega), \phi_{3}^{2}(\omega)\right\}
$$

If $\phi_{1}(\omega)=\phi_{2} \circ \phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega)$ then (E2) will imply that $\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right)+$ $\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right)=1$ - A contradiction. Now, suppose that $\phi_{1}(\omega)=\phi_{2} \circ \phi_{i}(\omega)=$ $\phi_{3} \circ \phi_{j}(\omega)$ where $i, j \in\{1,2,3\}$. Choose f such that $f\left(\phi_{2}(\omega)\right)=1$ and $f\left(\phi_{1}(\omega)\right)=$ $f\left(\phi_{2} \circ \phi_{i_{1}}(\omega)\right)=f\left(\phi_{2} \circ \phi_{j_{1}}(\omega)\right)=0$, where $i_{1} \neq i, j_{1} \neq j$, and $i_{1}, j_{1}=1,2,3$. So, Equation (E1) becomes

$$
\begin{gather*}
\alpha_{1}^{2} u_{1}(\omega) u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)+\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] \\
=\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) . \tag{E3}
\end{gather*}
$$

If $\phi_{2}(\omega)$ is not equal to any one of $\phi_{1}^{2}(\omega)$ or $\phi_{1} \circ \phi_{2}(\omega)$, then we can choose f to be 0 at $\phi_{1}^{2}(\omega)$ and $\phi_{1} \circ \phi_{2}(\omega)$, thereby getting $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)=0$, a contradiction. If $\phi_{1}(\omega)=\phi_{1} \circ \phi_{2}(\omega)$, then by choosing f to be 0 at $\phi_{1}^{2}(\omega)$ we will get $\alpha_{1}=1$ which is a contradiction. Therefore, we have $\phi_{2}(\omega)=\phi_{1}^{2}(\omega)$. Similarly, $\phi_{1} \circ \phi_{2}(\omega)$ must be equal to atleast one of $\phi_{2} \circ \phi_{i_{1}}(\omega)$ or $\phi_{2} \circ \phi_{j_{1}}(\omega)$. But in this case we will be
left with 3 or 4 distinct points in Equation ($E 1$). By choosing f to be 0 at $\phi_{1}(\omega)$ and $\phi_{2}(\omega)$ and large enough at other points on the right hand side we will get a contradiction.

Now, suppose that $\omega \in F$, i.e all $\omega, \phi_{1}(\omega), \phi_{2}(\omega), \phi_{3}(\omega)$ are distinct.
Consider the following matrix:

$$
\left(\begin{array}{ccc}
\phi_{1}(\omega) & \phi_{2}(\omega) & \phi_{3}(\omega) \\
\phi_{1}^{2}(\omega) & \phi_{2} \circ \phi_{1}(\omega) & \phi_{3} \circ \phi_{1}(\omega) \\
\phi_{1} \circ \phi_{2}(\omega) & \phi_{2}^{2}(\omega) & \phi_{3} \circ \phi_{2}(\omega) \\
\phi_{1} \circ \phi_{3}(\omega) & \phi_{2} \circ \phi_{3}(\omega) & \phi_{3}^{2}(\omega)
\end{array}\right)
$$

Observe that points belonging to any column are all non equal. Choose first f such that $f\left(\phi_{1}(\omega)\right)=1$ and $f\left(\phi_{2}(\omega)\right)=f\left(\phi_{3}(\omega)\right)=f\left(\phi_{1}^{2}(\omega)\right)=f\left(\phi_{1} \circ \phi_{2}(\omega)\right)=$ $f\left(\phi_{1} \circ \phi_{3}(\omega)\right)=0$. Equation $(* *)$ becomes

$$
\begin{gather*}
\alpha_{1} u_{1}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)\right]+ \\
\alpha_{2} u_{2}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+ \\
\alpha_{3} u_{3}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right) f\left(\phi_{2} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right] \\
=\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right) . \tag{F1}
\end{gather*}
$$

Equation (F1) implies that $\phi_{1}(\omega)$ must be equal to at least 2 elements from the set

$$
\left\{\phi_{2} \circ \phi_{1}(\omega), \phi_{3} \circ \phi_{1}(\omega), \phi_{2}^{2}(\omega), \phi_{3} \circ \phi_{2}(\omega), \phi_{2} \circ \phi_{3}(\omega), \phi_{3}^{2}(\omega)\right\} .
$$

Since this set does not contain three equal elements, it follows that $\phi_{1}(\omega)$ is equal to exactly two; say $\phi_{2} \circ \phi_{i_{1}}(\omega)$ and $\phi_{2} \circ \phi_{j_{1}}(\omega)$ with $i_{1}, j_{1} \in\{1,2,3\}$. Therefore,

$$
\alpha_{i_{1}} \alpha_{2} u_{i_{1}}(\omega) u_{2}\left(\phi_{i_{1}}(\omega)\right)+\alpha_{j_{1}} \alpha_{3} u_{j_{1}}(\omega) u_{3}\left(\phi_{j_{1}}(\omega)\right)=\alpha_{1} u_{1}(\omega) .
$$

This implies that

$$
\alpha_{1} \leq \alpha_{2} \alpha_{i_{1}}+\alpha_{3} \alpha_{j_{1}}
$$

Similar arguments applied to $\phi_{2}(\omega)$ and $\phi_{3}(\omega)$ implies the inequalities:
$\alpha_{2} \leq \alpha_{1} \alpha_{i_{2}}+\alpha_{3} \alpha_{j_{2}}$ and $\alpha_{3} \leq \alpha_{1} \alpha_{i_{3}}+\alpha_{2} \alpha_{j_{3}}$.
Adding these three inequalities we get

$$
\begin{aligned}
1=\alpha_{1}+\alpha_{2} & +\alpha_{3} \leq \alpha_{1}\left(\alpha_{i_{2}}+\alpha_{i_{3}}\right)+\alpha_{2}\left(\alpha_{i_{1}}+\alpha_{j_{3}}\right)+\alpha_{3}\left(\alpha_{j_{1}}+\alpha_{j_{2}}\right) \\
& \leq \max \left\{\alpha_{i_{2}}+\alpha_{i_{3}}, \alpha_{i_{1}}+\alpha_{j_{3}}, \alpha_{j_{1}}+\alpha_{j_{2}}\right\}
\end{aligned}
$$

This is impossible.

Now we set ourselves to show the following:

Lemma 2.3. If $\omega \in C_{i}, i=1,2,3$ then $\alpha_{i}=1 / 2$ and $u_{i}(\omega)=u_{i}\left(\phi_{j}(\omega)\right)=u_{j}(\omega)=$ $u_{k}(\omega)=u_{j}\left(\phi_{j}(\omega)\right)=u_{k}\left(\phi_{j}(\omega)\right)=1$ for $j=1,2,3$ and $j \neq i$. If $\omega \in D_{i}, i=1,2,3$ then $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3$.

Proof. We prove the result for $i=1$. For $i=2$ and 3 similar argument is true. Let $\omega \in C_{1}$, i.e $\omega=\phi_{1}(\omega) \neq \phi_{2}(\omega)=\phi_{3}(\omega)$, then equation $(* *)$ reduces to

$$
\begin{gather*}
\alpha_{1} u_{1}(\omega)\left[\alpha_{1} u_{1}(\omega)\right) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{2}(\omega)\right]+\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] \\
{\left[\alpha _ { 1 } u _ { 1 } \left(\phi_{2}(\omega) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\right.\right.} \\
\alpha_{1} u_{1}(\omega) f(\omega)+\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] f\left(\phi_{2}(\omega)\right) . \tag{C1}
\end{gather*}
$$

Note that in this case we must have $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) \neq 0$; otherwise (C1) will give us $\alpha_{1}=1$.

We choose a function $f \in C(\Omega)$ such that $f\left(\phi_{2}(\omega)\right)=1, f(\omega)=f\left(\phi_{2}^{2}(\omega)\right)=$ $f\left(\phi_{3}^{2}(\omega)\right)=0$ which will reduce (C1) to

$$
\begin{gather*}
\alpha_{1} u_{1}(\omega)\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right]+\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} o \phi_{2}(\omega)\right)\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right] \\
=\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) . \tag{C2}
\end{gather*}
$$

Since $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega) \neq 0$ we obtain $\alpha_{1} u_{1}(\omega)+\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)=1$. Thus, $\phi_{1} \circ \phi_{2}(\omega)=\phi_{2}(\omega)$ and $\alpha_{1} \geq 1 / 2$. Since $\alpha_{i} \leq 1 / 2, \forall i$ we conclude $\alpha_{1}=1 / 2$ and $u_{1}(\omega)=u_{1}\left(\phi_{2}(\omega)\right)=1$. Using a function f such that $f(\omega)=0, f\left(\phi_{2}(\omega)\right)=1$ Equation (C1) becomes

$$
\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)=0 .
$$

The points $\phi_{2}^{2}(\omega)$ and $\phi_{3}^{2}(\omega)$ must be equal to one of ω or $\phi_{2}(\omega)$. Since $\phi_{2}^{2}(\omega)$ and $\phi_{3}^{2}(\omega)$ cannot be equal to $\phi_{2}(\omega)$ we have $\phi_{2}^{2}(\omega)=\phi_{3}^{2}(\omega)=\omega$. Now choose a function f such that $f(\omega)=1, f\left(\phi_{2}(\omega)=0\right.$, Equation (C1) is reduced to

$$
\left[\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\right]\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)\right]=1 / 4
$$

Since $\alpha_{2}+\alpha_{3}=1 / 2$, we have $\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)=\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)=$ $1 / 2$. This will imply that $u_{2}(\omega)=u_{3}(\omega)=u_{2}\left(\phi_{2}(\omega)\right)=u_{3}\left(\phi_{2}(\omega)\right)=1$.

We show that if $\omega \in D_{1}$ then $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3 . \omega \in D_{1} \Rightarrow \omega=\phi_{1}(\omega) \neq$ $\phi_{2}(\omega) \neq \phi_{3}(\omega) \neq \omega$. Equation $(* *)$ reduces to

$$
\begin{gather*}
\alpha_{1} u_{1}(\omega)\left[\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right)\right]+\alpha_{2} u_{2}(\omega) \\
{\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+} \\
\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right) f\left(\phi_{1} \circ \phi_{3}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right) f\left(\phi_{2} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right] \\
=\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D1}
\end{gather*}
$$

We can choose a function $f \in C(\Omega)$ satisfying $f(\omega)=1, f\left(\phi_{2}(\omega)\right)=f\left(\phi_{3}(\omega)\right)=$ $f\left(\phi_{1} \circ \phi_{2}(\omega)\right)=f\left(\phi_{1} \circ \phi_{3}(\omega)\right)=0$. Then (D1) reduces to

$$
\begin{align*}
& \alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right) f\left(\phi_{2}^{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+\alpha_{3} u_{3}(\omega) \\
& {\left[\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right) f\left(\phi_{2} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\alpha_{1} u_{1}(\omega)} \tag{D2}
\end{align*}
$$

If $\phi_{2}^{2}(\omega), \phi_{3} \circ \phi_{2}(\omega), \phi_{2} \circ \phi_{3}(\omega)$ and $\phi_{3}^{2}(\omega)$ are all different from ω, by choosing our function f to take value 0 at all these points we will have $\alpha_{1}^{2} u_{1}^{2}(\omega)=\alpha_{1} u_{1}(\omega)$ and hence $\alpha_{1}=1$. Thus not all these points are different from ω.

Claim: If $\omega=\phi_{2} \circ \phi_{i}(\omega), i=2$ or 3 then $\omega=\phi_{3} \circ \phi_{j}(\omega), j=2$ or 3 .

First we assume the claim and complete the proof then establish the claim. Choosing a function $f \in C(\Omega)$ such that $f\left(\phi_{2}(\omega)\right)=1, f((\omega))=f\left(\phi_{3}(\omega)\right)=$ $f\left(\phi_{2}^{2}(\omega)\right)=f\left(\phi_{2} \circ \phi_{3}(\omega)\right)=0$ and then a function f such that $f\left(\phi_{3}(\omega)\right)=$ $1, f((\omega))=f\left(\phi_{2}(\omega)\right)=f\left(\phi_{3}^{2}(\omega)\right)=f\left(\phi_{3} \circ \phi_{2}(\omega)\right)=0$ in Equation (D1) we will get the following two equations.

$$
\begin{gather*}
\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)\right. \\
\left.f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right) f\left(\phi_{1} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right] \\
=\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right) . \tag{D3}\\
\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega) f\left(\phi_{3}(\omega)\right)+\alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)\right. \\
\left.f\left(\phi_{2}^{2}(\omega)\right)\right]+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right) f\left(\phi_{1} \circ \phi_{3}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right) f\left(\phi_{2} \circ \phi_{3}(\omega)\right)\right] \\
=\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D4}
\end{gather*}
$$

From the above claim we have the following disjoint and exhaustive cases which may occur.
$D_{11}=\left\{\omega \in D_{1}: \omega=\phi_{2}^{2}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{2}(\omega)=\phi_{3}^{2}(\omega)=\phi_{1} \circ \phi_{2}(\omega), \phi_{3}(\omega)=\right.$ $\left.\phi_{1} \circ \phi_{3}(\omega)=\phi_{2} \circ \phi_{3}(\omega)\right\}$.
$D_{12}=\left\{\omega \in D_{1}: \omega=\phi_{2}^{2}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{2}(\omega)=\phi_{3}^{2}(\omega)=\phi_{1} \circ \phi_{3}(\omega), \phi_{3}(\omega)=\right.$ $\left.\phi_{1} \circ \phi_{2}(\omega)=\phi_{2} \circ \phi_{3}(\omega)\right\}$.
$D_{13}=\left\{\omega \in D_{1}: \omega=\phi_{2} \circ \phi_{3}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{2}(\omega)=\phi_{3}^{2}(\omega)=\phi_{1} \circ\right.$ $\left.\phi_{2}(\omega), \phi_{3}(\omega)=\phi_{1} \circ \phi_{3}(\omega)=\phi_{2}^{2}(\omega)\right\}$.
$D_{14}=\left\{\omega \in D_{1}: \omega=\phi_{2} \circ \phi_{3}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{2}(\omega)=\phi_{3}^{2}(\omega)=\phi_{1} \circ\right.$ $\left.\phi_{3}(\omega), \phi_{3}(\omega)=\phi_{1} \circ \phi_{2}(\omega)=\phi_{2}^{2}(\omega)\right\}$.
$D_{15}=\left\{\omega \in D_{1}: \omega=\phi_{2}^{2}(\omega)=\phi_{3}^{2}(\omega), \phi_{2}(\omega)=\phi_{1} \circ \phi_{2}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{3}(\omega)=\right.$ $\left.\phi_{1} \circ \phi_{3}(\omega)=\phi_{2} \circ \phi_{3}(\omega)\right\}$.
$D_{16}=\left\{\omega \in D_{1}: \omega=\phi_{2}^{2}(\omega)=\phi_{3}^{2}(\omega), \phi_{2}(\omega)=\phi_{1} \circ \phi_{3}(\omega)=\phi_{3} \circ \phi_{2}(\omega), \phi_{3}(\omega)=\right.$ $\left.\phi_{1} \circ \phi_{2}(\omega)=\phi_{2} \circ \phi_{3}(\omega)\right\}$.

Now for any $\omega \in D_{11}$, Equation (D1) is reduced to

$$
\begin{align*}
& \left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)\right]\right\} f(\omega)+ \\
& {\left[\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{1} \alpha_{2} u_{1}\left(\phi_{2}(\omega)\right) u_{2}(\omega)+\alpha_{3}^{2} u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)\right] f\left(\phi_{2}(\omega)\right)} \\
& +\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right)\right]\right\} f\left(\phi_{3}(\omega)\right) \\
& =\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D11}
\end{align*}
$$

Since $\omega \neq \phi_{2}(\omega) \neq \phi_{3}(\omega)$, choosing appropriate functions we have

$$
\begin{equation*}
\alpha_{1} \leq \alpha_{1}^{2}+\alpha_{2}\left(\alpha_{2}+\alpha_{3}\right), \alpha_{2} \leq 2 \alpha_{1} \alpha_{2}+\alpha_{3}^{2} \text { and } 1 \leq 2 \alpha_{1}+\alpha_{2} . \tag{D11}
\end{equation*}
$$

For $\omega \in D_{12}$, we have

$$
\begin{gather*}
\left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)\right]\right\} f(\omega)+ \\
{\left[\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right)\right] f\left(\phi_{2}(\omega)\right)+\right.} \\
\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{1} \alpha_{2} u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right)+\alpha_{2} \alpha_{3} u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)\right\} f\left(\phi_{3}(\omega)\right) \\
=\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D12}
\end{gather*}
$$

This implies that

$$
\begin{gather*}
\alpha_{1} \leq \alpha_{1}^{2}+\alpha_{2}\left(\alpha_{2}+\alpha_{3}\right), \alpha_{2} \leq \alpha_{1} \alpha_{2}+\alpha_{3}\left(\alpha_{1}+\alpha_{3}\right) \text { and } \\
\alpha_{3} \leq \alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1} . \tag{D12}
\end{gather*}
$$

For $\omega \in D_{13}$, we have

$$
\begin{gather*}
\left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2} \alpha_{3}\left[u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)+u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)\right]\right\} f(\omega)+ \\
{\left[\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{1} \alpha_{2} u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right)+\alpha_{3}^{2} u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)\right] f\left(\phi_{2}(\omega)\right)} \\
+\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{2}^{2} u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{1} \alpha_{3} u_{3}(\omega) u_{1}\left(\phi_{3}(\omega)\right)\right\} f\left(\phi_{3}(\omega)\right) \\
=\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D13}
\end{gather*}
$$

This implies that

$$
\begin{equation*}
\left.\alpha_{1} \leq \alpha_{1}^{2}+2 \alpha_{2} \alpha_{3}\right), \alpha_{2} \leq 2 \alpha_{1} \alpha_{2}+\alpha_{3}^{2} \text { and } \alpha_{3} \leq 2 \alpha_{1} \alpha_{3}+\alpha_{2}^{2} \tag{D13}
\end{equation*}
$$

For $\omega \in D_{14}$, we have

$$
\begin{align*}
& \quad\left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2} \alpha_{3}\left[u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)+u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)\right]\right\} f(\omega)+ \\
& \left\{\left[\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right)\right]\right\} f\left(\phi_{2}(\omega)\right)\right. \\
& +\left\{\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{2}(\omega)\right)\right]\right\} f\left(\phi_{3}(\omega)\right)\right. \\
& =\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D14}
\end{align*}
$$

This implies that

$$
\begin{gathered}
\left.\alpha_{1} \leq \alpha_{1}^{2}+2 \alpha_{2} \alpha_{3}\right), \alpha_{2} \leq \alpha_{1} \alpha_{2}+\alpha_{3}\left(\alpha_{1}+\alpha_{3}\right) \text { and } \\
\alpha_{3} \leq \alpha_{1} \alpha_{3}+\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) .
\end{gathered}
$$

For $\omega \in D_{15}$, we have

$$
\begin{align*}
& \left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2}^{2} u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3}^{2} u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)\right\} f(\omega)+ \\
& \left\{\left[\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right)\right]\right\} f\left(\phi_{2}(\omega)\right)\right. \\
& +\left\{\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{3}(\omega)\right)\right]\right\} f\left(\phi_{3}(\omega)\right)\right. \\
& =\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D15}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\alpha_{1} \leq \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}, 1 \leq 2 \alpha_{1}+\alpha_{3} \text { and } 1 \leq 2 \alpha_{1}+\alpha_{2} \tag{D15}
\end{equation*}
$$

For $\omega \in D_{16}$, we have

$$
\begin{gather*}
\left\{\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2}^{2} u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)+\alpha_{3}^{2} u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)\right\} f(\omega)+ \\
\left\{\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{2} \alpha_{3} u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)+\alpha_{1} \alpha_{3} u_{3}(\omega) u_{1}\left(\phi_{3}(\omega)\right)\right\} f\left(\phi_{2}(\omega)\right) \\
+\left\{\alpha_{1} \alpha_{3} u_{1}(\omega) u_{3}(\omega)+\alpha_{1} \alpha_{2} u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right)+\alpha_{2} \alpha_{3} u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)\right\} f\left(\phi_{3}(\omega)\right) \\
=\alpha_{1} u_{1}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f\left(\phi_{2}(\omega)\right)+\alpha_{3} u_{3}(\omega) f\left(\phi_{3}(\omega)\right) . \tag{D16}
\end{gather*}
$$

This implies that

$$
\alpha_{1} \leq \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2} \text { and } \alpha_{2} \leq \alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}
$$

For Equations $(D 1 i)^{\prime}, i=1, \ldots, 6$ it is easy to observe that $\alpha_{i}=1 / 3, i=1,2,3$ is the only solution.

We now need to find the condition on $u_{i}(\omega)$ and $u_{i}\left(\phi_{j}(\omega)\right)$ where $i, j=1,2,3$. We substitute $\alpha_{i}=1 / 3$ in Equations $(D 1 i), i=1, \ldots, 6$ and we choose three sets of functions for each Equation. Firstly, a function $f \in C(\Omega)$ such that $f(\omega)=1$, $f\left(\phi_{2}(\omega)\right)=f\left(\phi_{3}(\omega)\right)=0$. Then, a function $f \in C(\Omega)$ such that $f\left(\phi_{2}(\omega)\right)=1$, $f(\omega)=f\left(\phi_{3}(\omega)\right)=0$ and finally a function $f \in C(\Omega)$ such that $f\left(\phi_{3}(\omega)\right)=1$, $f(\omega)=f\left(\phi_{2}(\omega)\right)=0$. Moreover, by observing that $u_{i}(\omega)$ and $u_{i}\left(\phi_{j}(\omega)\right)$ lie on the unit circle and all the points on the circle are extreme points we get the following conditions on $u_{i}(\omega)$ and $u_{i}\left(\phi_{j}(\omega)\right)$ where $i, j=1,2,3$:
For $\omega \in D_{11}$ we get

$$
\begin{gathered}
u_{1}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)=1, u_{1}\left(\phi_{2}(\omega)\right)=1 \\
u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)=u_{2}(\omega) \text { and } u_{1}\left(\phi_{3}(\omega)\right)=u_{2}\left(\phi_{3}(\omega)\right)=1
\end{gathered}
$$

For $\omega \in D_{12}$ we get

$$
\begin{gathered}
u_{1}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)=1, u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right)=u_{3}(\omega) \\
u_{2}(\omega)=u_{3}(\omega) u_{1}\left(\phi_{3}(\omega)\right)=u_{2}(\omega) u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right) \text { and } u_{2}\left(\phi_{3}(\omega)\right)=1
\end{gathered}
$$

For $\omega \in D_{13}$ we get

$$
u_{1}(\omega)=u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)=u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)=1, u_{1}\left(\phi_{2}(\omega)\right)=u_{1}\left(\phi_{3}(\omega)\right)=1
$$

$$
u_{2}(\omega)=u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right) \text { and } u_{3}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)
$$

For $\omega \in D_{14}$ we get

$$
\begin{gathered}
u_{1}(\omega)=u_{2}(\omega) u_{3}\left(\phi_{2}(\omega)\right)=u_{3}(\omega) u_{2}\left(\phi_{3}(\omega)\right)=1, u_{2}(\omega)=u_{3}(\omega) u_{1}\left(\phi_{3}(\omega)\right)= \\
u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right) \text { and } u_{3}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right) .
\end{gathered}
$$

For $\omega \in D_{15}$ we get

$$
\begin{gathered}
u_{1}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)=1 \text { and } u_{1}\left(\phi_{2}(\omega)\right)=u_{1}\left(\phi_{3}(\omega)\right)= \\
u_{3}\left(\phi_{2}(\omega)\right)=u_{2}\left(\phi_{3}(\omega)\right)=1 .
\end{gathered}
$$

For $\omega \in D_{16}$ we get

$$
\begin{gathered}
u_{1}(\omega)=u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=u_{3}(\omega) u_{3}\left(\phi_{3}(\omega)\right)=1, u_{2}(\omega)=u_{3}(\omega) u_{1}\left(\phi_{3}(\omega)\right) \\
u_{3}(\omega)=u_{2}(\omega) u_{1}\left(\phi_{2}(\omega)\right) \text { and } u_{3}\left(\phi_{2}(\omega)\right)=u_{2}\left(\phi_{3}(\omega)\right)=1
\end{gathered}
$$

Proof of the claim. Let $\omega=\phi_{2} \circ \phi_{i}(\omega), i=2$ or 3 then in Equation (D2) $f\left(\phi_{2} \circ \phi_{j}(\omega)\right)=0, j=2$ or 3 and $j \neq i$. Suppose to the contrary that $\omega \neq \phi_{3} \circ \phi_{k}(\omega)$ for $k=2,3$ then by choosing our f to be 0 at these points we get from (D2)

$$
\begin{equation*}
\alpha_{1}^{2} u_{1}^{2}(\omega)+\alpha_{2}^{2} u_{2}(\omega) u_{2}\left(\phi_{2}(\omega)\right)=\alpha_{1} u_{1}(\omega) \tag{D1.1}
\end{equation*}
$$

This will imply that $\alpha_{1} \leq \alpha_{1}^{2}+\alpha_{2}^{2}$. We now choose a function $f \in C(\Omega)$ such that $f\left(\phi_{2}(\omega)\right)=1$ and $f(\omega)=f\left(\phi_{3}(\omega)\right)=f\left(\phi_{2}^{2}(\omega)\right)=f\left(\phi_{2} \circ \phi_{3}(\omega)\right)=0$. Then Equation (D1) is reduced to
$\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{2} u_{2}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{2}(\omega)\right) f\left(\phi_{1} \circ \phi_{2}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{2}(\omega)\right) f\left(\phi_{3} \circ \phi_{2}(\omega)\right)\right]+$ $\alpha_{3} u_{3}(\omega)\left[\alpha_{1} u_{1}\left(\phi_{3}(\omega)\right) f\left(\phi_{1} \circ \phi_{3}(\omega)\right)+\alpha_{3} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3}^{2}(\omega)\right)\right]=\alpha_{2} u_{2}(\omega)$.
Again, if all $\phi_{1} \circ \phi_{2}(\omega), \phi_{3} \circ \phi_{2}(\omega), \phi_{1} \circ \phi_{3}(\omega)$ and $\phi_{3}^{2}(\omega)$ are different from $\phi_{2}(\omega)$, by choosing f initially to take value 0 at all these points we could have $\alpha_{1}=1$. Suppose $\phi_{2}(\omega)=\phi_{1} \circ \phi_{i_{1}}(\omega)$ where $i_{1}=2$ or 3 . Then we could choose f in (D1.2) such that $f\left(\phi_{1} \circ \phi_{i_{2}}(\omega)\right)=0, i_{2}=2$ or 3 and $i_{2} \neq i_{1}$. If $\phi_{2}(\omega) \neq \phi_{3} \circ \phi_{i_{3}}(\omega)$, $i_{3}=2,3$. Then by the same argument we get from (D1.2)

$$
\begin{equation*}
\alpha_{1} \alpha_{2} u_{1}(\omega) u_{2}(\omega)+\alpha_{1} \alpha_{i_{1}} u_{i_{1}}(\omega) u_{1}\left(\phi_{i_{1}}(\omega)\right)=\alpha_{2} u_{2}(\omega) \tag{D1.3}
\end{equation*}
$$

This implies that $\alpha_{2} \leq \alpha_{1}\left(\alpha_{2}+\alpha_{i_{1}}\right)$. For $i_{1}=2$ we get $\alpha_{1}=1 / 2$ and ($D 1.1$) implies that $\alpha_{2}=1 / 2$ and for $i_{1}=3$ we will have $\alpha_{2}=1$, a contradiction in both the cases.

Now, if $\phi_{2}(\omega)=\phi_{3} \circ \phi_{i_{4}}(\omega), i_{4}=2$ or 3 . So, by choosing a function f such that $f(\omega)=f\left(\phi_{1}(\omega)\right)=f\left(\phi_{3}(\omega)\right)=0$ in Equation $(D 1)$ we will be left with three points, i.e., $\phi_{1} \circ \phi_{i_{5}}(\omega)\left(i_{5} \neq i_{1}\right), \phi_{2} \circ \phi_{i_{6}}(\omega)\left(i_{6} \neq i\right), \phi_{3} \circ \phi_{i_{7}}(\omega)\left(i_{7} \neq i_{4}\right)$ and we have 0 on the right hand side. It is also clear that $\phi_{3} \circ \phi_{i_{7}}(\omega)$ is not equal to any of
$\omega, \phi_{2}(\omega)$, or $\phi_{3}(\omega)$. So, it has to be equal to at least one of $\phi_{1} \circ \phi_{i_{5}}(\omega)$ or $\phi_{2} \circ \phi_{i_{6}}(\omega)$. But in all these cases we can choose f large enough to get a contradiction.

We will need one more lemma to complete the proof of Theorem 1.3.
Lemma 2.4. With the assumption in Theorem 1.3, one and only one of the following conditions is possible: (In all the cases $i, j, k=1,2,3$)
(i) $\Omega=A \bigcup B_{i}$.
(ii) $\Omega=B_{i}$.
(iii) $\Omega=A \bigcup B_{i} \bigcup C_{i}$.
(iv) $\Omega=C_{i}$.
(v) $\Omega=A \bigcup C_{i}$.
(vi) $\Omega=D_{i j}$.
(vii) $\Omega=A \bigcup D_{i j}$.
(viii) $\Omega=A \bigcup D_{i j} \bigcup D_{k l}, l=1, \ldots, 6$.
(ix) $\Omega=A \bigcup D_{1 i} \bigcup D_{2 j} \bigcup D_{3 k}$.

Proof. We have seen in the beginning of proof of Theorem 1.3 that $\Omega \neq A$. Suppose $\Omega=A \bigcup B_{1} \bigcup B_{2} \bigcup B_{3}$. Let us consider any $w \in B_{1}$, i.e $w=\phi_{3}(w)=$ $\phi_{2}(\omega) \neq \phi_{1}(\omega)$. The case $\omega \in B_{2}$ or B_{3} are similar. Equation $(* *)$ is reduced to

$$
\begin{align*}
& {\left[\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right]\left[\alpha_{3} u_{3}(\omega) f(\omega)+\alpha_{2} u_{2}(\omega) f(\omega)+\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right)\right]+\alpha_{1} u_{1}(\omega)} \\
& {\left[\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)\right]} \\
& \quad=\left[\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right] f(\omega)+\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right) . \tag{B1}
\end{align*}
$$

First we claim that $\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega) \neq 0$. Suppose on the contrary that $\alpha_{3} u_{3}(\omega)+$ $\alpha_{2} u_{2}(\omega)=0$. Then, $\alpha_{3}=\alpha_{2}, u_{3}(\omega)+u_{2}(\omega)=0$ and Equation (B1) becomes

$$
\begin{gathered}
\alpha_{2} u_{3}\left(\phi_{3}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)+\alpha_{1} u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right) \\
=f\left(\phi_{1}(\omega)\right)
\end{gathered}
$$

As $\phi_{1}(\omega) \neq \phi_{1}^{2}(\omega), \phi_{1}(\omega)$ must be equal to only one of $\phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{2} \circ \phi_{1}(\omega)$, because if not then one can choose a function f to assume value 0 at $\phi_{1}^{2}(\omega), \phi_{3} \circ$ $\phi_{1}(\omega), \phi_{2} \circ \phi_{1}(\omega)$ and 1 at $\phi_{1}(\omega)$ to get a contradiction. By same argument we see that $\phi_{1}(\omega)$ cannot be equal to both $\phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{2} \circ \phi_{1}(\omega)$. Moreover, if $\phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega)$, then $\phi_{2} \circ \phi_{1}(\omega)$ must be equal to $\phi_{1}^{2}(\omega)$. Therefore, suppose that $\phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega), \phi_{1}^{2}(\omega)=\phi_{2} \circ \phi_{1}(\omega)$. The case $\phi_{1}(\omega)=\phi_{2} \circ \phi_{1}(\omega), \phi_{1}^{2}(\omega)=$ $\phi_{3} \circ \phi_{1}(\omega)$ is similar. Take a function f so that $f\left(\phi_{1}(\omega)\right)=1, f\left(\phi_{1}^{2}(\omega)\right)=0$ we will get $\alpha_{3}=1$, a contradiction. Now for a continuous function f such that
$f(\omega)=1, f\left(\phi_{1}(\omega)\right)=f\left(\phi_{3} \circ \phi_{1}(\omega)\right)=f\left(\phi_{2} \circ \phi_{1}(\omega)\right)=0$, then Equation (B1) becomes

$$
\begin{equation*}
\left[\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right]^{2}+\alpha_{1}^{2} u_{1}(\omega) u_{1}\left(\phi_{1}(\omega)\right) f\left(\phi_{1}^{2}(\omega)\right)=\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega) \tag{B2}
\end{equation*}
$$

$\phi_{1}^{2}(\omega)$ must be equal to one of $\omega, \phi_{3} \circ \phi_{1}(\omega)$ and $\phi_{2} \circ \phi_{1}(\omega)$. If $\phi_{1}^{2}(\omega)=\phi_{3} \circ \phi_{1}(\omega)$ or $\phi_{2} \circ \phi_{1}(\omega)$, then $f\left(\phi_{1}^{2}(\omega)\right)=0$. This implies that $\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)=1$ as $\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega) \neq 0$. Thus, $1 \leq \alpha_{2}+\alpha_{3}$, a contradiction to the fact that $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$. Therefore, $\phi_{1}^{2}(\omega)=\omega$ and (B2) is reduced to

$$
\left[\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right]^{2}+\alpha_{1}^{2} u_{1}(\omega) u_{1}\left(\phi_{1}(\omega)\right)=\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega) .
$$

Now, for a continuous function f such that $f(\omega)=0, f\left(\phi_{1}(\omega)\right)=1$, Equation (B1) reduces to
$\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right) f\left(\phi_{3} \circ \phi_{1}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right) f\left(\phi_{2} \circ \phi_{1}(\omega)\right)=1$.
By a similar line of arguments we conclude that $\phi_{1}(\omega)=\phi_{3} \circ \phi_{1}(\omega)=\phi_{2} \circ \phi_{1}(w)$. So, (B3) becomes

$$
\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}\left(\phi_{1}(\omega)\right)+\alpha_{2} u_{2}\left(\phi_{1}(\omega)\right)=1
$$

This implies that $\alpha_{3}+\alpha_{2} \geq 1 / 2$. Now $\operatorname{Pf}(\omega)=\left[\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right] f(\omega)+$ $\alpha_{1} u_{1}(\omega) f\left(\phi_{1}(\omega)\right)$, which implies that $|P f(\omega)| \leq\left|\alpha_{3} u_{3}(\omega)+\alpha_{2} u_{2}(\omega)\right||f(\omega)|+$ $\alpha_{1}\left|f\left(\phi_{1}(\omega)\right)\right|$. Now, consider the following cases:
(a) If all B_{i} 's are closed, then as A is closed, by connectedness of Ω we have $\Omega=B_{1}, \Omega=B_{2}$ or $\Omega=B_{3}$. If $\Omega=B_{1}$, then $\exists \omega_{0} \in \Omega$ and f such that $\|f\|=1=\left|P f\left(\omega_{0}\right)\right|$, which shows that $\left|\alpha_{3} u_{3}\left(\omega_{0}\right)+\alpha_{2} u_{2}\left(\omega_{0}\right)\right|=\alpha_{3}+\alpha_{2}$. Thus, $u_{3}\left(\omega_{0}\right)=u_{2}\left(\omega_{0}\right)=1$. From Equation $\left(B 2^{\prime}\right)$ we get $\alpha_{1} \geq 1 / 2$. Since, $\alpha_{1} \leq 1 / 2$ we conclude, $\alpha_{3}+\alpha_{2}=\alpha_{1}=1 / 2$. From $\left(B 3^{\prime}\right)$ we get $u_{2}(\omega)=u_{3}(\omega)=u_{2}\left(\phi_{1}(\omega)\right)=$ $u_{3}\left(\phi_{1}(\omega)\right)=1$. Similarly is the case when $\Omega=B_{2}$ or $\Omega=B_{3}$.
(b) If only one B_{i} is closed, then as any limit point of B_{i} can belong to either B_{i} or A we get $A \bigcup B_{j} \bigcup B_{k}$ is closed and hence either $\Omega=B_{i}$ or $\Omega=A \bigcup B_{j} \bigcup B_{k}$. Suppose that B_{3} is closed and $\Omega=A \bigcup B_{1} \bigcup B_{2}$. The other cases are similar. Since B_{2} is not closed there exists $\omega_{n} \in B_{1}$ such that $\omega_{n} \rightarrow \omega$ and $\omega \in A$. Note that $\phi_{1}(\omega)=\phi_{2}(\omega)=\phi_{3}(\omega)=\omega$. If $\omega \in A_{1}$, then $u_{1}(\omega)=u_{2}(\omega)=u_{3}(\omega)=1$ and from Equation $\left(B 2^{\prime}\right)$ we have $\left[\alpha_{2}+\alpha_{3}\right]^{2}+\alpha_{2}^{2}=\alpha_{2}+\alpha_{3}$, which implies that $\alpha_{1}=1 / 2$. If $\omega \in A_{2}$, then $\alpha_{1} u_{1}(\omega)+\alpha_{2} u_{2}(\omega)+\alpha_{3} u_{3}(\omega)=0$ and Equation ($B 3^{\prime}$) implies that $-\alpha_{1} u_{1}(\omega)=1 / 2$ and hence $\alpha_{1}=1 / 2$. Similar argument for B_{2} will give us $\alpha_{2}=1 / 2-$ a contradiction.

Thus, $\Omega \neq A \bigcup B_{1} \bigcup B_{2}$.
(c) If two B_{i} 's are closed then we will have $\Omega=A \bigcup B_{i}$, for some i or $\Omega=$ $B_{j}, i \neq j$. Suppose $\Omega=A \bigcup B_{1}, B_{1}$ is not closed. Considering a sequence in B_{1}
and proceeding as above we conclude that $\alpha_{1}=\alpha_{2}+\alpha_{3}=1 / 2$ and from Equation $\left(B 3^{\prime}\right)$ we get $u_{2}(\omega)=u_{3}(\omega)=u_{2}\left(\phi_{1}(\omega)\right)=u_{3}\left(\phi_{1}(\omega)\right)=1$.
(d) If no B_{i} 's are closed then $\Omega=A \bigcup B_{1} \bigcup B_{2} \bigcup B_{3}$. Proceeding in the same way as in case (b), we can see that this case is also not possible.

From previous lemma one can see that none of C_{1}, C_{2}, C_{3} can occur together. Suppose $\Omega=A \bigcup B_{1} \bigcup B_{2} \bigcup B_{3} \bigcup C_{1}$. The cases in which $\Omega=$ $A \bigcup B_{1} \bigcup B_{2} \bigcup B_{3} \bigcup C_{i}, i=2,3$ are similar. Now, a sequential argument will show that B_{2}, B_{3} and $A \bigcup B_{1} \bigcup C_{1}$ are closed. From connectedness of Ω we get that $\Omega=B_{2}$ or $\Omega=B_{3}$ or $A \bigcup B_{1} \bigcup C_{1}$.

Let $\Omega=A \bigcup B_{1} \bigcup C_{1}$. If B_{1} and C_{1} are closed then $\Omega=B_{1}$ or $\Omega=C_{1}$. If one of B_{1} is closed and C_{1} is not, then $\Omega=B_{1}$ or $\Omega=A \bigcup C_{1}$. If C_{1} is closed and B_{1} is not, then $\Omega=C_{1}$ or $\Omega=A \bigcup B_{1}$. This proves assertions (i)-(v).

It is also clear from previous lemma that for $i=1,2,3, C_{i}$ cannot occur with D_{i}. Also, for fixed $i=1,2,3$, no two or more $D_{i j}, j=1, \ldots, 6$ can occur simultaneously.

Suppose that $\Omega=A \bigcup B_{i} \bigcup D_{j k}$. Then $\alpha_{i}=1 / 3$ for $i=1,2,3$. So, if B_{i} and $D_{j k}$ are not closed then by a sequential argument as in case (b) above we will get $\alpha_{i}=1 / 2$, a contradiction. Thus, no B_{i} can occur with $D_{j k}$. Assume $\Omega=A \bigcup D_{1 i} \bigcup D_{2 j} \bigcup D_{3 k}$. If some of $D_{i j}$'s are closed, then by arguing in a similar way we will get cases (vi)-(ix).

This completes the proof of Lemma 2.4

Completion of proof of Theorem 1.3: For any $\omega \in B_{1}$ we have $u_{2}(\omega)=u_{3}(\omega)=$ $u_{2}\left(\phi_{1}(\omega)\right)=u_{3}\left(\phi_{1}(\omega)\right)=1$ and for $\omega \in C_{1} ; u_{2}(\omega)=u_{3}(\omega)=u_{2}\left(\phi_{2}(\omega)\right)=$ $u_{3}\left(\phi_{2}(\omega)\right)=1$. Therefore, $T_{2} f(\omega)=T_{3} f(\omega)$ for all $f \in C(\Omega), \omega \in B_{1} \cup C_{1}$. So, if $\Omega=B_{1}, C_{1}, A \bigcup B_{1}, A \bigcup C_{1}$, or $A \bigcup B_{1} \bigcup C_{1}$ we have $P=\frac{T_{1}+T_{2}}{2}$. Similarly is the case when any one of conditions (i)-(v) holds.

Thus the proof of Theorem 1.3 (a) is complete.
It remains to consider the case when $\Omega=A \bigcup D_{1 i} \bigcup D_{2 j} \bigcup D_{3 k}$. We further assume that $i, k \leq 4, j \geq 5$. The remaining cases and conditions (vi)-(viii) are similar. Our aim is to show that there exists a surjective isometry on $C(\Omega)$ such that $L^{3}=I$ and $P=\frac{\left(I+L+L^{2}\right)}{3}$. Since $P=1 / 3\left(T_{1}+T_{2}+T_{3}\right)$ is a projection we have $P=\frac{1}{9}\left(T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{3}+T_{3} T_{1}+T_{2} T_{3}+T_{3} T_{2}\right)$.

Using the conditions obtained earlier on $u_{i}(\omega)$'s and $u_{i}\left(\phi_{j}(\omega)\right)$ we see that for any $\omega \in D_{11} ; T_{1}^{2} f(\omega)=T_{2}^{2} f(\omega)=f(\omega), T_{3}^{2} f(\omega)=T_{2} f(\omega), T_{1} T_{2} f(\omega)=T_{2} T_{1} f(\omega)=$ $T_{2} f(\omega), T_{1} T_{3} f(\omega)=T_{3} T_{1} f(\omega)=T_{3} T_{2} f(\omega)=T_{3} f(\omega), T_{2} T_{3} f(\omega)=f(\omega)$. That is, $P=\frac{I+T_{3}+T_{3}^{2}}{3}$ and $T_{3}^{3}=I$. Similarly if $\omega \in D_{12}, D_{13}$ or D_{14} we have $P=\frac{I+T_{3}+T_{3}^{2}}{3}$
and $T_{3}^{3}=I$. If $w \in D_{15}$ or D_{16}, then we get $P=\frac{I+T_{2}+T_{3}}{3}=\frac{I+T_{2} T_{3}+\left(T_{2} T_{3}\right)^{2}}{3}$ and $\left(T_{2} T_{3}\right)^{3}=I$. Similar considerations can be done for D_{2} and D_{3}. We now define

$$
u(w)=\left\{\begin{array}{l}
u_{1}(\omega), \text { if } \omega \in A_{1} \\
u_{3}(\omega), \text { if } \omega \in D_{1 i} \\
u_{1}(\omega) u_{3}\left(\phi_{1}(\omega)\right), \text { if } \omega \in D_{2 j} \\
u_{1}(\omega), \text { if } \omega \in D_{3 k}
\end{array} \quad \text { and } \phi(\omega)=\left\{\begin{array}{l}
\phi_{1}(\omega), \text { if } \omega \in A_{1} \\
\phi_{3}(\omega), \text { if } \omega \in D_{1 i} \\
\phi_{3} o \phi_{1}(\omega), \text { if } \omega \in D_{2 j} \\
\phi_{1}(\omega), \text { if } \omega \in D_{3 k}
\end{array}\right.\right.
$$

Let $L f(\omega)=u(\omega) f(\phi(\omega))$. Observe that the limit point of any sequence in $D_{i j}$ can go only to $D_{i j}$ or A. So, it follows that u is continuous and ϕ is a homeomorphism. Hence the proof of Theorem 1.3 (b) is complete.

References

[1] F. Botelho, Projections as convex combinations of surjective isometries on $C(\Omega)$ J. Math. Anal. Appl. 341 (2008), no. 2, 1163-1169. MR2398278 (2009h:46025).
[2] F. Botelho and J. E. Jamison, Generalized bi-circular projections on $C(\Omega, X)$, Rocky Mountain J. Math. 40 (2010), no. 1, 77-83. MR2607109.
[3] F. Botelho and J. E. Jamison, Generalized bi-circular projections, Preprint 2009.
[4] S. Dutta and T. S. S. R. K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), no. 7, 1522—1527. MR2444339 (2009j:47153).
[5] Fleming, R. J. and J. E. Jamison, Isometries on Banach spaces: function spaces, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman Hall/CRC, Boca Raton, FL, 2003. MR1957004 (2004j:46030).
[6] Fleming, R. J. and J. E. Jamison, Isometries on Banach spaces, Vol. 2. Vector-valued function spaces. Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 138. Chapman Hall/CRC, Boca Raton, FL, 2008. MR2361284 (2009i:46001).
[7] M. Fošner, D. Ilišević and C. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007), 596-608. MR2278235 (2007m:47016).
[8] P. K. Lin, Generalized bi-circular projections, J. Math. Anal. Appl. 340 (2008), 1-4. MR2376132 (2009b:47066).
(Abdullah Bin Abubaker) Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India, E-mail : abdullah@iitk.ac.in
(S Dutta) Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India, E-mail : sudipta@iitk.ac.in

[^0]: 2000 Mathematics Subject Classification. 47L05; 46B20.
 Key words and phrases. Isometry, Generalized 3-circular projection.

